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An analytical theory is given for the space-charge-limited current in n-i-n or p-i-p diodes. The
exact I-V characteristic is obtained in a parametric form. In the limit of high currents or for a
large width of the intrinsic (7) base region the characteristics reduce to a Mott—Gurney form.
In the low-current limit a linear /- ¥ characteristic is obtained. The space-charge barrier
presents a conceptually different case from a conventional barrier current in that the position
of the barrier moves depending on the biasing condition. It is this motion which is responsible
for the linear regime—which extends over a substantial range ( ~ 10k7 /e) of the applied
voltage. The distribution of the electrostatic potential and of the quasi-Fermi level in the base,
as well as the position of the potential maximum (the virtual cathode), are shown for different
current levels. The differential capacitance of the double-junction diode is calculated and
shown to be strongly dependent on the applied bias.

I. INTRODUCTION

Space-charge-limited (SCL) current is the main con-
duction mechanism in structures of the type n*nn™ or
n*pn™* . Following an established terminology, we shall refer
to the central lightly doped region as the base. The classical
realization of SCL conduction requires the absence in the
base of the free carriers of the type opposite to the sign of
injected carriers as well as of any fixed impurity charges. In
other words, it is assumed that the density of the injected
charge in the base is higher than the density of charge in the
absence of the contacts. The second essential requirement of
a classical SCL current is that the base thickness should be
sufficiently large, so that one can neglect the influence of the
second (collector) contact. (A criterion for this to be true is
the inequality JL*?*2 1, where Jand L are, respectively, the
current density and the base thickness in dimensionless units
defined below.)

Under these conditions the diode /- ¥ characteristics are
approximated by the Child law' (also called the Mott-Gur-
ney law?), which can be simply derived by neglecting the
diffusion component of the current and imposing the bound-
ary condition of a vanishing electric field at the emitter con-
tact. Corrections due to diffusion affect mainly the potential
distribution near the boundaries of the base layer, without
appreciably changing the I-F characteristics.?

Modern technology allows routine fabrication of n-i-n
and p-i-p structures with a base (7) layer thicknesses of order
1073 cm and less. In such diodes there is a measurable range
of currents, where the above conditions of a “long” diode are
violated. In this case, at low-current densities the electric
field vanishes near the base center (assuming a symmetric
structure) and the characteristics are quite different from
the Mott—-Gurney law. A study of such narrow-base struc-
tures was recently carried out by Schmidt and co-workers™*
on the basis of a numerical integration of the relevant differ-
ential equations. These works have clearly demonstrated the
existence of a linear region in the /- ¥V characteristics, which
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goes over into the Mott—-Gurney law at higher currents.
These computer studies offered no explanation for the linear
regime nor described its range of validity. The authors were
more interested in studying the influence of the base doping
level on the characteristics of short structures than in a de-
tailed description of the potential distribution in the base in
the presence of a current.

A semianalytical approach to the problem was attempt-
ed by Van der Ziel ef al.® They investigated the distribution
of charge in the diode base in equilibrium, and then used
qualitative reasoning—familiar from the general theory of
Schottky diodes—for estimating the current. This approach,
however, is valid only in the low-current limit. The essential
difference between a metal-semiconductor contact and a hi-
lo-hi structure is that in the former case, the barrier is fixed in
space, whereas in the latter the barrier—mainly formed by a
mobile charge injected into the base~——moves toward the
emitter contact with increasing current.

The present work develops an analytical theory of the
SCL current in short structures on the assumption that the
entire charge in the base (both in equilibrium and under
bias) is due to mobile carriers injected into the base from the
doped contact regions, i.e., in the base we neglect both the
fixed charge due to any residual doping and the mobile
charge thermally generated across the forbidden gap. In oth-
er words, we consider a unipolar model of an n-i-n or p-i-p
structure. For the general case, the I-V characteristic is ob-
tained in a parametric form. In the range of large currents or
for a thick base, the characteristic goes over into the Mott—
Gurney law. In the low-current limit, we derive an equation
describing the linear I-V regime and give the range of its
validity. Special attention is paid to the position of the poten-
tial maximum (“the virtual cathode”) as a function of the
current density. We have also considered the low-frequency
differential capacitance of the diode—both at low currents,
where the I-V characteristic is linear, and in the range of
validity of the Mott—Gurney law.

Our formulation of the problem is different from that
adopted in Refs. 4 and 5 mainly in the assumed model of
boundary conditions. The authors of Refs. 4 and 5 had im-
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posed a condition on the mobile charge concentration at the
base edges—which was taken to be equal to the carrier con-
centration in the bulk of doped layers—independently of the
current level. In the present work, we adopt a more realistic
boundary condition corresponding to constancy of the
quasi-Fermi level within the doped contact layers. This
means that the concentration and the field profiles in those
layers are calculated “exactly” on the assumption of a qua-
siequilibrium distribution, and the obtained solutions are
then matched with the corresponding quantities in the base
layer. Such a boundary condition was used previously in the
discussion of the charge injection over planar-doped “trian-
gular” barriers’ as well as for calculating the equilibrium
potential profiles in n-i-n diodes.**

il. GENERAL SOLUTION OF THE PROBLEM

To avoid confusion with the sign of the carrier charge,
the current, and the carrier potential energy, it is convenient
to consider a p-i-p rather than an n-i-n structure. We shall
assume a symmetric diode, Fig. 1, with equal acceptor con-
centration N, (fully ionized) in both p layers and an intrin-
sic (7) base of thickness L. The mobility ¢ and the diffusion
coefficient D will be assumed field independent. It is conven-
ient to define the dimensionless quantities: coordinate

CHARGE DENSITY

ELECTRIC FIELD

POTENTIAL AND
QUASI FERMI LEVEL

FIG. 1. Illustration of the n-i-n diode in equilibrium (a) and under applied
bias (b). Schematically shown are profiles of the charge, the electric field,
and the electrostatic potential energy. The energy diagram also shows the
quasi-Fermi level (dashed line). The main approximation of this work con-
sists in the assumption that the quasi-Fermi level is constant within the
doped contact layers, resulting in the boundary conditions (5) on the elec-
tric field in the base /.
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% =x/x,, potential ¢ = /¢, electric field E =E /E,, concen-
tration of holes j=p/p,, and current density J=J /J,, with
the characteristic quantities given by

Po=Ng4 (la)
xo=L, = (ekT /4me’N )2, (1b)
do=kT /e, (lc)
Eo=kT /eLy, (1d)
Jo=eDN,/L,. (le)

We shall assume that a negative bias is applied to the right
contact layer (collector), choose the origin of x at the left
(emitter) edge of the base layer, and direct the x axis toward
the collector layer. With this orientation of the coordinate
with respect to the field, the current will be positive.

In units (1) the Poisson and the drift-diffusion equa-
tions are of the form:

E_ o) +5 )
dx

- = dp

J—pE— 2P 3
pE -2 3)

where the function ©(x) equals unity in the p layers and zero
in the base of the diode (0<x<L).

In the range 0<X<L we can eliminate p from Eqgs. (2)
and (3) and obtain a nonlinear differential equation for E:

_— I 2~ ~
E9E _ 2 f =J 4)
dx dx
of which the first integral is of the form
CLY N S (5)
dx

with y being an integration constant. The hole concentration
in the base is then defined by the equation

P(x) =1E%?— (JX —y). (6)
It can be shown that ¥ must be a positive constant. Indeed, it
is physically obvious that for low and moderate currents,
J < 1, the potential must have a maximum within the base
region (the situation when the maximum moves into the
doped emitter layer or disappears there entirely, falls outside
our model, since it corresponds to currents so high that one
can no longer neglect the drop of the quasi-Fermi level in the
doped regions). At the point of the maximum % = %_,,, one
has E = 0, and Eq. (6) implies that positive concentration
can be ensured only if ¥ > J%,,, >O0.

Introducing a new function

Ui:exp(—%f Edi) (7
and a new independent variable
=132/ -, (8)
reduces Eq. (5) to a linear equation:
dU
—&UE) =0. 9
el (9)
The electric field in the new variables is given by
E= _(4j)1/3M_),, (10)
dé
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and the potential referred to its value at the emitter-base
boundary by

5o e U)
( )=—J. Edx =2In—=2—, (1
o(x X X n UiEy
where
Eo= — (¥/2)(2/0)*", (12)

Equation (9) has a standard solution, given by the Bes-
sel functions of index v = 1/3 and argument

z=3¢&%"2 (13)

Inasmuch as the variable £ can change sign within the diode
base, £ =0 is a branch point, where the argument z goes
from the real to the imaginary axis. However, an inspection
of Eq. (9) reveals that it has no singularities, and hence the
appearance of a branch point is an artifact of the solution as
given by the Bessel functions. It is, therefore, natural to de-
termine independent solutions of (9), which would have no
singularities at £ = 0. Of course, these independent solutions
can be expressed through the Bessel functions, but the actual
expression will have a different form for £ <0 and £ > 0.

Applying the usual series-expansion procedure in pow-
ers of &, the sought independent solutions of Eq. (9) can be
written in the form

where v=1/3. The functions Y " and Y ?’ are related as
follows:

YV =EYP (&) (v=1/3). (15)
Also, from definition (14) it follows that
dy(l)(g) dY(‘2)(§)
2L =Y, —2L=EY (). 16
dE 3 (&) dE §Y5.(8) (16)

Representations of the functions ¥ {" and ¥ {*’ through the
Bessel functions are given in Appendix A. These expressions
allow one to derive an asymptotic representation of the Y
functions from the known representation of the Bessel func-
tions.

All the quantities of physical interest are expressed
through the function U(£), either as a ratio of its values at
two different points of the base [cf. Eq. (11)] or as its loga-
rithmic derivative [cf. Eq. (10)]. Therefore, integration of
Eq. (9) introduces only one arbitrary constant in the general
physical solution. This solution can be conveniently written
in the form
Ue) = cos(&)sin(mv/2)V, (&) — s1n(6)cos(1rv/2)V2(§)

sin(mv)

(17)

where 8 is an integration constant, and the functions ¥, and
V, are given by

YR = Z £ (14a) Vi) =) - Y2, (18a)
PEORIT K+ 14v) V() = Y06 + YD (&), (18b)
2y I3 > 14 From Eq. (10) and using (16), the electric field is expressed
Y2 (¢) = Z (14b)
032"’Vk'1“(k—+—1—v) in the form
]
B = A cos(8)sin(mv/2) V(&) — sin(8)cos(mv/2)V, (§) (19)
cos(8)sin(mv/2)V (&) — sin(S)cos(mv/2) YV, (§)
where
Vi(§) = Y2(6) —EY (), (20a)
V&) = Y6 + Y3 (6). (20b)

The constants  and & can be determined in terms of the boundary values of the electric field EOEE (x =0) and

E, =E(x = L). However, the practical use of Egs. (17) and (20) is difficult because of a wide range in the variation of £.
From the expressions of the functions V, (£) in terms of the Bessel functions (see Appendix A), it is evident that at large
positive values of £ the functions ¥, and ¥ are proportional to exp( — z) and the functions ¥, and ¥, are proportional to exp
(z), where zis given by (13). It is therefore convenient to factor out the corresponding exponents from these functions, which
would allow control of the magnitude of the individual terms in Eqs. (17) and (19). To this effect, let us introduce four new

functions V¥ (£) of the form
V1:(8) =9V 5(8),

’2*4(5) _e~ze(§)V“(§)’

where ©(£) is the step function. [ These functions coincide with ¥, ( £) for negative £.]
Using one of the boundary conditions, E(x=L)=E 1, we can eliminate the integration constant & from Eqs. (17) and
(20) (the other constant ¥ remaining in the definition of £), giving

(21a)
(21b)

U(€) = e~ P (V&) —AVI(E)exp{ —2[2,0(£,) —20(§) ] }); (22)
N - VEE) —AVE —2{z,© — 20
B = _(U)l/g; (&) 4(§)CXP{ [ZL (§1) —2 (5)]}, (23)
VE(E) —AVE(Eexp{ —2[z,0(&, —20(£) ]}
where
V3EL) + VIED[E /(4N)']
A= _ - ; E.=86(x=L); z;=3% . (24)
V:(é_L)+V2*(§L)[EL/(4‘I)l/3] L § L 3§L
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To determine the electric field at the boundaries of the
base layer, we assume that the adjacent doped layers are in a
quasiequilibrium state, i.e., even in the presence of a current
we shall take the hole concentration in those layers in the
Boltzmann form, viz., p =exp[ —&(%)]. The Poisson
equation (2) then gives

EO)=E,= — [2(do + exp( — d,) — ]2, (25a)

E(L)=E, = [2(d, +exp(—d.) — )], (25b)
where ,and ¢, are the potentials at pointsx = Qandx = L,

referred to their values in the bulk of the doped contact lay-
ers, where the electric fields vanish,

E(—w)=E(+ o)=0.

The Boltzmann approximation leading to (25) is equiv-
alent to neglecting the drop of the quasi-Fermi levels within
the doped contact layers. Validity of this approximation is
conditioned on the fact that in these layers both the diffusion
and the drift components of the current are much larger than
the net current itself. This requirement can be expressed by
the inequalities

E(, exp( — $0)>.7, (26a)
E exp(—&,)>7. (26b)

Substituting p (0) and p(L) in Eq. (6) and using (25), we
obtain the expressions

‘2’0 =1-v, (27a)
b, =1—y+JL, (27b)

from which we can express the boundary values of the field
in terms of the constant ¥ and the current:

E(): —_ [Z(CXP('}/"‘ 1) - 7/)]”2’ (283.)
E‘L = {Z[exp(‘y— 1 —jZ) -y +.7z ]}”2~ (28b)

Substitution of Egs. (28) into (23) and (24) at £ = &, (cor-
responding to x = 0) thusleads to a transcendental equation
which determines y. According to Eq. (11), the current-
voltage characteristic is then determined by the equation

V=d,~ b, +2I[UE)/UED ], (29)

which also takes into account variations of the electrostatic
potential in the doped regions.

1. THE LIMIT OF HIGH CURRENTS OR LARGE BASE
THICKNESSES

When the current density is high and/or the base is
thick, the diode I-V characteristic becomes close to that giv-
en by the Mott—Gurney law (MG). In a diode of a given
geometry (fixed L), the characteristic asymptotically ap-
proaches MG with increasing J; at a given low-current point
of the characteristic, the asymptotic approach to MG value
occurs with increasing L. Formal criteria of the applicability
of MG are given by the inequalities

& >0 and z, >1. (30)

When these inequalities are fulfilled, there is a range of z
where z;, — z > 1. In this range we can neglect the terms
proportional to 4 in Eqs. (22) and (23). Physically, this
corresponds to a complete neglect of the influence of the
collector contact on the field and potential distributions in

1184 J. Appl. Phys., Vol. 61, No. 3, 1 February 1987

the base. The function U(&) and the field are then given by
the expressions

Ug) = e POV &), (31a)

E 7173 _V3(8) Ty1/3 l/zKZv(z)

E(§) = — (4N 2122 = (4)) ———, (31b)
¢ Vi) g K, (z)

which, in principle, describe the situation considered by
Shockley and Prim.* The value of ¥ in Ref. 3 was set equal to
0, although in this approximation ¥ should be determined as
the root of the equation

(4N)'3E 2Ky (20) /K (24) ] =V2[exp(y — 1) — 1].
(32)

Figure 2 shows the dependence of the ratio E(£)/
(4J)'", calculated from (31). It is evident from this figure,
that the point where the electric field vanishes (the “virtual
cathode™) corresponds to £ =~ — 1. It, therefore, follows that
the position of the virtual cathode in the high-current limit is
approximately given by

173
imax :-’,"/—_(—%—) ’
J J

where y is also a function of the current density .7, which can
be determined from (32). Plotting log 3 vs log J (Fig. 3,
solid line), we see that in the high-current/thick-base limit
the dependence falls on a straight line, for which a good
approximation is the following formula:

y=~1.587"°, (34)

According to Egs. (33) and (34), the virtual cathode X,,,,
moves toward the junction as the current increases. The ex-
act dependence %, (J) will be discussed in Sec. V.

The MG law follows directly from Eq. (31b). Indeed,
for z; > 1, there is within the base a large region where z» 1.
From the asymptotic expansion of the K, (z) functions we
find

E(£) = (2x)'2 (35)

This solution is well known to correspond to neglecting the
diffusion of injected carriers. Equation (35) implies the MG

(33)

2— , w a—
9
o O -
e
=4
x
=
o
g -2
¥1]
o
]
N
—
<
= -4t
[ I
Q I
2
1
|
|
-6 L . L — J 1
-3 -2 -1 o] [ 2

DIMENSIONLESS PARAMETER &

FIG. 2. Dependence of the electric field normalized to the value of the cur-
rent (in the high-current limit) on the parameter £. Plotted is the dimen-
sionless ratio E /(4J)"'* calculated from Eq. (31). It is evident that position
X,.., Of the virtual cathode corresponds to the value £(x,,,, )=~ — 1.
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F1G. 3. Dependence of the parameter y on the current density. Dashed lines
show the exact solution calculated form Egs. (23), (24), and (28). Solid
line indicates the approximate solution in the high-current limit, calculated
from Eq. (32). Vertical dashes indicate points where the parameter
JL/y=1.

law, which in our units takes the form

J=yV¥L?. (36)

V. LOW-CURRENT LIMIT

In this limit, the nature of the electric field distribution
in the base is substantially different from that corresponding
to the Mott—Gurney law. Accordingly, our analytical de-
scription is also qualitatively different in this range. In the
limit J— O the variable £ tends to — oo, and we can use the
asymptotic expansions of the functions Y,, which follow
from the relation of these functions to the Bessel functions,
given in Appendix A. Using these expansions, the functions
U(&) and E(£), defined by Egs. (17) and (19), respectively,
can be cast in the form

Ug) = — (—£'P[S{V(z%)cos(§) =S P (z4)sin(5) ],
(37)
Ew(é_) - _ (4‘7)1/3( _§)l/2
(1) g%y ol (2) (>
S0 (z*)sin(8) + S5 (2*)cos(£) (38)

S (z*)cos(£) — S P (z*)sin(¢)
where
(=2 — (n/4) +6, z*=y3(—£)*?

and the S functions are given by a series expansion (see Ap-
pendix A).

Since z*— o for J—0, it is convenient to redefine the
constant & in such a way that the phase { would not contain
terms diverging at J—0. For this purpose, let us introduce
the following quantities:

g=V1/2; z,=48/3T. E* =6+ z,— (7/4); (39)
T=2* —zo=2z,{[1 — (27 /2¢*)1>* — 1}. (40)
The phase § is then given by

E=(Z+20) — (7/4) + [6* — 2o+ (7/4)] =Z + 6%,
(41)
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For J—0, one has Z— — gx, and hence the phase remains
finite.

From the definitions of the S functions it is easy to see
that as z*— «, the ratio § /5" vanishes « 1/z*. Re-
stricting ourselves to the first terms in the expansions of the
S (Y functions and to the second terms in the expansions of
the S functions, we obtain the following approximate
equation:

2T\ -1/4 K

Ux) = (l ___xi) (cos(2+5*) + J} sin(Z + 5*)) .
4 96¢"

(42)

When J -0, the following relations hold to within terms of
order w/L (see Appendix B):

1
1+ A

g-go=T 1 .
T L 1+4A°

P , (43
2

where A=2%2L ~'exp(1/2). [In this limit, the physical
meaning of the quantity y,=2g; is that it represents the hole
concentration p(L /2) in the middle of the diode (see Ap-
pendix B).] This implies the following relation:

A Ez—i— = -———-——————-—jz3(1 +4)° .

27 27
The parameter Z can be written in the form
3 (1—-A)2—1

2gx A '
Thus, evaluation of the linear portion of the current-voltage
characteristic reduces to expanding all the parameters in Eq.
(42) to within terms linear in 4. As shown in Appendix C, if
we neglect terms of order (7/L)? compared to unity, then
the equation determining the current-voltage characteristic
is of the form

J= — _:_iﬂﬂ./— . (44)

L*(1+4)°

The current-voltage characteristics J(¥), calculated
from (44) for three different values of L, are shown in Fig. 4
by the dash-dotted lines. We see that for low voltages these
curves practically coincide with the exact solution shown by
the solid lines. Formally, Eq. (44) holds in the range given
by the following inequality:

E:

JL?
14+ A<l
3 (1+A)< (45)
Substituting (44) into (45), we get
V<(1+4)/2 (46)

Equation (46) implies that the linear range of the /- char-
acteristic is limited to voltages V'S kT. However, as seen
from Fig. 4, the linear range in fact extends to much higher
voltages, up to = 10 kT Figure 3 shows by the dashed lines
the dependencies of the parameter y on the current, calculat-
edon the basis of the exact solution for three different values
of L. On each of these lines we have indicated (by a vertical
dash) the point where the parameter JL /y=JL /2g* equals
unity. The corresponding points of the I-V characteristics
are also marked by the vertical dashes in Fig. 4. It is clearly
evident that deviation from the linearity is quite weak in an
extended range beyond these points.
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FIG. 4. Calculated current-voltage characteristics of a p-i-p diode. Solid
lines represent the exact solution obtained from Eqs. (23)-(25) with
boundary conditions (28). Dashed lines correspond to the Mott-Gurney
regime (Sec. 11} and dash-dotted lines describe the low-current limit (Sec.
IV). Vertical dashes indicate points where the parameter JL /¥ =1, as in
Fig. 3.

Equation (44) can be brought into a different form by
expressing 7, in terms of the equilibrium hole concentration
Po(X). As shown in Appendix B, in the middle of the diode
one hasp()(z /2) = 2g%. Equation (44) thus takes the form

Fo 2LV _ L2 Vg
L{1+4) 1+4A L

where g is the low-field mobility.
The barrier in a p-i-p or n-i-n structure forms entirely
due to the mobile carriers injected into the base, and any

5 T —
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-
<
-
z
i
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0oL
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DISTANCE Xx/L

FIG. 5. Exact potential profile in a diode of base width L = 30, calculated
for several values of the current density.
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increase in the bias not only lowers the barrier electrostati-
cally but also moves its position toward the emitter contact.
The fact that the /-V curves show little deviation from a
linear characteristic up to voltages of order 10 47, indicates
that carriers participating in the current do not dissipate any
extra energy due to this barrier. The energy required by a
hole to move over the barrier maximum is in fact supplied
(through electrostatic interaction) by another hole moving
away from the peak. The situation is rather similar to that
corresponding to the drift of injected minority carriers. In-
deed, when a packet of electrons injected in a p-type sample
is drifting in an applied field, the counterflux of holes—neu-
tralizing the electron packet—is not doing work against the
Dember field.

V.GENERAL ANALYSIS OF THE /-V
CHARACTERISTICS

The complete picture of the field distribution and the
I-V characteristics can be obtained from the exact solution,
described by Eqgs. (23)~(25) with the boundary conditions
(28). The current-voltage characteristics calculated from
these equations are shown in Fig. 4 by the solid lines for three
exemplary values of the base width. Figure 4 also shows the
approximate solutions—corresponding to the low and high-
current regimes—discussed in Secs. IIT and IV. As expected,
in the high-current limit the characteristics asymptotically
approach the Mott-Gurney curves. As to the low-current
regime, it is especially noteworthy that the linear approxi-
mation (44) remains accurate in a rather large range—up to
an applied bias of order 10 AT /e. This again supports our
contention that currents over a space-charge barrier cannot
be considered by analogy with the usual treatments of the
charge injection over spatially fixed barriers. It is precisely
due to the displacement of x,,,,, with increasing current that
the linear I-V characteristic persists to considerable biases.
Figure 5 shows the potential profile in a diode of base width
L = 30 for different values of the current. Dependence of the
position x,,,, of the virtual cathode on the current density J
is presented in Fig. 6 for three values of the base width (for
same L as those used in Fig. 4). We see that the virtual

o O o o]
nd ol Ey n
i

ZERO FIELD POSITION Xmax/L

o

o] 1
o8 17

| R L {
108 05 0% 103 02 0! |
DIMENSIONLESS CURRENT DENSITY J

F1G. 6. Dependence of the position x,,,, of the virtual cathode on the cur-

rent density, calculated for different values of the base width.
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FIG. 7. Distribution of the electrostatic potential (solid lines) and of the
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cathode approaches the emitter contact faster as the base
widens.

It is instructive to consider the behavior of the quasi-
Fermi level E, which is defined by the relation

pix)= exp(E',- -
Figure 7 shows the position dependencies of both Epand 7V,
calculated for two different current densities in a p-i-p struc-
ture with L = 30. Of course, the quasi-Fermi level is con-
stant in the doped contacts, which is the basic approximation
of our model. However, we see that it is also relatively flat in
the vicinity of both boundaries in the base. At low currents,
most of the variation in £ is concentrated near the middle of
the base. With an increasing current most of the drop in E. is
shifted toward the collector contact. This is as expected: on
the uphill slope of the space-charge barrier the current is a
difference of two oppositely directed—diffusion and drift—
fluxes. If in some region of the diode these fluxes are large
compared to the net current, then this region is close to equi-
librium and hence the £, is nearly flat. The downhill slope is
always further removed from equilibrium than the uphill
slope and, naturally, most of the drop in the quasi-Fermi
level occurs there.

VI. CAPACITANCE OF THE DIODE

It is instructive to consider the total capacitance
between the emitter and the collector electrodes in our diode.
If the base were heavily doped (so that in its middle one
would have quasineutrality of the total charge), then the
total capacitance would be described by space-charge capa-
citances at the base boundaries, as is the case in a bipolar
junction transistor at low injection levels. These junction ca-
pacitances in our case would be series connected. Another
limiting case corresponds to a complete absence of mobile
charge in the base, which would imply a total capacitance of
order €/4rL. The situation is somewhat more complicated
in the case under consideration since an applied voltage
drops nonuniformly across the base and the total capaci-
tance, which could be considered to be resulting from a se-
ries-connected assembly of differentially thin capacitors, can
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deviate rather far from the intuitive estirnates based on the
geometry.

This capacitance is calculated below in the limit of low
frequencies, which allows us to neglect all relaxation pro-
cesses associated with the carrier diffusion and drift.

Inasmuch as there is a point in the base where the elec-
tric field vanishes, the total capacitor can be regarded as a
series connection of two capacitors separated by the E =0
plane. The total positive charge in these capacitors is given
by Gauss’s law:

0, = — (eEy/47m), Q,=€E, /4. (48)
The differential capacitance of the entire diode equals
c=9Q _ € 9E _ e 9E
av 47 3V 4rL, IV

In the linear range of the I-V characteristic, the above deriv-
ative can be evaluated from Eq. (C6): dE,/3V = dSE,/dV,
where 8E, is defined in Appendix C. Using Egs. (C6) and
(44), we find

c= - W _ € (50)

47L, oJ 3V 4nsL*
where the second identity defines an effective width of the
capacitor’s gap L *, given by
_L*  a+ay
L, 23?7%sinh(1/2)

The effective gap width L * thus differs by a dimensionless
factor from the geometric base width L (for large L one has
L */L~0.07L). However, as will soon become clear, the ra-
tio L */L cannot grow indefinitely with increasing L.

The time constant 7 of capacitive relaxation in the linear
region is, therefore, of the form

*

(s1)

L ap -
reCR,=c¥ _ctodV_ e 9k
aJ o & 4po 8J
=271 sinh(1/2)rg—[;, (52)
LD

where 7, =€/4mo and o=eulN . It should be noted (cf. Ap-
pendix C) that Egs. (50)—(52) are valid provided L> 1 and
their accuracy holds within terms of order 1/L.

In the high-current regime, where the Mott-Gurney
law holds, the diode capacitance will be entirely determined
by the variation of charge O, with an applied voltage ¥, since
the voltage drop ¥, in the “first capacitor” can be expected
to be small compared to V. We can, therefore, assume that
3Q,/3V;=8Q,/IV=3dQ /dV, where Q is the total charge in
the base. Taking £, = (2JL)"/? [cf. Eq. (35)] and using
(36) we obtain

:iaEL _ € BEL _ 3¢ (53
47 3V 4xL, OV  8nL )
and
IE 7 \\”2 172
r:fg~—-L=Ta(£-) =( < )/. (54)
aJ 2 B

Comparing Eqgs. (51) and (53), it is evident that at low
currents, the capacitance decreases proportionally to the in-
verse square of the base width. As the current increases, the
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quadratic dependence on L weakens, and in the range of the
validity of the MG law the dependence becomes inverse-
linear. In that range the effective base width equals
L*=2L/3.

Figure 8§ shows the current dependence of the differen-
tial capacitance (in units of the “‘geometric” capacitance
C,=€/4rL per unit area) calculated from Egs. (50) and
(53), which are valid, respectively, in the low- and high-
current regime. Ranges of the validity of these equations
were determined from Fig. 4. In the intermediate range we
have adopted a simple interpolation, indicated in Fig. 8 by
the dashed lines. A somewhat surprising result, following
from Eq. (50), is that in the linear portion of the I-V charac-
teristics the capacitance decreases quadratically with the
base width L. This behavior is mainly a consequence of the
sharp rise (<L *) of the diode resistance evident from Eq.
(44). It should be noted, however, that by increasing L at a
fixed current density we must necessarily enter the high-
current regime, since the low-current range shrinks as L ~*
[cf. the inequality (45)].

APPENDIX A: Y FUNCTIONS AND BESSEL FUNCTIONS;
ASYMPTOTIC EXPANSIONS

Relation of the functions Y, Y?Y (!’ and Y2
(v=1/3) to the Bessel functions can be established by com-
paring their defining power series. These relations are given
by the following expressions.

For £>0:

For £<0:

Y€)= — (=&, (z%), (A2a)
YOUE) = — Jo (2%, (A2b)
Y = (=), (%), (A2c)
Y€ = — &, (2%), (A2d)

Y€ =6"1,(2), (Ala)
Y6 =16,(2), (Alb)
Y@ =€"1_,(2), (Alc)
YU =ET_,,(2), (Ald)
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where

v=y, z=3£7, and z*=3( - &)Y
Here and below, L, J,.» K, are the Bessel functions (cf. Ref.
9, p. 951) of a real (J) or imaginary (/,K) argument.

The combinations of Y functions introduced in Egs.
(18) and (20) are expressed in terms of the Bessel functions
as follows.

For £>0:
V() = — [2sin(mv)/7]€ 'K, (2), (A3a)
V) =" L) +1 ()], (A3b)
V(&) = [2sin(mv)/m)éK,, (2), (A3c)
V&) =¢[L,(2)+1 (2] . (A3d)
For £<0:
Vi) = — (=" [J, (25 +J_,(z%)], (Ada)
Vi§) = — (= ' [J.(z2*) —J_ . (z%)], (Adb)
Vi(&) =€ [ (2%) =T, (29 ], (Adc)
Vi) = — €I (2*) +J 1, (2M)] . (Add)

For our purposes, it is convenient to use the following
asymptotic representation of the Bessel functionJ,, (z*) (ar-
bitrary i) in the limit of large z* (cf. Ref. 9, p. 961):

4

-5 sin(z*—ﬂ——v—),
4 4

J (z*)=SS" cos(z* —%‘——i)

(AS5)
where

172w
sr@=(2)" 3 (e,

172 o«
s@©=(=25)" $ (=)fEmak D, (A

k=0
and the functions f(z*,k) are defined by the recurrence rela-
tions

f2*0) =1; flz* k) =fizth — 1) B

APPENDIX B: EQUILIBRIUM PROPERTIES OF A
DOUBLE-JUNCTION STRUCTURE

For J =0, Eq. (5) can be integrated, giving
E = —2g,tan(8, — g,%), (B1)

where g, =vy,/2 and the subscript 0" designates quantities
corresponding to the equilibrium situation. Since, for a sym-
metric diode, the field must vanish exactly in the middle, one
has 8, = g,L /2, whence'®

E= —2g,tan{g,(L /2 —%)]. (B2)

A.A. Grinberg and S. Luryi 1188
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Differentiating (B2), one finds the hole concentration,
which in the middle of the diode is given by

L (L ) ( dE‘)
Po( 5 g 2 =Vo
Parameter g, is determined from the boundary condition
(28),

—{2[exp(yo— 1) — %5112 = — 2g, tan(goL /2),
(B4)

(B3)

which can be rewritten in the form

cos(goL /2) = 28, exp(4 — 82)- (BS)
The dependence of the equilibrium midbase hole concentra-
tion po(L /2) = 2g5 on the base - width L calculated from Eq.
(B5) is shown in Fig. 9. For L> 1, one has g, <1 and to
within terms linear in g, one has

goL /2—m/2 — Vg, exp(1/2),

whence we obtain Eq. (43). Note that in this limit the mid-
base hole concentration is independent of N, :

p(L /2) =27%€kT /e*L 2. (B6)

Of course, this solution is valid only provided p3 p,, where p;
is the intrinsic (thermal) hole concentration in the semicon-
ductor under consideration.

APPENDIX C: DERIVATION OF EQ. (44)

To within terms linear in the parameter

A=J%/2g%,
the function U(X) can be written in the form

U(x) = [1+ (J/8g3) ] cos(Z + 6*), (Cl)
where 5* has been redefined (6* —8* — 57 /?6g3 ). To with-
in the same accuracy, one has 2 = — g% + JxX*/8g,. Setting
5* =6% + 5,and g = g, + g,, where g, and 8, are the varia-
tions linear in current of the respective quantities, we find
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that the variation of the function U(X) is given by

. _ [ Jx . Ji?
SU(x) = Uy( =--—+( ) ———)
*) ° x)[ 83 Bx o 880

X tan[go(L /2 mi)]] . (C2)

According to definition (7), the corresponding variation in
the electric field equals

5E = —2—01( oUx) )
Uo(x)

ax
Equating the variations of the field at the points x = 0 and
x = L to the corresponding variations in E, and E, , which,
according to Egs. (28) and (B2), are given by

5E(0) = 6F, = 21 =28
tan (goL /2)
= = 2(1 —a) JL
SE(L) =8E, = — =L =) _ ( __.*),
¢ E tan (g,L /2) ' 4g, (€3)

respectively, we obtain a system of two equations which de-
termine g, and 8. In Egs. (C3) and below a denotes exp
(285 — 1). If we neglect terms of order g7 compared to
unity, and take into account the identity tan?(g,L /2)
= (a/2g%) — 1, then system (C3) yields

g =JL /8, (C4)
J aL
5= —— |14 : Cs
’ dg,a ( 2go[ (a/2g3) — 1]'7? ) ()
Substituting (C4) into (C3), we obtain
8E,=2""%sinh(1/2)JL; 6E, = SE,. (C6)

According to Egs. (29) and (27), the applied potential dif-
ference is given by

SU(L) — 6U(0)

V= —JL +2 (C7)
0
Using Egs. (C2), (C4), and (CS5), we thus obtain
V= —JL{1+[(1+4)/48]}, (C8)

which leads to Eq. (44) if one neglects the potential drop
(JL) in p-doped layers—which is small compared to the
dropin the base by a factor 4g5. All equations in Appendix C
are valid to within terms linear in the current density J, and
Eqs. (C4)-(C8), moreover, to within terms linear in 1/L.
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