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Recent experiments [1,2] with Hall resistance in semiconductor inversion layers in strong transverse
magnetic fields established to the accuracy of better than 107 that Hall conductivity is quantized in
multiples of eZh. The exactness of this result, which Laughlin [3] attempted to derive from gauge
invariance, has led to the proposal [1] of using the quantum h/e? as a standard of resistance. The most
fundamental conseguence of these experiments is the existence of a long-range order in a fermionic
system. This order was interpreted [3] as a long-range phase rigidity analogous to that in a
superconductor. As will be shown below this picture is incorrect and the meaning of the long-range
order consists here in a self-interference of electrons over macroscopic distances of the sasmple. A good
analogy would be to the Bohm-Aharonov experiment [4], or to the double-dlit interference of electrons
propagating in vacuum a macroscopic distance from the dlits to a screen. Hall quantization represents
the first effect of this nature discovered for solid-state electrons.

Consider a 2-dimensiona electron gas (2-d EG) of geometry shown in Fig.1c in a strong magnetic field
H perpendicular to the plane of the figure. First, let us dicuss an idea situation with no latera
fluctuation of the electrostatic potential due to a random distribution of the fixed charge which
compensates the charge of electrons in the inversion layer. In the absence of an applied electric field the
electron energy is characterized by quantum numbersi and n, viz.

Ein: (n + yz) h(,\)c + Ei (1)

where the cyclotron frequency w.= eH/m"c. Equation (1) differs from the usual expression [5] for a
3-dimensional electron gas in that the continuous energy spectrum p,72m’ characterizing the free motion
in the direction of H is replaced by discrete energies E; appropriate for a finite motion in the quantum
well confining electrons in the inversion layer. The level splitting in this quantum well is assumed to be
so large (>>hwy) that al electrons remain frozen in states with i =0 for all H considered. For the sake of
clarity we shall neglect spin effects. The levels E;, are degenerate with the number of states in each
level given by N =eHShc where S is the area of the 2-d EG sample. Thus each filled level
contributes 0 = e?H/hc to the surface charge density in the inversion layer (o6 = 1.3x10cm™ for
H =5T). We shal consider only the case when hw,>>kT so that all states below the Fermi level Er
are completely filled and those above Ex empty, as indicated in Fig.la. States belonging to the same
degenerate level can be labelled by an additional quantum number, x,, which corresponds to one of the
coordinates of a classical cyclotron orbit. Along the x-axis the electron wave-function varies like the



nth e|genfunct|0n of a linear oscillator centered a x,, and is localized with a dlsperson
a’= <n E{ —x0)2 On> = (n+%:) a® where the Landau length a_ = (hc/eH)” (for H=5T, aL@100A) In

the perpendicular direction the wave function is exp(ipyy) where p, = eHxyC. These results of Landau
are strictly valid in a Cartesian system while our coordinates are only locally Cartesian which produces a
negligible error of order a7R?. The choice of direction in which orbits are localized is determined by
the gauge for the vector potential A of the magnetic field and is quite arbitrary. The above choice of the
gauge (in which the locus of X, is a concentric circle for each state, cf. Fig.1c), is particularly
convenient when V,#0, i.e. when there is a radia electric field F. It is easily seen that in this case the
Schrodinger equation is satisfied by wave-functions of the form similar to those obtained in the absence
of the electric field but with a different relation between x, and the momentum p, of the electron wave,
viz.

py = ixo +m C% (2)
and a different energy spectrum,
Einx, = Ein + €FX, +%:m’ (cCF/H)? (3)

As seen from Eq.(3) the Landau levels are split by electric field. Each quantum number X, determines
an equipotential. The electronic waves are localized in z-direction by the quantum well and in x-
direction by the length a,, while in the y-direction they propagate along the equipotentia lines like light
in an optical fiber. Each closed equipotentia represents a ring resonator which imposes a cyclic
boundary condition on the electronic wave. This results in a discrete spectrum of values for x,, with a
step &%, = a7L , where L >a_ is the length of the fiber. Two successive orbits separated by the
infinitesimal distance ox, also differ in the total variation of the phase of the corresponding wave-
functions on going around the loop. For the wave-function to be single-valued this phase variation must
equal 2m (with | integer) for any state. The absolute value of | is gauge-dependent but for two
successive orbits the difference &l =1 (this makes the two states orthogonal). It can be easily shown
that the magnetic flux through the area bounded by two corresponding equipotentials equals hc/e. The
first term in Eq.(2) gives no contribution to the total current due to a single electron, because it is
exactly compensated by the diamagnetic term in the expression for the current density in a magnetic
field [5]. Each electron contributes to the Hall current only in virtue of the additional velocity vy = cF/H
it acquires in the electric field. This velocity also gives rise to the kinetic energy term in Eq.(3). Each
filled Landau level contributes a linear current density J = ovy and the total current in y direction is
thus

o =n(e%h) V, =Gy V, (4

wheren is the number of filled Landau levels and G,y the transverse conductivity. We see that for a
given V, the Hall current does not depend on the width of the ring. Although the number of quantized
equipotentials (single-electron fibers) is smaller for a narrower ring, the field F and therefore the Hall
velocity vy of each electron are proportionally increased so that the total current remains the same. Even
more remarkable is the fact that the Hall current is unaffected by a random electrostatic potential in the
inversion layer. This is a purely topological effect as is demonstrated below.

To be specific we consider the experimental situation of ref.6 in which the vanishing longitudina
resistance effect was first discovered. In this work the inversion layer was formed on the p-GaAs/n-
GaAlAs interface due to a work function difference, cf. Fig.2a. Due to random variations in the surface
density of the fixed charge the shape and the depth of the potential well confining the inversion layer
also fluctuate and the energies E; become ill-defined. However, an important feature of this structure is
an undoped GaAlAs layer of thickness d separating the fixed donor charge from the inversion layer
which is formed on the lightly doped p-GaAs side of the heterojunction. If d>a, then the energies E;
become smooth functions of the lateral position in the inversion layer and the quantitiy Ege becomes
equivalent to a random electrostatic potential for the 2-d electrons. In this case the quantum mechanics
of the problem can till be described in local Cartesian coordinates formed by the orthogonal grid of
equipotential and field lines, but the equipotentials are no longer concentric circles, cf. Fig.2c. Each



equipotential represents an effective wave-guide where an electron is localized to within the Landau
length a, . As before, periodic boundary conditions determine the quantization of equipotentials and turn
the latter into fiber ring resonators. Topologicaly, there are two distinct classes of fibers in the
geometry of a Corbino ring: global which encircle the central electrode, and local fibers, which can be
contracted to a point by a continuous deformation. It is the existence of globa fibers which embodies
the long-range order in the 2-d EG. Because of the potential fluctuation the total number of electrons
contributing to the Hall current is reduced, since loca fibers obviously do not contribute. Nevertheless
the current remains the same as in the ideal situation, Eq.(4). Indeed, consider a radial section of the
sample which crosses one or more isolated closed loops, e.g., section S1 in Fig.2c. Because points 2
and 3 lie on an equipotential the sum of voltages dropping in regions 12 and 3- 4 equals the applied
voltage V,. The effective width of the Corbino ring in section Sl is therefore reduced by the distance
2- 3. However, the Hall current for a given V, does not depend on the width of the ring, as discussed
above. It may appear that the accuracy of this argument is influenced by the curvature of a fiber which
limits the applicability of local Cartesian coordinates. Indeed, the state of the motion transverse to the
fiber (local x-direction) is represented by a linear oscillator wave-function only to the accuracy of
aZR?> where R is a local curvature radius. Nevertheless, the accuracy of the Hall resistance
quantization is far greater, as seen from the following rigorous argument.

Consider a strip of thickness a, along a global fiber of length L. To the accuracy a, /L this strip can be
regarded as a linear conductor, for which the current I and the associated flux @5 of magnetic field
through the contour |5 are complementary thermodynamic variables. Therefore,

L= coGg 5

s = W ( )
where G; is the free energy of electrons in the given strip. The single-electron contribution to the total
current is given by 1,=0l(x,)=0l40Ns, with N5 being the number of electrons in the strip. On the
other hand, 0G¢0ONg = U(X,) where W is the chemical potential of electrons in the strip. This is a
thermodynamic relation valid to within Ng which is again a quantity of order a /L . Differentiating
Eq.(5) we have 0l (X,) =cowods .

It should be emphasized that the flux of the magnetic field through any fixed area of the ring is not
quantized and in contrast to the situation familiar in superconductivity it can vary continuously. The
fundamental difference is in the nature of the diamagnetism which in the present case is the Landau
diamagnetism of the electron gas. The magnetic flux through a hole in a superconducting ring can vary
only discontinuously because of its screening by a macroscopic diamagnetic current on the inner surface
of the ring. Such a coherent macroscopic current can exist in a superconductor only in virtue of the
bosonic nature of the carriers (Cooper pairs) which can multiply occupy the same quantum state. The
Landau diamagnetism, on the other hand, is not due to any macroscopic currentst but to the spatial
correlations of current densities. The fact that the flux of magnetic field through a fixed surface is not
quantized for any fermionic system was overlooked by Laughlin [3] who based his argument on a
supposed quantization of the magnetic flux through a loop formed by a ribbon of 2-dimensional metal.

What is quantized in the present case is the magnetic flux through a variable area bounded by two global
orhits on the chosen strip. The minimum flux variation dd5 corresponds to adding one extra electron
to the strip and equals d®s =hc/e . As discussed above this magnitude of the flux "quantum” is an
exact consequence of the gauge invariance and cyclic boundary conditions on the wave-functions of the
current-carrying states. The corresponding quantum of chemical potential at zero temperature represents
the variation of the Fermi energy on filling one successive quantized orbit, du=eF dx, . We thus find

t The surface (or in our case edge) currents have long been recognized to be of no statistical significance for the Landau
diamagnetism, which is a volume (or in our case SUr f ace) effect. For an elegant discussion of the Landau diamagnetism in
the 2-dimensional electron gas see Ch.4 in Rudolf Peierls, Surprises in Theoretical Physics, Princeton University Press, 1979.
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81 (%) = -3 = - F &% (6)

Summing over al filled global fibers, e.g. between points 12 and 3-4, we again arrive at Eq.(4).
This proves the exactness of Hall quantization at least to the accuracy of a /L, with L being a
macroscopic distance of the order of the length of the Corbino ring.

At a finite temperature T in addition to the Hall current 1,=l, there is a longitudinal current I, due to
generation of mobile carriers, i.e. thermal excitation of "electrons and holes" across the Landau gap ho.
With decreasing temperature this current goes to zero as exp (—hwyKT) and so does al dissipation. The
vanishing longitudinal conductivity Gy, implies that the longitudinal resistance Ry = G/(Ga+G)3) aso
vanishes. However, this phenomenon is different in principle from superconductivity and not only in that
the latter occurs discontinuously at a finite temperature. An important difference is in the nature of the
long-range coherence which in the case of superconductivity consists in the rigidity of the phase of the
Cooper-pair system wave-function. In the present case because of the energy splitting the electron
waves oscillate at different frequencies and one cannot speak of a common phase of oscillation. On the
other hand for a single fermion the phase is never a quantum number because of the Pauli principle and
the uncertainty relation between the phase and the particle number.

Variable-range hopping between localized states (in our case - the local fibers) aso contributes to a
dissipative current along the electric field. Temperature dependence of this current is described by Mott's
law Gy O exp[—~(Ty/T)¥?] for atwo-dimensional system [7]. At a sufficiently low temperature or high
degree of disorder this path of current dominates over the generation current. Thus, the temperature
dependence of R, obtained in ref.6 can be explained by the Mott conductivity between local fibers.

An interesting phenomenon will occur if we further increase the disorder. When the effective width of
the Corbino ring goes to zero (becomes less than g, ) at least in one cross-section then all globa fibers
are squeezed out and the macroscopic Hall current ceases. This phenomenon can be interpreted as a 1st
order phase transition of percolation type with the Hall current playing the role of an order parameter. It
should be noted, however, that no real percolation of particles is involved and the term "percolation” is
used in a new, guantum, sense to describe the penetration of extended electronic orbits over the entire
sample. The exact percolation point may depend on the applied voltage V,. For a given amount of
disorder there exists a critical voltage V§' below which the Hall current will not be observed. We can
minimize V& by reducing the influence of the random potential variation in the inversion layer, e.g. by
increasing the thickness of the undoped buffer layer. In the experiment of ref.6 the Hall current was
observed for V, aslow as 50mV.

A remarkable property of the described percolation transition is that it can be brought about in a
controlled fashion by simulating "disorder" with the help of a voltage applied to a gate. An entirely new
gquantum device can be based on this principle. The proposed device, caled the PHASERY is shown in
Fig.3a. It represents a Corbino disk with two pairs of contacts to the inversion layer and two parallel
insulated gate electrodes deposited on the surface of the disk. We shall analyze the PHASER operation
for an ideal case with no random potential. As discussed above, a moderate amount of disorder will not
affect the device performance. In the absence of the gate voltage the electron wave-guides (quantized
equipotential lines) represent global fibers (Fig.1c) and the Hall current is flowing. In this case the
output voltage Vo=V, to the accuracy of the ratio Ry/Ry,. The minimum value of this ratio obtained
in ref.6 was less than 107° and it can be made even smaller but this would be an unnecessary luxury.
When an input voltage V;, is applied between the gate electrodes the shape of the equipotential lines
changes as shown in Fig.3a. The blank area is bounded by a loca (though long!) equipotential fiber.
Electrons within this area have insufficient energy to pass over the potential barrier created by the gate
and suffer a quantum mechanical reflection. Two kinks shown on the global fibers correspond to a
refraction of electron waves under the gate electrode. The number of global fibers is reduced but the

1 The name stems from two sources: the controlled phase transition and the modulation of electronic phase.



Hall current and therefore V,; remain constant. This is equivalent to an effective reduction of the
Corbino disk width R,— R;. When the gate voltage Vi =V, the effective disk width vanishes which is
equivalent to the phase transition described above. The ring Hall current ceases abruptly and so does the
Hall em.f. in the output circuit. In this state V= 0. The resulting transfer characteristic of a PHASER
is shown in Fig.3b.

Even though an insulated gate is involved the principle of operation of the PHASER is different from
any field-effect device in that the surface density of electrons in the channel remains constant during
switching. To illustrate this point we consider a capacitor formed by the 2-d EG and an insulated gate.
In a strong magnetic field the differential capacitance, C = 00/0Vg, is "quantized" as shown in Fig.3c.
Although this effect has not yet been observed, its existence follows straightforwardly from the existence
of gaps in the density of states spectrum shown in Fig.1la. In a C=0 plateau the inversion layer behaves
like an insulator with respect to the transverse field so long as the applied voltage is insufficient to
transfer an electron from the gate (Fermi level) to the next unfilled Landau level.

A question of principle thus arises: what is the limiting speed of the proposed device? Inasmuch as the
input capacitance between the gate electrodes is charged through a vanishing resistance R, the only
fundamental limitation is associated with electron inertia, i.e. the finite equilibration time between the
Hall current and Hall em.f. This time can be evaluated by considering the effective proper inductance
L, and capacitance C, of the 2-d EG in a strong magnetic field. The kinetic energy W of the Hall
electrons (cf. the last term in Eq.3) can be expressed either as W = %L,1Z with

_ R-R1  h
R1+R2 —ne?w,

()

(0]
or asW = %C,VZ with
R1+R,-ne?
L= 1mR27ne (8)
Ro-R; hoy

Because of the vanishing channel to gate capacitance discussed above, it is the intrinsic LC circuit
whose characteristic frequency v, determines the transition time 1,, viz.

T, =vgl= 2N
(o] (0] VL_OCO

where v, = w21 = 2x10?Hz (here and below we use in our estimates the m” of GaAs and H = 5T). It
may be worthwhile to point out that in addition to the effective contour L,C, the Corbino ring along
with the contacts represents an ordinary "geometric® LC circuit whose resonant wavelength is of the
order of the ring size, R. The delay 1.E R/c becomes comparable to 1, only for R 2100 pm. In terms
of v, it appears especialy attractive to use materials with low effective mass, eg. HgTe
(m" 0103my ) which forms a lattice-matched heterojunction with CdTe.

)

To estimate the power-delay product (energy required to switch on or off the Hall current) we take
V, = hwye (010 mV, athough in principle it can be made smaller depending on the minimum V¢§'
achieved) and find
n Rit Ry

W = - hooe R (20)
The numbern of filled Landau levels is typically of order unity and the geometrical ratio in Eq.(10) is
of order 10, which gives W H1072°). The PHASER as described represents an ideal logic element for
integrated circuits. In contrast to all existing logic devices, like field-effect or Josephson-junction
transistors, operation of this device requires nearly vanishing dissipation. Take, for example, the case of
a Josephson device. During switching the energy of the electric field stored in the tunnel-barrier
capacitance dissipates by discharging through the tunnel resistance in its non-superconducting state. In
the PHASER, the linear current density in the inversion layer is perpendicular at every point to the local
electric field to the accuracy of the ratio Ro/Ry. As discussed above this ratio can be made less than
10729 radians and to this accuracy there is no dissipation. The energy W considered above can disipate



only through a finite resistance of the contacts. Consider a (for now Gedanken) situation when the latter
are a'so made superconducting. In this case the logic operation will consist in relocalizing the energy in
different parts of the integrated circuit. At a constant temperature T the work done by a power source
will be directly related to a change in the entropy content of the information processed by the circuit.
Measuring the T dependence of the energy drawn from the battery (which in principle can be negative
for certain input routines) we can determine the entropy drop between the input and output terminals.
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Figure Captions

Figure 1
Ideal 2-d EG in quantizing magnetic field. a) Density of states in the absense of electric field; b) Energy
spectrum in crossed electric and magnetic fields; ¢) Electron wave-guides in a sample of Corbino
geometry.

Figure 2
Quantized inversion layer in a strong transverse magnetic field. a) Cross-section of the structure studied
in ref.6; b) Quantized energies of the transverse motion in the potential well confining the inversion
layer; c) Schematic diagram of the local and globa fibers.

Figure 3
The PHASER. a) Schematic lay-out of the device showing global fibers at a finite input voltage; b)
Transfer characteristic; c) Differential capacitance between the gate and the 2-d EG in quantizing
magnetic field.
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