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COHERENT VERSUS INCOHERENT RESONANT TUNNELING
AND IMPLICATIONS FOR FAST DEVICES
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Physics of resonant tunneling (RT) in quantum-well structures is reviewed,
emphasizing the difference between the truly coherent tunneling, analogous
to the resonant transmission through a Fabri-Pérot étalon in optics, and the
sequential processes, in which the phase of electron wave function is
destroyed between two tunneling steps. Several proposals and experimental
demonstrations of three-terminal RT configurations are also discussed. In
addition to a negative differential resistance in their output circuit, most RT
transistors exhibit a negative transconductance, a feature which can lead to
the implementation of various high-speed functional logic devices.

1. Introduction

Resonant tunneling (RT) in double-barrier (DB)
quantum-well (QW) structures had been originally
proposed and discussed as an electron wave
phenomenon  analogous to the resonant
transmission of light through a Fabry-Per6t étalon.
A discussion of the historical development of these
ideas and references to the early work can be found
in my recent review.! Considering an electron at
energy E incident on a one-dimensional DBQW
structure (Fig. 1), one finds that when E matches
one of the energy levels E; in the QW, then the
amplitude of the electron de Broglie waves in the
QW builds up due to multiple scattering and the
waves leaking in both directions cancel the
reflected waves and enhance the transmitted ones.
Near the resonance one has

4T, T
@)= S L
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where T, and T, are the transmission coefficients
of the two barriers at the energy E=E; and
v=H/7 is the lifetime width of the resonant state
[quasi-classically, ¥ = E;(T1 +T3)]. In the absence
of scattering, a system of two identical barriers
(Ty=T,) is completely transparent for electrons
entering at resonant energies, and for different
barriers the peak transmission is proportional to
the ratio Tpin/Tmax, Where Tpn and Tp,, are
respectively the smallest and the largest of the
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coefficients T; and T,. The total transmission
coefficient, plotted against the incident energy has
a number of sharp peaks, as shown in Fig. 1. Fora
one-dimensional system, the connection between
the transmission coefficient and the electrical
resistance R of the DBQW system clad by two
electron reservoirs at different chemical potentials,
maintained by an external bias, is established by
the well-known Landauer formula,
R™! = (¢2/K) T (Ef), which can also be extended to
the three-dimensional case via its multi-channel
generalizations. A lucid discussion of this
approach to RT can be found in the recent paper?
by Biittiker.

Several years ago, I had argued® that the
experimentally observed negative differential
resistance (NDR) in DBQW diodes can be
understood without invoking a coherent Fabry-
Perdt transmission resonance — but rather as a
two-step process in which electrons first tunnel
from the emitter electrode into the quasi-bound
state in the QW, and then from the well into the
collecting electrode. Between these two steps the
electron phase memory may be completely lost.
For a detailed discussion of the sequential
mechanism of operation of RT diodes the reader is
referred to the review.!

In three-dimensional DBQW diodes, the NDR
arises solely as a consequence of the dimensional
confinement of states in a QW, and the
conservation of energy and lateral momentum in
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Schematic illustration of a double-barrier
electron  resonator. The  intensity
transmission coefficient plotted against the
incident kinetic energy in the direction
normal to the resonator layers has a
number of sharp peaks. In the absence of
scattering, a symmetric resonator is
completely transparent for electrons
entering at the resonant energies (the
Fabry-Per6t effect).

Fig. 1

tunneling. This statement being true for both the
coherent and the sequential pictures, it should be
noted that in the sequential picture the NDR is
associated with the first tunneling step only and
the device designer is free to describe it by a circuit
element in series with an ordinary resistance
corresponding to the second tunneling barrier. In
contrast, in the coherent picture the NDR is an
overall property of the DBQW system. Historically,
this had led to a design strategy intended to
optimize the Fabry-Perdt resonator conditions. In
particular, proposals were made of asymmetric
barriers which would attain equality of the
transmission coefficients Ty =T, only with applied
bias — under the device operating conditions. Such
proposals were largely put to rest after Weil and
Vinter* and Jonson and Grincwaig® had argued
that the predictions of both models were practically
indistinguishable for most experimentally studied
diodes. The essence of their argument is to note
that the RT in DBQW diodes is normally observed
under large bias (>>+), and that in order to
calculate the current one must average over the
energy distribution of incoming electrons,® which
is also typically large: Ep >> . For the purpose of
this averaging, the Lorentzian factor in (1) reduces
to my 6 (E —E;) and the factor v cancels (T; +T3) in
the denominator of 1), leading to
T(E) = E; Tmin 6(E —E;). The calculated current
density is then given by

J=e[dEn(E)o(E)TE)
en (E;) (2E; [ m) /2 T pyn (Ey) -
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Here n(E) is the distribution of incoming particles
with respect to the kinetic energy of their motion
perpendicular to the barriers; in three-dimensional
DBQW structures n(E;) is proportional to the area
of the shaded disk in Fig. 1 of ref. 3. Since it is
T min and not T which determines the RT current, it
is clear that the coherent mechanism is not
sensitive to the barrier asymmetry.7 Of course, the
situation would be quite different if one were able
to study the RT characteristics with quasi-
monoenergetic distribution of incoming electrons
(Ep <7), or if one could design samples in which
the resonance would occur at low applied biases —
such that e(u; —py) <v. In the latter case the
coherent resistance would be again sensitive to the
total ' transmission coefficient, as given by the
Landauer formula (such a situation was considered?®
by Biittiker.) However, as far as I know, none of
the DBQW structures studied to-date conforms to
these specifications.

As discussed by Weil and Vinter,* Eq. (2) also
describes the tunneling current in the “sequential
picture” under similar approximations. Of course,
in the absence of scattering there is no
“incoherent” tunneling and the sequential picture
is rather meaningless. However, Weil and Vinter
have argued that Eq. (2) remains valid to first order
even in the presence of scattering, provided the
energy distribution for incoming electrons is
broader than the scattering-limited level width. A
legitimate question may then be asked, whether or
not there is a meaningful reason to distinguish
between the two pictures?

I believe there are at least two reasons for
doing so. Firstly, the question of coherent versus

incoherent electron transport transcends in
importance the mere analysis of static I-V
characteristics in DBQW diodes. Distinction

between the two processes depends on the relative
value of the phase-relaxation time 7, and the
tunneling time 75. In the instance of resonant
tunneling, neither of these two quantities is
presently free from ambiguities. In the next
section, I shall discuss the processes which lead to
phase relaxation; in particular, it will be shown
that these are not only inelastic scattering
processes. Quantitatively, the effect of scattering
on the IV characteristics is rather poorly
understood at this time. As will be discussed in
Sect. 2, the peak-to-valley ratio in RT current can
be strongly affected by processes which mix the
longitudinal and the transverse components of the
electron wave function. Secondly, the sequential-
tunneling approach provides a natural framework
for discussing a new class of three-terminal RT
devices, especially those which essentially rely on
the NDR property of tunneling into a QW —

-
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without an attendant (coherent or incoherent)
second tunneling step. It is my opinion that the
most important future applications of RT are
associated with multi-terminal devices, because of
their potential for an enhanced functionality “per
terminal” in integrated circuits. Some of the recent
proposals and experimental demonstrations of RT
transistors with a negative transconductance will be
discussed in Sect. 3.

2. Effects of Electron Scattering

Consider a single electron incident on a DBQW
structure, assumed for simplicity to have T;=T,.
The reflected-wave amplitude represents the sum of
amplitudes of all quantum-mechanical paths
corresponding to multiple reflections from the
barriers; at resonmance the phases of different
amplitudes combine so as to cancel the net
reflected wave. If some of the paths contain an
external interaction vertex, which changes the
wave-function phase by a random amount of order
«, the reflected wave will not be canceled. It is
quite unimportant, whether the phase-randomizing
interaction is inelastic or not. For example, in a
one-dimensional case one can think of a magnetic
impurity which flips the electron spin without
changing the energy; clearly, partial waves of
opposite spin do not cancel each other. For a
three-dimensional DBQW structure an elastic
scattering event may change the direction of
electron momentum in the xy-plane (the plane of
the barriers); although the factor describing the
electron wave-function in the tunneling direction
has not changed, the overall phase has, and no
cancellation is possible. In a Gedanken experiment
measuring  the  single-electron  transmission
coefficient the relevant phase relaxation time 74 is,
therefore, at least as short as the momentum
relaxation time 7,, in the QW, as determined by
mobility measurements. In fact, one can even have
79 << 7, since obviously 7, gets no contribution
from the electron-electron (ee) scattering, which is
just as important as the impurity and the phonon
scattering for altering the single-electron phase.

It should be clearly understood, however, that
the phase memory is not necessarily lost in an
elastic scattering event, so that another such event
can restore the single-electron phase. As is well
known, the interference of scattered waves leads to
quantum corrections to the metallic conductivity
measured in experiments on a mesoscopic scale. In
such experiments, the relevant 73" is determined
by the irreversible phase degradation brought
about by the electron interaction with an
equilibrium reservoir of scatterers. Although this
time is sometimes loosely thought of as the
inelastic scattering time 7;,, strictly speaking this is
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not so: an irreversible phase degradation can be
also produced by an interaction with a degenerate
level of the reservoir. In a dogble-slit experiment,
no interference is possible if ¢%& of the interfering
paths involves interactions with an external system
— leaving that system in a state orthogonal to its
initial state® It is thus clear that the question of
what is the relevant phase relaxation time can be
decided only with respect to a specific experiment
in mind. As discussed in the Introduction, static I-
V curves of a DBQW diode are rather insensitive to
this question.

Even if one could design a DBQW structure in
which the energy distribution of incoming

electrons were arbitrarily narrow, one would still
observe only an inhomogeneous average of the
transmission coefficient T over the device area.
Only for mesoscopic devices with transverse
dimensions comparable to the phase coherence
length (D757)!/2 (D being the diffusion coefficient),
the static I-V curves can be expected to exhibit
interference effects associated with the phase
memory retention over the time 747, to my
knowledge, however, all studied DBQW diodes are
macroscopic and these effects are washed out.

With a model estimate for 745, one can
determine whether the RT is dominated by
coherent or incoherent processes by comparing 7,
with the “tunneling time” 79, which should be
understood as the lifetime of the resonant state
limited by its decay due to tunneling. Quasi-
classically, the ratio 79/74; corresponds to the
average number of bounces an electron makes
inside the QW relative to the average number of
phase randomizing events it is expected to face
while bouncing back and forth. As discussed by
many authors,” %! 7; is the time which limits the
oscillation frequency of DBQW diodes.

Clearly, in any experiment the relevant
T4 ST;"A It would be instructive to discuss this
issue in the instance of the recently proposed
time-resolved luminescence experiment capable of
a direct observation of the time evolution in
heterostructure barrier tunneling.!® Consider an
idealized structure, Fig.2, containing two QW's
separated by a barrier; the wells have identical
ground-state levels (E;=E, =Ey) in the
conduction band — but different in the valence
band. This allows a selective preparation of an
initial electron state by an ultra-short interband
photo-excitation. In a coupled QW system electrons
will oscillate between the two wells, giving rise to
an oscillating luminescence signal with a period
directly related to the tunneling time. As is well
known, in the presence of a tunnel coupling, the
single-well states Il) and |2) are not stationary. If,
immediately upon the excitation, electrons are
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Fig.2 Band diagram of a proposed structure for

direct observation of time evolution in
heterostructure barrier tunneling through
luminescence oscillation.!® The tunnel
barrier, separating two quantum wells, can
be implemented either as a thin (L < 304)
AlAs layer or a slightly thicker Al;Ga;—,As
layer with x=0.4. One of the wells
represents a pure GaAs layer, the other is
made of an Al,Ga;-,As alloy with a small
fraction of aluminum y <<x. A
modified structure, which allows “fine-
tuning” of the single-well levels E; and
E, by the electric field of a reverse-biased
pn junction, has been also described.!® A
non-equilibrium  population of holes,
necessary for the radiative recombination
in the guantum wells, can be maintained
by an auxiliary pumping of interband
transitions in the cladding layer on the
side of the n contact.

“prepared” in state IZ), then the subsequent
evolution of this state in time is given by

]t)-eE"”i'i [|2>cos(wt/2)—-i|1>sin(wt/2)] , (3)

where Ao =E_—E, is the tunnel splitting
between the stationary states of the two-QW
system. In the absence of scattering, the
luminescence signals at frequencies »; and v, will
oscillate 180° out of phase according to eq. 3, their
intensities being proportional to sin?(wt/2) and
cos? (wt/2), respectively. Now suppose there is
only elastic scattering. In this case, electrons will
never settle in their stationary states; in each
channel, however, the oscillation will go on at a
slightly different frequency — determined by the
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local configuration of elastic scatterers. An
equivalent way of describing this situation is to add
a time dependent phase ¢;(t) in the argument of
the trigonometric functions in (3) — different for
each channel j. The relative phases of different
elastic channels will therefore randomize and upon
the time 74 no luminescence oscillation will be
observed. One can even assume that the elastic
processes involved do conserve the phase memory
(747=0°), which means only that the functions
¢j(t) are perfectly deterministic. In principle, this
would leave an experimenter with the possibility of
doing a “time-reversal” trick similar to the well-
known spin-echo experiments.11 in  nuclear
magnetic resonance. The times 75" and 74 can be
viewed as analogs of the longitudinal (¢;) and the
transverse (f;) relaxation times, respectively. If
after a time At << rg* the momenta of all
electrons in the double-well system could be
reversed simultaneously, then after another At the
luminescence oscillations will re-emerge to last for
another period of order 74; as far as I am aware,
nobody knows how to do such an experiment at
this time.

Let us turn our attention to another issue,
associated with the effect of scattering on resonant
tunneling: namely the mixing of ancillary degrees
of freedom (those corresponding to the electron
motion in xy plane) with the longitudinal
component of the wave function. This problem has
been discussed with exceptional clarity by
Meshkov.)? He considered the wave function of
electrons confined to a QW, bounded by an infinite
barrier on one side and a finite-height barrier V (z2)
on the other. In the absence of ee interaction and
inhomogeneities, the free motion in xy plane is
completely separable from the quantized
longitudinal motion. Consequently, the wave
function decays into the bulk with the
characteristic exponential

z
Yaexp |-F1 [ mIVE-Eol dz |, @)

where Eq is the energy of the subband bottom in
the QW. The tunneling exponent (4) is
independent of the kinetic energy K of the electron
motion in xy plane. The situation is qualitatively
different in the presence of scattering — which
mixes different degrees of freedom. However weak
the scattering processes, the asymptotic decay law
for the electron density is described by a wave-
function that would result if the carriers had
tunneled in the one-dimensional potential V (z) —
but with the fotal energy E = Eq+K:

¥ « exp | —257! [ \Im V@ ~ET dz | . (5)

»
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Meshkov has rigorously proven this statement in a
quite general form. At a sufficiently large distance
from the QW the decay rate (5) is strictly valid;
transition to the no-scattering limit (4) is described
by a pre-exponential factor, which depends on the
specific scattering mechanism and which has been
evaluated!? for several model examples, including
the short-range ee interaction and the scattering by
inhomogeneities of the structure.

Although these considerations have not been
applied to the case of tunneling in DBQW
structures, it is my opinion that similar effects
should have an important role there too. In
particular, one can expect a strong effect on the
peak-to-valley ratio in current. Experiments to-date
seem to also support this 3proposition, as discussed
recently by Wolak et al.l® It also gives a natural
explanation to the fact, first noted by Shewchuk et
al. that highest peak-to-valley ratios are obtained
in DBQW diodes with lightly doped or undoped
regions inserted immediately outside the barriers.
Another consequence of the mixing of longitudinal
and transverse motions by elastic scattering, which
is worth investigating, is the dependence of the
lifetime of a resonant state on its kinetic energy,
T9=79(K). In particular, in time-resolved
luminescence experiments'® with a single QW, one
can expect higher tunneling escape rates when the
quasi-Fermi level of QW electrons is increasing. In
heterojunction superlattices, the mixing of different
degrees of freedom may lead to a Fermi-level
dependence of the subband effective mass.

It is reasonable to conclude that any
quantitative discussion of the RT in DBQW diodes
must be based on a concrete model of scattering
processes appropriate for an experimental structure
under consideration.

3. Resonant-Tunneling Transistors

Many workers have appreciated the attractive
possibilities which would arise from an integration
of the double-barrier RT structure in a three-
terminal device. References to various proposals in
this regard can be found in the reviews.!”1¢ Below,
we shall discuss two unipolar transistors, based on
resonant tunneling, whose characteristics 1oy (Via)
possess regions of both positive and negative
transconductance. This is an important property,
because it allows the implementation of novel
functional circuit configurations, analogous to those
available in the celebrated complementary silicon
{CMOS) technology. Indeed, the main advantage of
CMOS circuits results from the fact that
transconductances of p- and n-channel transistors
are of opposite sign, which allows high-speed
switching combined with a low power dissipation
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Schematic illustration of a quantum wire
transistor.'’ Eq is the bottom of the 2D
subband, separated from the classical
conduction band edge by the energy of the
zero-point motion in y direction; Eq is the
bottom of the 1D subband in the quantum
wire, separated from E; by the
confinement energy in the z-direction. In
the operating regime, the Fermi level lies
between Eg and Egq.

in the steady state. Similar circuits can be obtained
from unipolar RT transistors: a pair of such
transistors, one operating in the positive the other
in the negative transconductance range, is
electrically equivalent to the CMOS inverter and
can perform its logic functions at low power
dissipation.

3.1 Quantum Wire Transistor. This device, proposed
by Luryi and Capasso!’ and illustrated in Fig. 3,
uses a linear rather than planar QW (“quantum
wire”) as the active region. Electrons resonantly
tunnel from a 2D emitter into (or through) 1D QW
states; potential difference between the QW and the
emitter, and therefore the RT current, can be
controlled electrostatically with an external gate.
The 1D confinement can be achieved with the help
of a V-groove etch of a planar DBQW structure
followed by an epitaxial overgrowth with gate
layers,”® or a similar processing of a vertical
<110> edge.!®

Application of a positive gate voltage Vg
induces 2-D electron gases at the two interfaces
with the edges of undoped layers outside the QW.
These gases will act as the source (S) and drain (D)
electrodes. The bottom of the 2-D subband Eg is
split up from the classical conduction band edge Ec
by the dimensional confinement in y direction. At
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Fig. 4 Variation of the electrostatic potential in z
direction between the 2D source (S) and
drain (D) contacts. Mid-point of the
quantum wire corresponds to z=0. The

distance between S and D is measured in

the same time, there is a range of Vg in which
electrons are not yet induced in the “quantum
wire” region (which is the edge of the QW layer)
— Dbecause of the additional dimensional
quantization in z direction. The operating regime
of the quantum wire transistor is in this range.
Application of a positive drain voltage Vp brings
about the resonant tunneling condition and one
expects an NDR in the dependence I (Vp). What is
more interesting, is that this condition is also
controlled by V.

The control is effected by fringing electric
fields: in the operating regime an increasing
Vi > 0 lowers the electrostatic potential energy in
the QW with respect to the source — nearly as (or
even more) effectively as does the increasing Vp.
This can be ascertained by solving the electrostatic
split-capacitor problem, Fig. 4, which can be done
analytically as follows. It is a simple exercise in
conformal mapping to find the electrostatic
potential ¥, ;(z, y) in the cases a) Vs=Vp=0,
Vg=1 and b) Vs=Vg=0, Vp=1, when the
problem can be mapped onto a singly-connected
domain.” From the linearity of the Laplace
equation in the general case Vp#V;#0, one
then finds

\I’(Z, y)-VG‘I’a +VD"I’,, . (6)
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Vg=0

1 1 1 1 i

-2 -1 o] 1 2

units of the gate thickness d with the total
gap assumed equal 5d. Case (a)
corresponds to Vg=Vp=0, Vg=1 and (b)
to Vg=Vg=0, Vp=1. Inserts show the
equipotential lines in yz-plane.

The transconductance characteristic Ip(Vg) near
the RT peak can be obtained by scaling the source-
to-drain diode curve by the gate leverage factor A,
given by

_ 8p/dvg _ [avp _ Y. QW) @)
dlp/dVp VG |, o BERW)

where the coordinates of the QW are substituted in
the arguments of the right-hand side. In the
example illustrated in Fig. 4, the total source-to-
drain gap is 5 times the gate thickness, resulting in
A=4.6, which means that the gate in this example
is more effective than the drain.

3.2 Gated Quantum-Well RT Transistors. Recently,
Beltram et al.2 demonstrated a three-terminal RT
device, in which the QW was used as a collector,
separated by a thin tunneling barrier from a doped
emitter layer on one side and bounded by an
insulated gate on the other side. The band diagram
of the device structure under bias is schematically
illustrated in Fig. 5. Electrons tunnel into the
second (empty) subband of the QW, while the
highly conducting 2D electron gas (2DEG) in the
ground subband permits application of an external
bias to the QW. Electron transport from the

" emitter to collector thus proceeds in two steps:
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Fig. 5 Schematic band diagram of a gated
quantum-well RT transistor under bias in
the common-collector configuration.

tunneling through a single barrier and a

subsequent drift laterally. Obviously, the sequential
tunneling picture can be naturally extended to
describe such a transport and one expects an NDR
in the collector circuit at a fixed gate bias.?!

Transistor action is achieved by the
modulation of the position of the 2-dimensional
subbands in the QW with respect to the emitter
Fermi level by the electric field emanating from the
gate electrode. This occurs for two distinct reasons.
One, which in accordance with Bonnefoi et al.??
can be termed a generalized Stark effect, is
associated with the gate field penetration into the
QW and the sensitivity of the QW energy levels to
the shape of the well. The other effect is the
quantum capacitance®® of a 2DEG, as a result of
which the gate field partially penetrates beyond the
QW collector and induces charges on the emitter
electrode.

Beltram et al.?% have observed the negative
transconductance effect (predicted for such a
structure in ref. 1, p. 556) as well as the NDR effect
at a fixed gate bias.? A good quantitative
agreement was found between the measured and
the calculated characteristics. The effectiveness of
the gate in controlling the tunneling current can
be described by a gate leverage factor [cf. Eq. (7)),
here conveniently defined as follows:

= _9Ey
A==+, @)
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where As and Ag are, respectively, the contributions
of the Stark effect and the quantum capacitance.
The former can be evaluated in first-order
perturbation theory by taking the expectation value

3E; = (Y186 (2) Y1) 9

of the electrostatic potential variation in the QW
(calculated self-consistently with the ground-
subband wavefunction ¥y) over the unperturbed
upper-subband wavefunction ;. The quantum-
capacitance contribution is given by?

A 1
2" C;+Ca+Cp

where C; and C; are the geometric gate-collector
and emitter-collector capacitances, respectively, and
2
me

Co= 11

Q ‘ﬂ"iz ( )
is the quantum capacitance of the 2DEG, which is a
characteristic of the QW material only
(Co=4.5um/cm? for GaAs). Thus calculated total
A agrees with the experimentally measured gate
leverage factor?® to better than 10%.

(10)

4. Conclusion

Physics of resonant tunneling in double-barrier
quantum-well structures has been reviewed,
emphasizing the difference between the truly
coherent tunneling, analogous to the resonant
transmission through a Fabri-Pérot étalon in optics,
and the sequential processes, in which the phase of
electron wave function is destroyed between two
tunneling steps. Although the two mechanisms are
undoubtedly distinct and correspond to radically
different single-electron transmission coefficients,
in most experimentally studied DBQW diodes they
lead to practically indistinguishable current-voltage
characteristics. The salient — and the most useful —
feature of these characteristics, namely the two-
terminal negative differential resistance, in both
pictures results from the reduced dimensionality of
electronic states in the QW and the conservation of
parallel momentum in tunneling. The NDR of the
RT diodes has its main potential application in fast
oscillators; with respect to such devices, the
question of coherent versus sequential mechanism
may affect the theoretical limit frequency. A wider
range of potential applications for RT in QW
structures is associated with multiterminal
transistor-like configurations. In addition to the
NDR in their output circuit, most RT transistors
exhibit a negative transconductance, a feature
which can lead to the implementation of various
high-speed functional logic devices. Some of the RT
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transistors can be discussed equally well within
both the coherent and the sequential pictures, for
others the latter picture is better suited, as it allows
one to associate the NDR exclusively with the first
tunneling step, leaving means of electron
extraction from the QW at the designer’s disposal.

Acknowledgement — I wish to thank R. K. Smith
for computer-generating the electrostatic-potential
curves in Figure 4 and for a helpful discussion.
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