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Space-Charge-Limited Current in a Film

ANATOLY A. GRINBERG, SERGE LURYI, reLLow, IEEE, MARK R. PINTO,
AND NORMAN L. SCHRYER

Abstract—We consider the space-charge-limited current in a thin-
film n-i-n diode. It is assumed that ‘‘impenetrable’’ barriers limit the
current flow to a film of thickness D. Because the electric field of in-
jected electrons spreads out of the film, the level of injection is sub-
stantially higher than in the bulk case described by the classical Mott-
Gurney law. As a consequence, the current density in a thin diode can
be an order of magnitude larger than in a bulk diode of the same length.
It is shown that, in the limit of small D, the total current is independent
of D because the decreasing film thickness is exactly compensated by
increasing injection. In this limit, we have obtained analytic expres-
sions of the current-voltage characteristics for several model electrode
configurations. The analytic results are confirmed by a numerical sim-
ulation of the diode within a drift-diffusion model assuming a field-
independent mobility. Our numerical results also describe a transition
with decreasing D from the Mott-Gurney law to the law governing
space-charge-limited current in a film.

I. INTRODUCTION

PACE-CHARGE-LIMITED (SCL) current in a bulk

double-injection n-i-n diode has been studied in a
number of papers beginning with the classical work by
Mott and Gurney [1]. Conduction in such structures is due
to electrons injected into the (i) base. The uncompensated
charge of injected electrons limits the current. In the pres-
ent work, we shall consider the SCL current in a thin-film
diode. It will be assumed that potential barriers confine
the current flow within a semiconductor layer of thickness
D. Such a problem was first considered by Geurst [2] in
the limit D — 0 and for a special contact geometry. On
the basis of this analysis Geurst was able to construct [3]
an analytic model of an FET, which goes beyond the usual
gradual channel approximation.

One can say that the SCL current in a film corresponds
to the limit that in some sense is precisely opposite to the
gradual channel approximation. Indeed, the latter approx-
imation, introduced by Shockley, corresponds to the as-
sumption that the channel charge is induced by the gate
while the source-to-drain current affects the carrier con-
centration at a given point in the channel only by changing
the local electrostatic potential relative to the gate. On the
other hand, the mobile charge, carrying an SCL current,
is induced by the drain electrode—closely resembling the
situation in the pinchoff region of an FET channel. Our
present approach to the problem of SCL current is quite
different methodologically from that used earlier [2]. It
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yields a unified analytical description for several different
diode geometries and gives us grounds to believe that a
similar approach can be used to describe the SCL current
in transistors.

Strictly speaking, in an n-i-n structure—whether one
deals with the bulk or the film case—the mechanism of
electron transport is different in different parts of the
diode. In a symmetrical structure at equilibrium the elec-
tric field E, vanishes in the middle of the diode base. As
an external bias V is applied, the point where E, = 0
moves toward the cathode. This point defines the position
of the so-called ‘‘virtual cathode.”’ In the bulk case, the
virtual cathode geometry is obvious: it represents a plane
perpendicular to the current flow. Only the position of this
plane changes with an applied bias. For a film, the virtual
cathode represents a surface defined by the condition of
vanishing normal component of the field. This surface is
not necessarily an equipotential and its exact shape cannot
be determined without considering the diffusion current
component. The usefulness of the virtual cathode concept
lies in the fact that it allows separation of the mobile
charge in the base into two groups: for charges located on
the anode side of the virtual cathode surface the electric
field lines terminate on the positive charge at the anode
electrode, whereas for charges located on the cathode side
of the surface the field lines terminate on the cathode elec-
trode.

The transport of electrons between the cathode contact
and the virtual cathode cannot be described without ac-
counting for diffusion because in this region electrons
move against the electric field. However, with increasing
bias this region shrinks, and for a sufficiently high V al-
most the entire base of the diode is located between the
virtual cathode and the anode where the dominant trans-
port mechanism is carrier drift in the electric field.

The virtual-cathode approximation corresponds to ne-
glecting the variation of the quasi-Fermi level on the cath-
ode side of the virtual cathode and the diffusion transport
on the anode side. In this approximation the entire in-
jected charge has field lines terminating on the anode. It
has been rigorously shown [4] that in a bulk diode the
virtual cathode approximation is quite accurate, provided
V = 10kT/e. In the present work, we shall be mainly
interested in the large-current limit, where this approxi-
mation is certainly justified. Our results will be confirmed
by a numerical simulation that does not rely on the virtual
cathode approximation and can be regarded as an exact
solution of a drift-diffusion model.
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The general form of the law governing SCL current in
the virtual-cathode approximation can be obtained from a
simple dimensionality argument. Indeed, in CGS units
conductivity has the dimensionality of a velocity. Taking
this velocity to be an effective carrier velocity v, we can
write a generic expression for the SCL current in the form

€ A
14
Ioc:—wyvz (film) (1)

where L is the length, A = D - W the cross-sectional area,
and W the width of the diode; cf. Fig. 1. The relative
permittivity e of the material, dimensionless in CGS units,
enters because it scales the space-charge potential in Pois-
son’s equation. The actual current-voltage dependence
(up to a numerical coefficient) can be ‘‘derived’’ from (1)
whenever the conduction process involves a dominant
transport mechanism, which provides a unique scaling re-
lationship between v and V. Thus, for a free electron mo-
tion, the velocity scales as v* « (e /m)V and one obtains
laws appropriate for ballistic transport, e.g., for the bulk
case Child’s law [5] I o (e/4m)(e/m)?V3/3(A/L?).
For the case when electron velocity is saturated, the law
is of the form (1) with v = v, and for the case of con-
stant mobility g, the velocity scales as v o uwV /L leading
to the following expressions:

_ € /.I.VZ

I=8,-"5a  (bulk)

1=—% " (film) (2)
S 4n 2 mm).

The numerical coefficient {; corresponding to the bulk
case equals {3 = 9/8, as first calculated by Mott and Gur-
ney. For the case of a film, the corresponding coefficient
{, is not universal but depends on the shape of the con-
tacts, as will be shown below.

In this work we have analyzed three representative ge-
ometries, illustrated in Fig. 1(a)-(c). These are: (a) edge
(line) contacts, (b) contacts in the form of two semi-infi-
nite strips that have the same thickness as the film (this
geometry is similar to that studied by Geurst [2]), and (c)
contacts in the form of two infinite planes perpendicular
to the film. We have evaluated {, (in the limit D — 0)
for each of these geometries (Sections III-A to III-C). The
results are compared (Section IV) against numerical so-
lutions obtained for each geometry with the help of the
drift-diffusion device simulator PADRE.' These solutions
also describe the transition between the bulk and the film
SCL current regimes with decreasing D.

'M. R. Pinto and R. K. Smith, “‘PADRE,"”” AT&T Bell Labs. Internal
Rep. PADRE is a successor to the PISCES device simulator; see M. R.
Pinto, C. S. Rafferty, and R. W. Dutton, ‘‘PISCES-II: Poisson and con-
tinuity equation solver,”” Stanford Electron. Lab. Tech. Rep., Stanford
Univ., 1984.
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Fig. 1. Illustration of thin-film contact geometries considered in this work.
The conducting contacts are provided by heavily doped semiconductor
regions. The film lies in the xy plane. (a) ‘‘Edge contacts’’; Cross section
of the contact is a square with the side equal to film thickness D. In the
limit D — 0, the contact is modeled by conducting filament. (b) ““Strip
contacts’’: The contacts are doped layers of the same thickness as the
thin-film base. In the limit D — 0, the contacts are model as conducting
planes co-planar to the base. (c) ‘‘H-shaped contacts’’: The contacts rep-
resent doped bulk regions, modeled as conducting planes perpendicular
to the plane of the base.

Our method of solution is as follows: first we find the
Green function of the Poisson equation describing the
electric field of the injected charge and the charge induced
on the electrodes. For edge contacts (Fig. 1(a)), the lo-
cation of charge on the anode electrode is specified and
evaluation of the two-dimensional potential distribution is
straightforward. For extended contacts (Fig. 2(b), (c)) the
induced charge is distributed in a non-trivial way, and the
easiest way to include it is to use a Green function, sat-
isfying the boundary condition of a fixed potential on the
conducting electrode surfaces. The total potential and field
distribution in the device is found next by integrating over
the injected charge density. The latter is locally related to
the current and the total local electric field—including that
due to external charges on the electrodes. This procedure
leads to a nonlinear integral equation for the injected
charge density, which we solve numerically as well as
analytically (with the help of an accurate approximation).
Once the charge distribution is known, the SCL current-
voltage characteristic is readily determined. The proce-
dure is first illustrated in Section II for the case of a bulk
diode, where it is used to derive the classical Mott-Gur-
ney law, and then applied in the subsequent sections to
thin-film cases with different electrode geometries.

Most of our results are derived in the approximation of
constant mobility. However, we have also considered the
SCL current in the opposite limit, corresponding to a van-
ishing differential mobility and constant “‘saturated’’ ve-
locity v = vg,. An exact expression for the current-volt-
age characteristic in this limit, presented in Section III-B
for the strip-contact geometry (Fig. 1(b)), allows us to
assess the range of validity of the constant-mobility ap-
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Fig. 2. Energy-band diagram of bulk n-i-n diode under a small applied
bias V (after [4]). The dashed line shows the quasi-Fermi level, and xp
indicates the position of the virtual cathode plane, which rapidly moves
toward the real cathode as the bias increases.

proximation and to illustrate the effect of velocity satu-
. 2
ration.

II. ILLUSTRATION OF THE SOLUTION METHOD IN THE
INSTANCE OF A BuLK DioDE

Fig. 2 shows the conduction-band diagram and the
quasi-Fermi level variation in a bulk n-i-n diode under a
small applied bias [4]. In the virtual cathode approxima-
tion, the charge density in the base (0 < x < L) can be
written in the form

p(x) = —en(x) + eP&(L — x) (3)

where

L
P = So n(x) dx. (4)
In writing p in the form of (3), we neglected the separa-
tion of the virtual cathode from the cathode (setting xo =
0) and placed at the plane x = L all the positive anode
charge neutralizing the charge n(x), injected into the re-
gion between the virtual cathode and the anode. The
charge density p obeys the total neutrality condition.
The electrostatic potential in the diode base is deter-
mined by the Poisson equation

2
=T (5)
and the boundary conditions
dzié=0, at x =x5=0 (6a)
o(L) =V. (6b)

The Green function G(x, x’) = —(1/2)|x — x']| of the
Poisson equation (5) allows to write its solution in the

2Space-charge-limited currents in bulk materials with nonlinear veloc-
ity-field relationships have been considered by G. Sh. Gildenblat, A. R.
Rao, and S. S. Cohen, IEEE Trans. Electron Devices, vol. ED-34, p. 2165,
1987. Exact solutions obtained by these authors describe the gradual tran-
sition from the constant-mobility and the saturated-velocity regimes for
several v-E models.
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form

271- L ’ I3 1
N Jx = xfe(x) dx
€ 0

I

o(x)

I

2me *
— g [|x = x'| +|L = x|]n(x") ax".
e Jo
(M
Note that the charge density p chosen as in (3) to satisfy
total neutrality automatically guarantees that the bound-
ary condition (6a) is obeyed, as it follows from Gauss’
law and also can be seen from the expression for the elec-
tric field in the base, obtained from (7)
do 4re S
E = —— = —— ) dx’. 8
() = === n) (8)
Equation (8) combined with the constant-mobility ap-
proximation for the current density

j = eun(x) E(x) 9)

leads to the following nonlinear integral equation for the
carrier density:

4me’ *

TR b (x) S n(x')de’ = 1 (10)
—¢j 0

and the solution of this equation is of the form
. 1/2
€
=\|- . 11
n('x) < 87r62}1..x> ( )

When substituted in (7) and using (6b), this solution yields
the Mott-Gurney law

(12)

The method employed in the above derivation of the Mott-
Gumney law is somewhat different from that used before
[1], [4] and has the advantage of being convenient to gen-
eralize to the case of a thin film.

I11. SCL CurreNT IN THIN FILMS: ANALYTICAL
RESULTS

Our analytic treatment will be confined to the limiting
case of a vanishing film thickness. Physically, it is suffi-
cient to assume that D << L. Instead of the current den-
sity (9) we shall be using a linear current density

J=1/W= eung(x) E (x) (13)

where n; is the surface electron concentration in the film
and E, is the x component of the electric field in the film
(y = 0). The potential distribution in the device, now
determined by the two-dimensional Poisson equation
d’¢  d’¢ 4
=t —m = e(x)
dx dy €

must satisfy the boundary conditions on the electrodes and
be consistent with (13).

(14)
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A. Film with Edge Contacts

The contact geometry is illustrated in Fig. 1(a). In this
simplest case, there are no extended electrodes, and con-
sequently the charge density can be written in the form

p(x,y) = ed(y)[—ns(x) + P3(L - x)] (15)
where

P, = SOL ny(x) dx.

The solution then almost exactly parallels that presented
in Section II for the bulk diode. Using the Green function
of the Poisson equation (14)

Gx—x',y —y")

1

o [(x =50+ (b = )]

(16)

corresponding to a filament source, the x component of
the electric field in the film can be found readily

2 L - x)
e(L - x) So (x —x")

E(x,0) = ng(x') dx'. (17)

Substituting E, into (13), we obtain a nonlinear integral
equation for n,(x)

ns(‘x) SL ' (L _ x') [ _L
(L —x) Jo ns(x") (x — x) b’ = 2% (18)
Introducing dimensionless variables
X
51
22 1/2
M9=Q%>mm (19)
we can rewrite (18) in the form
w@® (-8 o
(=8 go (g—g’)yS(S)ds = 1. (20)

An approximate solution of this equation can be repre-
sented in the form

v(£) = ag*(1 — £)'/” (21)

witha = 0.5 and « = —0.36. As shown in the Appen-
dix, this analytic approximation gives excellent agree-
ment with the numerical solution. Using (13) and (19),
the applied voltage can be written in the form

L o2\ (Y 4
V———SO Ex(x,O)dx=<—6u > So (5

From the approximate solution (21), the last integral
equals

(22)

S‘ d¢ _7'’T(1 - a)
o v(§) aI‘(% - oz)

= 2.35
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whence the current-voltage characteristic is given by

2

e uV

~0.57 — —-.
47 L?

We see that the characteristic is of the form (2) with ¢
= (.57.

J = (23)

B. Film with Two Coplanar Strip Contacts

This is the geometry considered by Geurst [2]. It is
somewhat more complicated than that considered in Sec-
tion III-A because we do not know a priori the charge
distribution induced in the extended contacts. We can cir-
cumvent this problem by using the Green function of
Poisson’s equation (14) subject to the boundary condition
that both electrodes are at zero potential. Potential J)(x,
y) determined with the help of this function must then be
added to the potential determined from the homogeneous
(Laplace) equation corresponding to electrodes biased by
V and no mobile charge.

The Green function G (x, x"; ¥, ') can be found by the
standard methods of conformal mapping [6], using the
method of images for the source charge. For our pur-
poses, we need only the values of G(x, x'; y, y')aty =
y’ = 0. This function is of the form

1 sin [(¥ + ¢')/2
G(§,£)=—Reln <—[——] (24)
27 sin [(y — ¥')/2]
where
2x — L
L 9
2x' = L
L ’
From this function the potential produced by injected
electrons is obtained in the following form:

_ 2wel S
€

<
]l

arccos (&)

[
In

g 2

arccos (£).

+1

L m(E) G )@ (29)

é(¢) =
and the total potential is given by’

6(§) = d(&) + V[1 — ¥(8)/x]. (26)

Differentiating (26), we find the electric field distribution
in the film

_200 =2
Log (-9
e (' n(gN(1 - ag v
'<Z I E-¢)  w)
(27)

Expressing E, with the help of (13) in terms of the surface
concentration n; and writing V in the form similar to (22),

12 4
L <—JL2> S dt
2ep 0 vi(§)

EX(E) =

(28)
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where v, is the dimensionless surface concentration de-
fined in (19), we bring (27) into the form of a nonlinear
integral equation for

! 1)U - z”)‘”) ,
S-l <ws(s') B — %
(1 g )]/2
n(E)

An accurate approximation for the solution of this equa-
tion is achieved by taking » in the form

n(g) = a(l +£)°(1 - ) (30)
with a> = 0.18, « = —0.4, and B = 0.4. When substi-
tuted in (28), this yields a current-voltage characteristic
of the form of (2) with

\ 2120 W21 (2 — o — 3)]
o= = 0.70.

[F(1 - )T(1 - B)F
The result obtained by Geurst [2] for this case corre-
sponds to {5 = 2/7 = 0.64.

It is interesting to compare these results, obtained under
the assumption of a constant mobility with the opposite
limiting case, when the differential mobility is zero and
the carrier velocity is saturated, v = vg,. In this case, the
carrier concentration is uniquely determined by the cur-
rent density—independently of the local electric field—
and is uniform

(29)

(31)

J
€Uy

ng = —

(32)

Substituting (32) into (27) and integrating, we find the

electric field
2 w&J vV
(1 - 52)1/2 <Evsm - 7rL>' (33)

The field must vanish at the virtual cathode position, x =

E(§) =

E(&n) =
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C. Film with Two Perpendicular Plane Contacts

The electrode geometry under consideration in this sec-
tion is illustrated in Fig. 1(c). Green’s function of the
Poisson equation (14) subject to the boundary condition
of zero potential on both conducting planar electrodes is
given by [7]

1
= — tanh™'
27ra

. < sin (w£) sin (w€') >
cosh [w(n — 9")] — cos (w&) cos (w§')
(35)

where £ = x/L, £ =x'/L,n =y/L,andn' = y'/L.
With the volume density of injected electrons in the film
given by

G(x, x5y, 5")

n(x, y) = n(x) 8(y) (36)
where n; is the surface electron density, the Green func-
tion (35) leads to a potential function ¢ of the form

4rel?

4 e )
“G(&, &5 —n')dg dy’
2eLS n(£") tanh~"

€

. sin (w£) sin (w&’) dt’
cosh (7n) — cos (w¢) cos (w&') .
(37)

This potential function corresponds to a source consisting
of the injected charge n, and the charges induced by n; on
the electrodes—but not the charges induced by the biased
electrodes on one another. The corresponding portion of
the electric field equals

o(¢, 1)

[cos (&) cosh (mn) — cos (w¢')] sin (7wE")

0,i.e. E.(¢ = —1) = 0, whence

€ 41)sat
47r 7L

J= (34)
The law (34) gives the correct expression for the SCL
current in the high-bias limit. Note that it corresponds to
a different scaling of the current with the diode length (L™
instead of L™2).

Whenever the law (2) predicts a higher current than
(34), it is a clear indication that the constant-mobility ap-
proximation is invalid. For the strip-contact geometry this
happens when V exceeds the value

4 v, L
T ou

S n(8) [cosh (m9) — cos (7&) cos (‘ME’)]2 -

S dE. (38)
[sin (7£) sin (7£")]

Note that (e /47)E((0, ) and (e/4m)E, (L, n) give the
density of charge induced by n; on the cathode and the
anode electrodes, respectively. The total charges induced
by n, on the contact plates are given by

eL

00 = £ [ T homar=e | (- o a

Qo(L) = —4—L S E(L,n)dy = eL SO Eng(§) dt.
(39)

Both induced charges are positive, and their sum equals
the total charge of electrons injected in the film.
The total electric field and electrostatic potential are
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given by
E&n) = E&n) — 7 (40)

&(E, 1) = d(&,n) + V& (41)

The field E, in the plane of the film is determined from
(38) and equals

B(E,O):zeﬂg m(8) sin (€D dE" )

o cos (w&) — cos (wg')’
Substituting expressions (13) (i.e., E. (&, 0) =
J/eung(£)), (22), and (42) into (40) at = 0, we again
find a nonlinear integral equation for the dimensionless
carrier concentration v, (defined as in (19)). For the pres-
ent geometry this equation is of the form

_L=SQF<1 _ m@umua>>
vs(£) 0 v, (') cos (wE) — cos (wE')
(43)
and a good approximation of its solution is given by
n(8) = ag(1 - )" (44)

with a®> = 0.22, o = 0.36, and 8 = 0.1. When substi-
tuted in (22), this yields a current-voltage characteristic
of the form (2) with -

w [P2-a-B] _
2 [r(1 - ) T(1 = 8)]

Compared to the case of point contacts (Section III-A), in
the present geometry the electron concentration decreases
more slowly away from the cathode contact and toward
the anode, while the current for the same bias is nearly
twice larger. The case of strip contacts (Section III-B) is
roughly in between these two limits.

¢ = 1.0. (45)

IV. NuMERICAL SIMULATION OF THE SCL CURRENT IN
FiLMs AND COMPARISON TO ANALYTIC RESULTS

To verify the correctness of our analytical description
of the SCL current in thin films and to extend the treat-
ment to the case of a finite film width D, we have per-
formed numerical simulations of the problem, taking into
account both the drift and the diffusion transport mecha-
nisms, as well as the effects of field-dependent mobility.
In these simulations, we assumed a material with relative
permittivity ¢ = 10 and doping concentration Ny,ckground
= 10" cm™? (at such low concentrations, none of the
calculated characteristics was sensitive to a variation in
Npackground )+ The contacts were assumed doped to 10"
cm ™3 with a Gaussian tail of length scale 0.01 um at the
junction with the low-doped material. The low-field mo-
bility was assumed to be equal to x = 10’ V cm/s and
the diffusion coefficient was defined by the Einstein rela-
tion at 7 = 300 K. In most of the simulations the diode
base length was taken to be L = 4.8 um—except, of
course, when the dependence on L itself was investigated.
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Fig. 3. Two-dimensional distribution of the electrostatic potential within
and around a thin-film diode carrying current for the case of strip-contact
geometry. The base length L = 4.8 um and the film thickness is 0.1 pm.
(a) Equipotential lines for two applied biases, ¥V =2V (J = 1.7 x 107°
A/pm)and V = 4V (J = 6 x 107° A/um). (b) Variation of the
potential along the center of the film for several different bias voltages.

For thick films D = L under high bias ( = 10kT), the
numerically calculated /-V characteristic coincides with
the Mott-Gurney law (12).

Although we have performed simulations for all three
contact geometries (Fig. 1(a)-(c)), for the sake of brevity
only results corresponding to the strip-contact geometry
will be presented below. These results were found to be
sufficiently illustrative of the main features of the SCL
current phenomenon in thin films.

Fig. 3(a) illustrates the two-dimensional distribution of
the electrostatic potential within and around a thin-film
diode carrying current. Equipotential lines are shown for
a linear current density J = 1.7 x 107® A /um. The vari-
ation of the potential along the center of the film is shown
in Fig. 3(b) for several different bias voltages. It is evi-
dent that with increasing bias the virtual-cathode position
moves toward the cathode.

Fig. 4 shows the current-voltage characteristics calcu-
lated using the constant-mobility approximation for dif-
ferent film thicknesses. We see that, as D decreases, the
simulated curves converge toward our analytical result,
obtained in Section III-B. The deviation at low voltages
can be attributed to our neglect of diffusion; this deviation
is substantially weaker in the case of edge contacts. Sim-
ulation shows that the virtual cathode approaches the
cathode faster in that case. It is clear that the virtual cath-
ode approximation leads to an underestimate of the cur-
rent because it overestimates the effective diode length.
When D < 0.2 um, there is almost no variation of the
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Fig. 4. Current-voltage characteristics of a thin-film diode for the case of
strip-contact geometry. Solid lines show the curves calculated numeri-
cally for different film thicknesses D with a drift-diffusion simulator,
assuming a constant mobility x = 1000 cm?/Vs and an associated dif-
fusion coefficient determined by Einstein’s relationship at room temper-
ature. The dotted line corresponds to our analytical expression, (2) and
(31). Also shown are the predictions of the Mott-Gurney law for two
values of D. For D = 100 pm, this law agrees with the numerical sim-
ulation to within the accuracy of the figure. In contrast, for a thin film,
the Mott-Gurney law (dashed line) gives a current density that is lower
than the actual current by more than an order of magnitude.
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Fig. 5. Injected carrier concentration in a thin-film diode calculated with
a drift-diffusion simulator assuming the same physical parameters as in
Fig. 4.

current with the further decrease on D, which means that
the latter is entirely compensated by the increasing vol-
ume density of charge in the film, so that the surface con-
centration n,(x) becomes independent of D. The actual
distribution of #, in the film, calculated under conditions
similar to those in Fig. 4, is shown in Fig. 5. We see from
these figures that the level of injection, and consequently
the current density, can be substantially higher (by an or-
der of magnitude) in a thin-film diode than in the bulk
case. Physically, this is due to the fact that the electric
field lines spread out of the film, thus relaxing the space-
charge limitation of carrier injection. Because of that, the
dependence of SCL current on the diode length L differs
from the bulk case. The L dependence of the simulated
I-V characteristics (Fig. 6) fits the L™2 law, already sur-
mised in (2) and rigorously derived in Section III.
Finally, the effect of velocity saturation is illustrated in
Fig. 7. In this case the velocity-field curve assumed in
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Fig. 6. Dependence of the current-voltage characteristics on the length of
the film L for three bias voltages. The solid lines correspond to our an-
alytical expressions, and the dotted curves have been calculated for D =
0.1 pm with the help of a drift-diffusion simulator and the physical pa-
rameters as in Fig. 4.
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Fig. 7. Illustration of the effect of velocity saturation on the current-voit-
age characteristics of a thin-film diode (L = 4.8 um) for the case of
strip-contact geometry. Dotted line shows the results calculated for D =
0.1 pm by our drift-diffusion simulator, assuming a field-dependent mo-
bility (see (46)) with the low-field value x = 1000 cm”/Vs and v, =
107 em/s. Solid line corresponds to a simulation in which the velocity-
field characteristic was assumed in the form v = pE, with a constant g
= 1000 cm®/Vs. The dashed line was calculated with (34), correspond-
ing to a constant drift velocity vg,.

our drift-diffusion simulator was of the form
_ rE,
2
[1 + (RE /vsa)

We see that the simulated current-voltage characteristic
nicely interpolates between the analytically calculated
limits of constant mobility (valid when pE, << v, over
most of the diode base) and constant drift velocity v =
vy, at high applied fields.

v (46)

12"
]

V. CONCLUSION

We have considered the space-charge-limited current
for an n-i-n diode in which the current flow is confined to
a thin film of thickness D. Because the electric field of
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injected electrons spreads out of the film, the level of in-
jection is substantially higher than in the bulk case de-
scribed by the classical Mott-Gumney law. As a conse-
quence, the current density in a thin-film diode can be an
order of magnitude larger than in a bulk diode of same
length. It is shown that, in the limit of small D, the total
current is independent of D because the decreasing film
thickness is exactly compensated by increasing injection.
In this limit, we have obtained analytic expressions of the
current-voltage characteristics for three representative
electrode configurations. Our theoretical analysis has been
carried out for two model velocity-field relationships: that
of a constant mobility and that of a constant (saturated)
drift velocity. The analytic results are confirmed by a nu-
merical simulation of the diode within a drift-diffusion
model. Results of the simulation also describe a transition
with decreasing D from the Mott-Gurney law to the law
governing space-charge-limited current in a film.

Our method of solution employs the Green function of
the Poisson equation describing the electric field of the
injected charge and the charge induced on the electrodes.
On extended electrodes the induced charge is distributed
in a nontrivial way, and we take it into account by using
a Green function, satisfying the boundary condition of a
fixed potential on the conducting electrode surfaces. The
total potential and field distribution in the device is found
next by integrating over the injected charge density. This
procedure leads to a nonlinear integral equation for the
injected charge density, which we solve numerically as
well as analytically, and then the SCL current-voltage
characteristic is readily determined.

It should be emphasized that a similar procedure can be
applied to the calculation of the field distribution and the
current-voltage characteristics of a field-effect transistor.
In this way one can construct analytical FET models that
go beyond the usual gradual-channel approximation. The
first such model was discussed by Geurst [3] on the basis
of his treatment [2] of the SCL current in thin films. Al-
though Geurst’s model was very schematic, it proved use-
ful for the elucidation of details of the current formation
in short-channel devices. Our method presented here is
quite different from that employed by Geurst [2]: it is
physically more transparent and lends itself to extensions
in a straightforward manner. This gives us grounds to be-
lieve that it will enable an analytic description of more
realistic FET models.

APPENDIX
NUMERICAL SOLUTION OF THE NONLINEAR INTEGRAL
EQUATIONS FOR THE INJECTED CHARGE DENSITY

Considering the SCL current in thin-film diodes of three
different contact geometries, corresponding to Fig. 1(a)-
(c), we have reduced the problem to nonlinear integral
equations (20), (29), and (43), respectively. For each of
these equations we have found an approximate solution,
by assuming a reasonable form of the solution, viz. (21),
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(30), and (44)—containing adjustable parameters—and
then minimizing the error by varying these parameters.
The resultant solutions have been checked against the cor-
responding numerical solutions of the integral equations.

The numerical procedure used consists of the follow-
ing. First, the equation to be solved is rewritten so that
the solution is bounded, while the principal value of the
integral is done analytically. The resultant equation is
solved using POST [8] with the integral done by Gaussian
quadrature rules that avoid divisions by 0. The mesh
needed to get the solution accurately is generated auto-
matically by SSAF [9], a package for fitting functions de-
fined by subroutines—such as calls to POST. This pro-
cedure is illustrated below in the instance of (20).

Since the solution of this equation is expected to be sin-
gular at x = 0, we solve for a bounded function

w = | 0-on@a (a)
from which v, is determined by
_ _uw(x)
Vs(x) = (1 _ x)' (A2)
This transforms (20) into
PR L E) 2
u'(x) Somdy—(l—x)- (A3)

To reduce the singularity present in the integral of (A3),
we use the relation

Sl dy <1—x>
=In
0y — X x

and rewrite (A3) as

[u'(x)]2 In (1 ;x) + u'(x) SI Mdy

0 x =y
= —(1 -x). (A4)

The technique described in example 8 of POST [8] is
used to discretize (A4). Fourth-order (k = 4, cubic)
splines are used to solve (A4) because u' is needed ac-
curately. To keep the programming simple, and have it
vectorize on the Cray XMP, divisions by zero are avoided
by replacing {3 by the slightly different ! ¢, where ¢ is
the machine rounding error, roughly 107", To avoid di-
visions by 0 from x — y, the Gaussian quadrature rule
used for the integral is chosen to be a six-point rule. Since
the quadrature rule used inside POST for £ = 4 is a four
point rule, this guarantees that x — y is never O in the
discrete solution process.

For the above solution technique to work effectively, it
is necessary to have a good mesh for discretizing the
problem. Since the solution is expected to have singular-
ities in its derivatives at the end-points, it is difficult to
make a good mesh by hand. The mesh is automatically
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Fig. 8. Comparison of the analytic approximation (21) (solid curve) with
the exact numerical solution of (20) (dotted curve).

obtained using SSAF [9]. The function to be fitted, u(x),
is defined for SSAF by a routine solving (A4) on the mesh
specified. The mesh chosen by SSAF for graphical (1 per-
cent) accuracy typically has 60 mesh points (for k = 4,
cubic, splines) and the points are very densely distributed
near x = 0, where the singularity of the derivatives is
greatest.

Fig. 8 compares the resultant numerical solution of (20)
for v (x) with our analytical approximation (21). The
agreement is seen to be excelleat.
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