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Percolation Approach to the Quantum Hall Effect

S.Luryi .
2AT&T Bell Laboratories, Murray Hill, NJ07974, USA

1. Introduction

The percolation description of electron states in a 2D electron‘ gas ir} stljong magnet{c
fields was developed in refs. [1-5]. Being essentially semi-classical, this picture alone is
not sufficient to give a rigorous account of the most fundamental property of
the integral QHE: the extraordinary precision of quantization of the. Hall cqnductance.
Nevertheless, the percolation description appears to be quite useful in that it allows to
interpret in a simple manner a number of other experimental features of‘the QHE and
relate them to a specific model of electronic states in the presence of disorder in the
sample. In this work I shall review the basic picture, following refs. [3,4] as well as some
unpublished work, mostly done in collaboration with R. F. Kazarinov.

1.1 Ideal System

Consider the quantum-mechanical problem of the electronic motion in an (x.y) plax}e
transverse to a uniform magnetic field B. Operators X and Y of the cyclotron-orbit-
center coordinates are defined by X =% +9,/w and Y =§ — 79, Jw, wher'e W= eB/r‘nc
is the cyclotron frequency and #,, 9, are the components of the canonical velocity
operator. The following commutation relations hold:

[6,,9,]1 = iliw/m (1)
IX,61=[¥,6,] = (X,8,] = [{,5,]= 0 @
[Y,X] =i 3

where L’E(h‘c/e'B)U2 is the magnetic length. In virtue of (1) the spectrum of the
electron kinetic energy operator Hg = (m/2)[z?,r2 + 6;] is given by E, = h‘w(n. + %) and
because of (2) the Landau levels n are degenerate with respect to the position of the
center of the cyclotron orbit. The commutation relation (3) implies that the df:nsu’y of
states N, in each Landau level is given by Ny = (21 €%)~! = eB/hc states per unit area of
the sample.

If there is an electric field F in the plane of the inversion layer, then this degeneracy
is lifted. The resultant electronic states are localized in the direction of F by the
magnetic length £. In the direction of B the states are localized by the quantum well,
while in the third direction the states are delocalized. The electronic waves propagate
along the equipotential lines like light in an optical fiber. The propagation velocity
turns out to be the same as the average velocity in the classical problem — the Hall
velocity vy = ¢ (F/B). It is quite easy to write down an explicit expression for. these
eigenstates, which I shall refer to as fibers. All that is important for us, however., is that
they represent narrow tubes extended along equipotentials. ‘This property remains true
even in the presence of disorder, when the equipotentials are wiggly curves — contours
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on a topographic map — and no exact solution is available. Fortunately, we shall not
need it anyway.

The QHE is an interplay between the electron density N and N;. The plateaus are
thought to occur when N = N, x integer, i.e,, when the Fermi level Ep is positioned
between two successive Landau levels, nth and (n+1)st. Leaving aside the question
about what holds it there (the most important question!), consider what happens. First
of all, there is no dissipation — large energy separates the filled and empty states. This
implies o,, = 0. Electrons under the Fermi level contribute to a nondissipative Hall
current. Linear density of this current | is given by | =eNvy = n (ez/h)F and the total
Hall current in the area between two electrodes biased by V is [ = n(e2/h)V. It is
carried by electrons which are in stationary states.

1.2 Disorder Required

Disorder is of fundamental importance for the QHE. At T=0 the Fermi level Ex by
definition coincides with the highest occupied state. In an ideal case with a uniform
electron density N, the Fermi level is pinned to a Landau level at all B except for
discrete values, B, = N hc/en, at which E; jumps between the n-th and the (n+1)-st
level. This means that in an ideal system with no disorder, the plateaus are reduced to
discrete points. The finite width of the plateaus must be attributed to pinning of the
Fermi level by localized states. The nature of the localization in inversion layers in
strong B is one of the most interesting consequences of studying the QHE. In what
follows I shall describe a microscopic model of both localized and delocalized states,
which I believe accounts for most aspects of the integral effect.

2. Model of Electronic States in a Disordered Sample

In our model all electron states are fibers, i.e., are confined within narrow tubes extended
along equipotential lines. Strictly speaking, the fibers are extended along the lines of
constant classical energy. The latter includes also the kinetic energy, mvj3/2, which
depends on the local electric field F. Throughout this work, speaking of the
equipotentials, this comment is left understood. The potential is assumed to vary
smoothly on the scale of ¢, so that at every point the sample has a well-defined
Landau-level system. The existence of truly localized states with energies continuously
distributed in the gaps between the local Landau levels is not required.

2.1 Global and Local Fibers

All equipotentials (and associated fiber states) distinctly fall into two classes: global and
local. This distinction is especially clear in the Corbino ring geometry, where the global
fibers are those which encircle the central electrode while the local can be contracted to
a point by a continuous deformation. The distinction between the global and local
fibers is purely topological and has little to do with the fiber length. A local fiber can, in
fact, be quite extended — even longer than a global fiber — but it does not contribute
to the Hall current.

Even though the number of current-carrying states is reduced by disorder, the
current remains the same as in the ideal situation, see Fig. 1. The entire applied voltage
drops on the global states. Similarly, when the current is given, the entire Hall e.m.f. develops
across the global subsystem. Regions bounded by a local equipotential are in
thermodynamic equilibrium. They may contain nonfiber states as well as local fibers
revolving around potential hills and inside potential "volcanos”. These regions are
macroscopic and have a well-defined chemical potential Er and a fluctuating electron
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FIGURE 1: Illustration of a Corbino sample
and a radial section S1, which crosses one or
more isolated closed loops. Because points 2
and 3 lie on an equipotential the sum of
voltages dropping in regions 1—2 and 3—4
equals the applied voltage V. The effective
width of the Corbino ring in section Si is
reduced by the distance 2—3 but for a given
V the Hall current does not depend on the
width of the ring.

concentration. Even at T = 0 the Fermi level can be pinned to some of the local loops
inside a macroscopic region, while the boundary of this region and an adjacent global
fiber (if it exists), corresponding to a particular Landau level, can be either above or
below Ef.

2.2 Charge Fluctuations and Perfect Screening

Let us discuss what gives rise to potential fluctuations in the inversion layer and why
they can be expected to be smooth on the scale of £. To be specific, we consider the
GaAs/AlGaAs QHE samples. The spatial inhomogeneity of the self-consistent potential
is brought about by fluctuations in the fixed positive charge responsible for the creation
of the inversion layer in a heterojunction system. The fact that the Landau-level energy
does indeed fluctuate, thus giving rise to patches with occupation numbers 0 or 1, is
rather subtle.

Consider first an ideal situation with uniform N, giving rise to a partially filled
Landau level and then impose a fluctuation éN,. So long as 6N, <<N,, this charge
fluctuation is perfectly screened by the inversion layer, producing absolutely no spatial
variation in the single-electron energy level which remains tied to Er. This perfect
screening is a consequence of the multiple degeneracy of Landau levels. A partially filled
level can accommodate extra charge without changing its energy.

When 0N, > N,, then perfect screening does not occur and the self-consistent
potential in the inversion layer fluctuates. Assume that fluctuations in the number of
fixed charges N, per unit area are uncorrelated, (6N./N,)~ ()\2N+)"1/2, where
A =A(N,) is the spatial scale of the fluctuation. For 8N,=N,; one then has
ANy = /N,./N; = £ 2N ,/N,. We see that \(N;) >> £ provided N,>>N,. The
crux of the matter is that the surface density N, of the fixed positive charge much
exceeds the electron density in the inversion layer, i.e, N >>N (in GaAs QHE
samples N, is mainly compensated by a negative surface charge). Typically, N, results
from doping a layer of thickness ~500 A with donors of volume density
~2:108%em™3, je, N,~10%cm™% while N, even at B=10T is only
~24-10" cm™2 Thus the potential indeed varies smoothly on the scale of the
magnetic length ¢, which makes our model self-consistent. If N, were not so large, the
breakdown of perfect screening would occur only at short fluctuation wavelengths and
the fiber description would not be adequate.

The characteristic local fields due to the fluctuating charge by the order of magnitude
are given by

edN, e

- F\/N+ 4)

OF =
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For A ~ A(N,) the fluctuating field 8F ~ eN/e > 10°V/cm. Smaller fluctuating fields —
those arising from large-area charge fluctutations — are typically screened by the
electron gas. On the other hand, 6F < e/Ni/fed ~ 10°V/cm, where d is the average

"distance from the inversion layer to the fluctuating fixed charges — including the

thickness of an undoped AlGaAs spacer layer. The field due to charge fluctuations of
wavelength less than d averages out without reaching the inversion layer.

2.3 Existence of Global Fibers

It is not at all obvious that global states do exist in a large macroscopic sample. In fact, I
shall argue that in equilibrium they do not! Global states only appear in the presence of
an applied Hall voltage. To see the problem, consider a random potential surface
Y(x,y). Equipotentials are contour lines on the topographic map. You can probe the
topology of equipotentials at any energy by filling the terrain with water and looking at
the shoreline. At low water levels there will be lakes in a continent. At high levels there
will be islands in the sea. In both limits the shoreline represents local loops. This means
that neither low-energy nor high-energy equipotentials are global. There is one definite
energy at which the islands-in-the-sea topology goes over into that corresponding to
lakes in the continent. This energy equals <y > — assuming symmetric statistical
properties of the random function ¥(x,y) — and is called the percolation threshold. As
we approach the transition point from the continent (sea) side the area of certain lakes
(islands) diverges. It is clear that the length of the largest shoreline must also diverge at
the threshold. In a finite-size sample this implies the existence of equipotentials
connecting opposite edges of the sample. However, the coastline percolation in one
direction (north-south) excludes the possibility of percolation in the other (east-west)
direction. It is easy to see that for an uneven sample the percolation will be necessarily
established in the shortest direction — radial direction in a Corbino ring.

The above argument shows that for a randomly disordered sample in equilibrium
there are no global equipotentials. They begin to appear when an external voltage is
applied. This is easy to visualize thinking about a funnel with crimped surface [4]. It
has been shown [5] that at low and uniform external fields F the fraction of global states
goes as ~FP with p = 41/84. The energy range of global states may be referred to as
the percolation band. Since in the presence of global equipotentials, the entire Hall
voltage V develops across the global states, it follows that the percolation band emerges
with a finite width equal to eV. It is the existence of global fibers that embodies the
long-range order in QHE samples. Some disorder is required to establish the no-
scattering situation (recall that an ideal 2DEG would give no plateaus), but too much
anarchy is no good either: not every inversion layer exhibits the QHE! If one can
imagine turning on the disorder at a given applied Hall voltage, then at some point one
would eliminate all global fibers and the Hall current would cease. This phenomenon
can be interpreted as a phase transition, in which the Hall current plays the role of an
order parameter.

2.4 Equal Occupation of Global States

We have shown that global states constitute a small fraction of the total number of states
in the inversion layer. On the other hand, the variation of the chemical potential Ep
(the quasi-Fermi level) on the global states follows exactly the variation of the self-
consistent potential ¥, in other words, all global states corresponding to the same
Landau level are equally populated.

This can be seen as follows, Fig. 2a. Streams of the Hall current break the inversion
layer into disjoint regions. Each of these regions (labelled i) is surrounded by a local
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FIGURE 2: Equal occupation of global states: (a) illustration; (b) implication for the DOS

(though quite extended) equipotential ¢; and is, therefore, in equilibrium. These
regions are macroscopic, and have a well-defined chemical potential Ef and a
fluctuating electron concentration. The average electron concentration is given by the
surface density N and is the same in each macroscopic region, and hence the quantity
Ep—e <¢>; has the same value throughout the sample. The gist of this argument is to
note that ¥,= <y>,. Indeed, the boundary of a macroscopic region is a very extended
local equipotential. As such it must be close in energy to the percolation threshold
<y>; of region i. Since the edges of each Hall stream have the same energy ¢ and
chemical potential Er as the adjacent local equipotentials, we come to the conclusion
that the difference E; —ey is the same for all global states.

Let us plot (Fig. 2b) the density of states D (E) per unit area of the sample in the
presence of an applied Hall voltage V. We shall be counting the energy of fibers from the
local value of the Fermi level, which is probably the only meaningful way to describe a
system consisting of nearly independent subsystems — each of which is in a
thermodynamic equilibrium by itself but not with respect to the other subsystems. If
D (E) is plotted in this way, it is clear that the global states contribute a $-function to
each fiw period. The shape of D(E) in the local-state region is determined by the
statistical properties of the random surface Y¥(x,y) corresponding to the self-consistent
potential. All equilibrium regions i represent statistical realizations of the same system,
and hence give rise to a density of states of the same form as that in the absence of an
applied voltage. In a crude approximation (neglecting correlations introduced by the
screening) we can expect it to be Gaussian. With increasing V, the total area under the
local-state curve changes to account for an increasing fraction of the global states.

2.5 Edge States

It has been suggested that global states’ may be associated with the sample edges.
Indeed, the potential surface in any sample is not entirely random. In order to confine
the inversion layer laterally it has to look like a trough with steep walls at the edges.
There is always a global equipotential on the wall, at any energy. The associated states
can give a contribution to Hall currents — revolving clockwise on one edge and
counterclockwise on the other. In a particular experiment, certain fraction of the total
Hall current may flow near the edges, but description of the QHE in terms of the edge
currents alone, in my view, physically amounts to an untenable assumption that the
quasi-Fermi level Ep is flat in the interior of the sample. In this sense, the situation is
different from the description of electron diamagnetism in terms of edge currents,
which is a possible, though inconvenient, description of the Landau diamagnetism [6].

In my opinion, edge states play little role in the QHE. Their number varies from
one sample to another depending on the boundary conditions, but in all macroscopic
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(b)

samples it remains statistically insignificant. You can think of boundary conditions for
which all states near the edges are in an immediate contact with a three dimensional
electron gas (e.g., a Corbino disk with source/drain implantation around the edges) —
so that edge electrons can scatter into the third dimension. This will not change any
experimentally observable aspect of the QHE, which is essentially a surface effect.

3. Consequences of the Model for the QHE

With respect to the filling of a Landau level n at a particular magnetic field and zero
temperature, the sample area contains three, in general multiply connected, regions,
Fig. 3. There are 2D patches where the 7 th level is filled (the n-phase), patches where
this level is empty and complementary metallic regions — corresponding to intersecting
Landau and Fermi levels.

FIGURE 3: (a) Variation of the local single-
electron energy y(r) along a line x-x in a
sample at equilibrium; (b) Three regions
defined with respect to the filling of a
Landau level n at zero temperature: blank
area indicates the absence of nth-level
electrons, cross-hatched area corresponds to
completely filled regions (the n-phase), and
dotted area to partially filled regions

(metallic phase).

Within the n-phase the macroscopic current density | is given in terms of the
gradient of the chemical potential E; as follows:

] =0, VEpxB/eB, 5)

where o, = n ¢*/h. This can be proven as follows. Within the n-phase there are both
global and local fibers. Consider a thin strip s along a global fiber. If it can be
regarded as a linear conductor, its current I; and the associated flux ®; of magnetic field
through the contour I, are complementary thermodynamic variables, I, = ¢ 9G,/9®,,
where G, is the free energy of electrons in the given strip. The single-electron
contribution to the total current is given by 8l =8I, /8N, , with N, being the number of
electrons in the strip. On the other hand, 9G,/dN, = E}. Differentiating, we have
oI, = c9E;/0®,. The minimum flux variation equals &®, = hcfe. It should be
emphasized that the flux of the magnetic field through any fixed area of the ring is not
quantized and in contrast to the situation familiar in superconductivity it can vary
continuously. What is quantized in the present case is the magnetic flux through a
variable area bounded by two global orbits on the chosen strip. The magnitude of the
flux "quantum" follows from the periodic boundary conditions on the wave-functions of
current-carrying states (which implies that the flux increment must be hc/e times an
integral number 6¢) and the Principle of Least Action (whence 6¢=1). The
corresponding quantum 6E; of the chemical potential at zero temperature represents
the variation of the Fermi energy across one global fiber. Therefore, 8I, = (e/h)8E; for
each filled Landau level, whence we obtain (5). Note that all local fibers belong to
equilibrium regions (surrounded by an equipotential), and hence across any local fiber
OE-=0.
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Defining complex quantities | = J, +1i J, and F=V_E + iV Ep, we can write (5)
in the form | =oF, where ¢ = ¢, — ioy, . Inasmuch as V-J =0, VxF =0, and o is
constant in the n-phase, it follows that both ] and F are analytic functions of the
complex coordinate z* =x—iy. Consider then a disordered sample schematically
shown in Fig. 4. The total current I between the source and drain contacts equals the
flux of | through any contour connecting, say, points 1 and 2. This contour can be
chosen entirely within the n-phase, if the latter percolates, as shown in the figure.
Because of the analyticity, the current is independent of the choice of a contour and
equals o, [E;(2)~E;(1)/e = n(e¥/h)V.
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When the magnetic field B is increased, the area of the n-phase shrinks. This occurs
because N; « B, so that when B grows electrons fall onto the lower levels. When
N = (n—%)N, the n-phase disconnects and the metallic phase becomes percolating.
The range AB of this inter-plateau region is proportional to the density N; of global
states in the sample, AB = (hc/e)Ng, and therefore depends on the applied voltage
(Sect. 3.2). Even at T =0 the inter-plateau range can be finite. When B is increased still
further, the metallic phase disconnects, the (n—1)-phase becomes percolating, and we
have reached the n‘ext plateau.

3.1 Plateau Width at Finite Temperatures

Percolation model gives a simple explanation to the observed temperature dependence
of the QHE plateaus. At finite T, instead of summing over filled global states, as we did
in the preceding Section, we include the contribution of all global states — but weighted
by their occupation probability given by the Fermi-Dirac distribution function
f=f (Eg—y) [this means we take &I, = (e/h) f OEp for each global state]. In doing so, we
can bring the function f out of the sum since its argument is constant on global states
(Sect. 2.4). The result is an expression of the form I = # (e2/h)V, with 11 given by

=3 fa), ©)

nm=1

where A, =E;(x) —y(x)—nkw (cf. Fig. 2) is constant for each Landau -level n.
Transitions between the Hall plateaus are due to the variation of A, with B. For an ideal
situation with no disorder, global states would constitute 100% of all states and the Hall
plateaus would reduce to a set of discrete points. In a real system the opposite limit
occurs. The Fermi level is pinned to the global states only in a small interval AB.

At a nonzero T the plateaus shrink due to the washing-out of the Fermi step-
function. Varying the temperature at a fixed B outside AB we are simply tracing the
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tail of Fermi’s distribution. Therefore, the temperature dependence of the deviation of
R,, from a quantized value at a fixed value of B must have an exponential form
~exp(—E, /kT), characterized by an activation energy E,(B) = A,. Such behavior is
indeed observed in the léw-temperature experiments. The activation energy is
vanishing for B inside AB and it grows as B is moved away from the inter-plateau
range. When E, is large, any deviation of 7 from an integer becomes intangible. This
explains the high precision of the Hall resistance quantization.

3.2 Voltage Dependence of the Plateau Width; Breakdown

For typical QHE experiments the average applied field (~1072V/cm) is several orders of _
magnitude lower than the fluctuating field 8F. This means that the local topography of
the potential surface is only slightly modified by the applied field so that the area
occupied by the local states changes very little compared to 100% at equilibrium. The
energy range of global states was referred to as the quantum percolation band. We
already know that the width of this band equals the applied Hall voltage V. Hence we
can deduce qualitatively that the density N of global states increases with V and so
does, therefore, AB. At the same time the plateaus shrink.

The exact dependence of the plateau width on V is not known — the function
N¢ (V) may actually vary from one sample to another. Moreover, the Hall current
density may be strongly nonuniform over the sample. Consider what happens if we
begin to increase the voltage V applied to a Corbino ring at a fixed value of B. Ata
sufficiently large V the fraction of global states will approach unity (Ng/N)—1 in
some section of the sample, and the Fermi level will be pinned to global fibers. This
results in an insulator-metal transition induced by the applied field, which is observed as a
breakdown of the nondissipative current flow. According to our model, it occurs when
the applied field exceeds the characteristic F of a particular sample, given by (4).
Typically, 10° > 6F > 10*V/cm.

3.3 Dissipative Current

At T=0 the n-phases can support only a non-dissipative (Hall) current, since scattering
is suppressed in the completely filled Landau levels. Metallic regions — those
corresponding to intersecting Landau and Fermi levels — are, generally, disconnected,
except for discrete ranges of the magnetic field. Thus, even at a value of B for which
the average N in the inversion layer corresponds to a partially filled Landau level, the
potential fluctuations induce a peculiar metal-insulator transition. At T=0 the
longitudinal conductivity vanishes completely. No current can flow across filled global
states due to the absence of scattering. Although, as discussed above, the area occupied
by global states is small, streams of the quantum Hall current slice the sample into
disjoint regions each of which remains at equilibrium.

At a finite temperature T in addition to the Hall current there is a longitudinal
current due to generation of mobile carriers, i.e., thermal excitation of "electrons and
holes” across the Landau gap hw. With decreasing temperature this current goes to zero
as exp(—Fkw/kT). Hopping between local fibers across global streams also contributes to a
dissipative current along the electric field. Indeed, the macroscopic equilibrium regions
i are not at equilibrium with respect to each other. Some of the local fibers states
associated with a potential hill or a potential "volcano" with its top above the Fermi
level, will not be occupied. These states with energies close to the Fermi level may take
part in a variable-range hopping current [7]. Temperature dependence of such
conduction would be described by Mott's law o, « exp[—(To/T)"®] for a two-
dimensional system. At a sufficiently low temperature this path of current dominates
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over the generation current. A possible  indication of the hopping nature of the
dissipative current is provided by experiments in which the longitudinal conductance is
measured in a Corbino geometry, at a given T and a fixed applied voltage. When we
measured [8] the total current between two contact islands within a high-mobility
(3:10°cm/V's) GaAs/AlGaAs QHE sample, separated by 1 mm and biased by 0.2V, as a
function of the magnetic field at T=2.1K, we found that in the range 1< B <4T, the B
dependence of the current at the minima of SdH oscillations was strictly exponential,
viz. o™ « exp(—B/B,), with Bg=0.328T. (The conductivity was suppressed at still
faster rate at higher B.) The exponential magnetoresistance is usually an indication of
the hopping nature of the conduction 7).

4. Other Consequences
4.1 The Density of States

FIGURE 5: Qualitative picture of the density

O(E) of states. In the presence of an applied bias
" V, the electronic-state energies are counted
E from the local value of the Fermi level. The
B overall shape of the peak is determined by
5 statistical properties of the self-consistent
z potential at given values of B and V. The
2 top é-peak is proportional to the fraction of
W N global states in the sample and hence
: strongly depends on V. The peak at Er, due
fllw - # £ to the perfect screening effect, is broadened

-’ F W

by collisions.

The appearance of a second peak in each period of the D (E) is owing to the perfect
screening mechanism, discussed in Sect. 2.2. Consider variation of the self-consistent
potential ¥(r) along some line within one of the macroscopic regions i, bounded by a
local equipotential. Because region i is in equilibrium, it has a perfectly well defined E;
which is, of course, constant (dashed line in the figure). Note that a particular Landau
level cannot simply cross Er — because of the perfect screening it will be pinned to E;
until eidher filled or emptied. This gives a finite measure to the metallic regions in the
sample. Their manifold still Tepresents disconnected loops but it has acquired a finite
area and contains a macroscopic fraction of electrons.

It should be realized that in this manifold scattering is not suppressed. Elsewhere in
the sample there is no collision broadening of the Landau levels and the overall shape

semi-elliptic shape and a width T » which can be estimated from the relaxation time =
(related to the low-field mobility u by wr=uB/c):

2 ki 2 1
2~ 35,08 _ 2 22,
) whwr 7r(Iio.)) 7)
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In the highest-mobility samples used in QHE experiments u~10°%cm 2/Vsec = 3-108
in gaussian units. For B ~10 T = 105 gauss, wr~10% and hence Iy~0.02%0.

Within the metallic manifold, the electric field F need not vanish — even if we
neglect completely the width I',. Indeed, it is the fotal single-electron energy ¢ which is
tied to the flat Fermi level. As mentioned at the beginning of Sect. 2, the local value of
¥ includes besides the electrostatic potential ¢ also the kinetic energy
mvi/2 = (mc*/2B*(V¢)%. Thus, in the absence of broadening ¢ must satisfy within the
metallic region a nonlinear equation of the form e¢ + (mc?/2B H(Ve): = Yy=E.
Equivalently, there is a relation for the electric field:

2
mc 2:
e dGoR )

eF=
It appears that for a finite (though small) broadening, the presence of an electric field in
the metallic phase is necessary in order to balance the diffusion flux of electrons between
regions of different partial Landau-level filling.

4.2 Fiber Inductance and Finite-Frequency Effects

On a QHE plateau the entire externally applied voltage drops on the global fibers and
drives their non-dissipative Hall current. There is a finite kinetic energy associated
with the Hall current, E = mv?2/2 per electron. Because of the electron inertia it takes
a finite time to charge and discharge the global fibers. The simplest way to describe
these processes is to regard the fiber as an inductive impedance which is being charged
through the Hall resistance Ry.

Consider a strip of thickness £ along a global equipotential of length A. The number
of filled global fibers in this strip equals # N 1A =7A/2x¢. The strip contributes a
Hall current

€vy A
- X 9
L A 2r e @
The associated kinetic energy of electrons in the strip is given by
- ﬂ. 2 X -ﬂ_ = .1_ 2 0
B v X ey = LI (10)
whence the "fiber inductance” L is of the form
2xém méA
L=——A = ; - . 1
ol A =1R,, T 5 (11)

For £~1004, a delay 7~1usec corresponds to A ~ 10 cm. Note that a global fiber
because of its wiggly nature can be longer than the circumference of the sample. The
reactive delay (11) can be expected to be dominant in high-frequency measurements of
the conductivities from I-V characteristics.

4.3 Magnetic Field Induced Threshold Shift in Silicon MOSFETs

Let us first briefly discuss the MOSFET capacitance in the absence of magnetic field.
The typical dependence of the differential capacitance on the gate voltage V; is shown
in the top insert to Fig. 6. Below threshold the minimum capacitance is determined by
the combined thicknesses of the oxide and the semiconductor depletion region
weighted by the respective permittivities. At high V¢ an inversion layer appears at the
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silicon/oxide interface, which screens further penetration of the electric field into the
semiconductor. In this case the differential capacitance is determined by the oxide
thickness only. The gate to channel capacitance per unit area in strong inversion is
given by d(eN)/dV; =e/dnd.

The nature of capacitance threshold in strong magnetic fields is quite different.
Firstly, we note that it occurs when the MOSFET is already in the strong inversion.
Therefore, the threshold is associated not with a screening effect but rather with the
conductivity of the inversion layer. In a strong magnetic field the threshold voltage Vi
was found [10] to increase linearly with B, see Fig. 6. This phenomenon is another
aspect of the metal-insulator transition which occurs when the sea corresponding to a
filled Landau level breaks into disjoint lakes. We know that at low temperatures the
partially filled Landau levels experience a percolation transition at half filling. At the
lowest Landau level this transition involves the vanishing of both the longitudinal and
Hall conductivities, i.e., vanishing of the total current. In this situation the inversion
layer does not respond to an AC signal on the gate (of course, it does respond to DC
variations in V). You simply cannot quickly charge the disconnected lakes by a
generation or a hopping current.

The transition occurs at a critical value N_,=N,/2, The threshold voltage
Vy=Vs(N) is, therefore, shifted by the magnetic field as follows:
dv; _ dVg d(N) e2d d

dB ~ dN dB Bc ¢ 137¢ a2

This agrees with the experimentally measured slope [10] to better than 10%.
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