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The theory of the crystal-field splitting, V,, of the J = I level of an ortho impurity in a 
parahydl-ogen matrix, due to the coupling of the rotational motion of the ortho molecule to the 
lattice vibrations, is developed taking due account of the quantum-crystal nature of the solid. Two 
contl-ibutions to V, are identified, both arising from the anisotropy in the lattice vibrations. One 
contribution is due to the difference in the relative zero-point motion of the molecules in in-plane 
end out-of-plane pairs in the hcp lattice, and is parametrized in terms of the second moments of 
the pair distribution function. The other contribution is due to the local, quasi-state distortion of 
the lattice around the impurity induced by the terms in the coupling linear in the phonon variables. 
This self-energy effect is calculated using a generalized Debye model for the self-consistent 
harmonic phonons, in which the anisotropy of the velocity and of the polarization of the sound 
waves is parametrized in termsof theelastic constants of the crystal. The theory is compared with 
that of Raich and Kanney, which is shown to be based on unrealis'iicassumptions. The I-emaining 
uncertainties in the anisotropic pair potential and the phonon renormalization factors are dis- 
cussed in connection with the available experimental data. 

La theorie d e  la separation V,, par le champ cristallin, du niveau J = I d'une impurete ortho 
dans une rnatrice de pzu-ahydrogtne, sous I'effet du couplage du mouvement d e  rotation d e  la 
mollcule ortho avec les vibrations du rkseau. est developpee en tenant compte du h i t  que le 
solide est un cristal quantique. On identifie deux contributions i~ V,, provenant toute les deux d e  
I'anisotropie des vibrations du reseau. L'une de ces contributions est due i la difference dans le 
mouvement relatif du point zerodes paires de molecules dsns le plan et hors du plan dans le reseau 
hc; elle est parametrisee en termes des seconds momentsde la fonction de distribution des paires. 
L'autre contribution est due h la distorsion quasi-statique locale du reseau autour de I'impurete, 
distorsion qui est induite par les termes de couplage lineaires par rapport aux variables de 
phonons. Cet effet de self-energie est c;llcule en utilisant un modkle de Debye genel-alise pour les 
phonons harmoniques self-consistants, dans lequel I'anisotropie d e  121 vitesse et de la polarisation 
des ondes acoustiques est parametrisee en termes des constantes elastiques du cristal. On 
compare la theorie avec celle d e  Raich et Kanney. et on montre que cette dernikre s'appuie sur 
des hypothtses non realistes. Les incertitudes qui subsistent dans le potentiel anisotropique d e  
paires et les facteurs de renormalisation des phonons sont discutees en selation avec les donnees 
experimentales disponibles. 

Can. J .  Phys.. 57.933 (1979) [Trnduit par le journal] 

1. Introduction states of the system are obtained in terms of the 
~h~ part of interaction energy between the anisotropic intermolecular potential. A similar 

molecules in a crystal described by terms depending treatment for pairs of ortho impurities will be 
on the orientation of only a single inolecule is usually presented in a Paper. 

called the crystal-field interaction, cf. ref. 1, eq. [25]. For a single substitutional ortho i l n ~ u r i t ~  in  the 

rn solid hydrogen this interaction is of particular J = 1 rotational state in a rigid, undistorted, 
importance for single ortho impurities in pure para- hexagonal close-packed (hcp) lattice, no appreciable 
hydrogen, in connection with the nmr (2-6) and crystal-field interaction exists (8) resulting in an 
caloric properties of the solid at very low ortho accidental degelleracy of the J = 1 level. This 
concentrations, and for pairs of neighbouring ortho property is a number 

impurities in connection with the infrared and properties described by second-rank tensors in an 

Raman spectra, cf. ref. 1, and the high-resolution ~ C P  lattice (919 when the c/a ratio has the value 
microwave spectra observed by Hardy et al. (7). In (8/3)'12 charaste&jc of close packing. As pointed 
the present paper the theory of the crystal-field inter- in ref. 9, this property also explains the isotropy 
action for single ortho impurities is developed, and of the compressibility of hcp solid hydrogen, as well 
expressions for the energy eigenvalues and eigen- as the hcp structure of the solid which is blown up 

considerably by the zero-point lattice vibrations. A 
'This work was supported by a grant from the National finite crystal-field interaction can arise only (10) 

Research Council of Canada. because of an overall deviation, Ac, of the c/a ratio 
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of the crystal from the value (8/3)'12, and as a result 
of the coupling between the rotational motion of the 
ortho molecule and the lattice vibrations arising from 
the anisotropic intermolecular interactions. In this 
paper we assume that Ac = 0, and we consider only 
the effect of the 'spin-lattice' coupling, where spin 
refers to the rotational angular momentum, J ,  of 
constant magnitude, J2 = J ( J  + 1). 

The main effect of the spin-lattice coupling is a 
lowering of the rotational energy level J with un- 
perturbed energy 

without a removal of the (2J + 1)-fold degeneracy, 
by an amount which, according to second-order 
perturbation theory (lo), is given by 

where A is a constant depending on the properties 
of the spin-lattice coupling and the phonon field, 
cf. ref. 10, where A is devoted by E",. The energy [2] 
can be regarded as the self-energy of the spin in the 
phonon field. Its value is insensitive to the anlsotropy 
of the spin-lattice coupling and of the phonon field, 
and in first approximation may be evaluated by 
neglecting both of these anisotropies. In a classical 
picture (lo), the frequency of the rotating ortho 
molecule is large compared with the Debye frequency 
for all J 2 1. The rotating ortho molecule therefore 
drives the lattice oscillators above their resonance 
frequencies and produces a local, non-propagating 
distortion of the lattice in which the molecules 
vibrate around distorted equilibrium positions. Two 
aspects of this self-energy effect are worth pointing 
out since they are liable to cause confusion. The first 
one is that in the presence of the spin-lattice coupling 
the energy levels are no longer properties of the ortho 
molecule alone but of the crystal as a whole. The 
energy shifts [2] are in fact equal to the sum of the 
anisotropic interaction energy of the ortho molecule 
with the neighbouring molecules, which can be inter- 
preted as the energy of the ortho molecule in the 
'crystal field,' and the elastic deformation energy of 
the lattice. These two contributions are of the same 
order of magnitude, but opposite sign, and both 
must always be taken into account. The second point 
is that even in a completely isotropic model in which 
the anisotropies of the coupling and of the field are 
neglected, the components of J are not constants of 
the motion and m, is in general not a good quantum 
number. Nonetheless, the resulting levels of the 
system in the isotropic model have the same de- 
generacy as the unperturbed levels, but the new 
stationary states are linear combinations of products 
of rotational and phonon states, cf. Sect. 4. This 

argument is familiar from the discussion of the 
dynamic Jahn-Teller effect in ref. 11, where the 
electronic coordinates play the role analogous to the 
spin in the present case. 

The secondary effect of the spin-lattice coupling 
is to partially lift the (2J + 1)-fold degeneracy of the 
levels because of the anisotropy in the coupling and 
in the field. This splitting is usually called the 
crystal-field splitting, and although the energy 
involved in the splitting is of the same nature as the 
lowering [2] of the centre-of-gravity of the levels, 
we will follow this nomenclature, keeping in mind 
that the splitting is also made up of anisotropic 
interaction energy and elastic deformation energy of 
the lattice. The fact that the (2J + 1)-fold degeneracy 
can be lifted by the spin-lattice coupling is not in 
contradiction with the statement (11) that in the 
dynamic Jahn-Teller effect the electron-phonon 
coupling cannot remove the degeneracy of a vibronic 
state. The latter property follows because the 
degeneracy and the coupling have the same sym- 

- - 

metry, viz., the point symmetry of the lattice site, 
whereas the degeneracy of the ortho states is an 
accidental degeneracy not due to the symmetry. 

It turns out (10) that the anisotropy of the spin- 
lattice coupling itself gives only a small contribution 
to the crystal-field splitting which is therefore mainly 
due to the anisotropy of the phonon field. In the 
previous paper (10) this anisotropy was taken into 
account only in a crude way, and the main purpose 
of the present paper is to give a more realistic treat- 
ment of the phonon anisotropy as well as using a 
more realistic anisotropic potential. Our treatment is 
based on the generalized Debye model introduced 
recently in connection with the elastic properties of 
the solid (9). In this model, the dependence of the 
frequencies and polarization vectors of the phonon 
modes on the direction of propagation relative to the 
crystal axes is parametrized in terms of the elastic 
constants of the solid, and this dependence is taken 
into account exactly in our calculations. 

An attempt to calculate the crystal-field splitting 
for single ortho impurities was recently made by 
Raich and Kanney (12). Unfortunately this work is 
based on unrealistic assumptions which deprive their 
results of any definite significance, as will be dis- 
cussed more fully in Sect. 4. Our main criticism is 
that in ref. L2SSily the coupling of the spin to the 
phonon modes belonging to the symmetric repre- 
sentation of the group of rotations around the c axis 
is taken into account, viz., the term u, in [53] in 
Sect. 4. This coupling leads to a lowering of the 
m = 0 level by an amount which is always four times 
larger than the lowering of the m = +_ 1 level, thus 
predicting a positive definite value of the splitting 
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Vc = E(+  1) - E(O), quite irrespective of the phonon 
anisotropy. We remark incidentally that the elastic 
deformation energy mentioned earlier is not taken 
into account in ref. 12 and the energy shifts given in 
ref. 12 are therefore a factor of two too large. 
Applyiilg the approach of ref. 12 to the completely 
isotropic model, one obtains a splitting of the same 
order of magnitude, although the symmetry, of 
course, forbids any splitting in this case. As will be 
shown in Sect. 4, the various phonon modes compete 
in determining the sign of Vc, and in an isotropic 
model their contributions cancel exactly. The 
quantity V, calculated in ref. 12 therefore bears no 
relation to the actual crystal-field splitting, but is a 
quantity proportional to the overall lowering [2] of 

a the J = 1 level. 
Another point of our disagreement with ref. 12 

concerns the use of the unrenormalized anisotropic 
interaction in conjunction with an effective harmonic 
Hamiltonian for the lattice dynamics. Solid hydrogen 
is a true quantum crystal, and although its phonon 
dispersion curves as observed by inelastic neutron 
scattering experiments (13) can be fitted quite well 
by the Born -von Karman dispersion curves 
calculated on the basis of a model harmonic Hamil- 
tonian, this Hamiltonian cannot be regarded as 
governing the actual molecular motions in the solid. 
If this Hamiltonian is nonetheless used for the 
lattice dynamics, then consistency requires that the 
anisotropic interaction be averaged over the actual 
zero-point motion in the crystal. This has been the 
usual approach for a long time (14, 15), and this 
"phonon-renormalization" procedure in its finer 
details (16, 17) leads to results which are in good 
agreement with the high-resolution microwave data 
(7). In ref. 12 this renormalization, which leads to 
changes of up to 75% in the spin-lattice coupling 
constants and an order of magnitude in the splitting, 
is not performed and representative values of the 
unrenormalized potential and its derivatives are 
used. This approach may find a justification in our 
poor knowledge of the anisotropic potential function, 
but it hardlv allows one to comDare the merits of 
different po;entials, as is done in ief. 12. 

A rigorous derivation of the Hamiltonian for the 
spin-lattice coupling resulting from a given aniso- 
tropic intermolecular potential in a quantum crystal 
represents an interesting and not yet completely 
solved problem. In Sect. 2 we derive the form of this 
coupling on the basis of the coherent-state inter- 
pretation of the phonons in a quantum crystal 
proposed in a previous paper (18). Two different 
contributions to the crystal-field splitting arising from 
the spin-lattice coupling can be distinguished. One 
contribution, discussed in Sect. 3, is due to the 

difference in the relative zero-point motion of the 
molecules in in-plane (ip) and out-of-plane (op) 
nearest ileighbouring pairs in the hcp lattice, which 
spoils the accideiltal vanishing of the crystal field in a 
rigid hcp lattice. The other contribution arises from 
the self-energy effects due to the terms in the spin- 
lattice coupling linear in the phonon variables, and 
is discussed in Sect. 4. Finally, in Sect. 5 we calculate 
the resulting crystal-field splitting in terms of the 
available anisotropic intermolecular potential, and 
we compare our results with the existing experi- 
mental data. 

2. Spin-Lattice Interaction in a Quantum Crystal 
Solid hydrogen belongs to the class of quantum 

crystals for which the standard harmonic approx- 
imation for the lattice dynamics breaks down. The 
crystal is blown up by the zero-point motion to the 
extent that the equilibrium separation between the 
molecules is close to or beyond the inflexion point in 
the isotropic intermolecular pair potential. Expand- 
ing this potential in powers of the displacements, rr i ,  

of the molecules from the lattice sites, R?, 

~ 3 1  V =  v0 + + C C D ~ ; : U ~ U ~  + ... 
l j  

and constructing the harmonic Hamiltonian 

one finds, upon transforming to the normal co- 
ordinates, that the normal mode frequencies are 
imaginary in at least part of the Brillouin zone (19). 
The standard harmonic Hamiltonian, HhO, therefore 
does not provide a meaningful starting point for the 
lattice dynamics. Nevertheless, inelastic neutron 
scattering experiments (13) show that phonon-like 
excitations exist in quantum crystals and that the 
interaction between these phonons (anharmonic 
effects) is not more important than in ordinary 
crystals, except perhaps in solid helium. One is then 
naturally led to the idea of modeling these excitations 
by a harmonic Hamiltonian of the form [4], 

where the force constants C D i j  are treated as varia- 
tional parameters, and the zero-point energy, 

1.--- 

[61 Eo = C +ha, 
1 

has been subtracted corresponding to the fact that 
the Hamiltonian [5] describes the excitations and 
not the ground state of the quantum crystal. Various 
developments along these lines have been reviewed 
by Koehler (20). Our derivation of the model spin- 
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lattice Halniltonian is based on the coherent-state 
interpretation of the harmonic Hamiltonian [5]. 

As shown in ref. 18, the Hamiltonian [5] can be 
interpreted as the classical Hamiltonian governing 
the motion of the centres of the single-particle prob- 
ability distributions in the coherent states of the 
phonon field. Briefly, this interpretation can be 
obtained as follows. In the self-consistent phonon 
theory, cf. ref. 20, the ground state, I+,), of the 
actual lattice Hamiltonian, 

[71 H ,  = z pi2/2nz + 9 z vij(Rij) 
i i j  

is assumed to  be a product of a correlated Gaussian 
and a Jastrow factor, 

[8 I ( i ~ ~ l + ~ )  = (ZPICG) F ( R ~ )  

where RN = (R,, ..., RN) and uN = (N,, ..., N ~ ) .  
The function F describes the short-range correlations 
a t  distances corresponding to the hard-core region 
of the intern~olecular potential, and ICG) defines the 
phonon modes. The posing of a particular (CG) is 
equivalent to assuming a set of frequencies, u p ,  and 
polarization vectors, e:, for all the phonon modes h, 
or to stipulating a model Hamiltonian [5] of which 
ICG) is the ground state. As pointed out by Horner 
(21), the internal consistency of the product assump- 
tion [8] requires that the Jastrow factor should affect 
explicitly only the higher than second moments of 
the multidimensional distribution function for the 
molecular displacements in the ground state, i.e., 

where H, is given by [7], leads to equations of motion 
for the variables s, from which the parameters o, 
and e, appearing in [l 1 ] can be determined. Further- 
more, if Horner's conditions [9] constraining the 
form of F a r e  assumed from the outset, which was 
not done in ref. 18 but which simplifies the analysis 
considerably, then the equations satisfied by the 
functions [l  1 ] correspond to the classical Hamil- 
tonian 

(+oI~li.jI+o) = (CGI IlilljICG) 
~ 1 7 1  

Moreover, as shown by Werthamer (22), Horner's 

where the Qij, are identical to those appearing in [5] 
for the optim~zed (CG), i.e., a, = off and e, = ep.  

In the present context it is important to note that 
the Hamiltonian [14] describes the low-lying 
coherent excitations of the crystal above the ground 
state but not the ground state itself. If [14] is 
quantized, the resultant zero-point energy which is 
equal to  [6], 

is not to  be added to the ground state energy of the 
crystal, which is given by 

where H,  contains the full intermolecular potential, 
cf. [7]. 

We now consider a single ortho impurity a t  the 
lattice site R: in a pure parahydrogen host crystal. 
The spin-lattice coupling arises from the anisotropic 
interaction between the ortho and the neighbouring 
para molecules, 

conditions [9] are automatically satisfied if [8] is 
optimized variationally. 

Following ref. 18, we define a time-dependent state, 
J+(t)), by acting with the Glauber displacement 
operator 

N 

[lo] D,(t) = n exp [-(i/h)(sia .p i  - 7ci, .ui)] 
i= 1 

where 

[ I  I ]  si, = 4e, cos ( q . ~ f  - o,t), 7cih = mi ,  

on the phonon part of [8], 

The requirement that the state [12] satisfies, to second 
order in the amplitudes s,, the 'average' Schrijdinger 
equation 

where o, specifies the orientation of molecule 1, and 
R I P  = R, - R, is the instantaneous separation of 
molecules 1 and p. For the J = 1 state, to which we 
restrict ourselves, one can write 

where R ? ~  = Rlp/Rlp and C,,, = (4x121 + l) l iz Y,,,. 
Generalizing the analysis of ref. 18 to the present 
case, we find that the motion of the centres, si, of the 
~in~le-~artic!<-+!%iributions is now governed by the 
modified Hamiltonian 

[191 B = A , +  P 
where the effective spin-lattice coupling P i s  equal 
to the expectation value of [17] over the coherent 
state [12]. Introducing the notation 
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where Riy = Rf - Ry is the rigid-lattice separation compared to the single-phonon processes induced 
between i and j, so that by v(" and may be neglected. 

[21 1 R . .  11 = R.?  $1 + ui - u .  3. Static Renormalization of the Crystal-field 
we can write Interaction 

We now consider the term [25] in more detail. 
C221 V(o1, sN) = 2 C ~ ? l , ( S l , ) * ~ 2 m ( ~ l )  

pm 
Expanding the function Vl,(ol, R,,," + u) in powers 
of the displacement 11 = ul, and retaining terms up 

where sN = (sl, ..., sN) and to second order, we obtain, using [18], 

the subscripted brackets denoting an average over 
the distribution in RIP  for the given relative separa- 
tions SIP.  Expanding [22] in powers of the relative 

: displacement slp defined in [20], we get 

[24 I v = V ' O '  + V'" + V'2'  + .. 
where 

and v(" = O(s2) need not be written down explicitly. 
The quantity 1251 represents the change in the 

ground state energy of the crystal due to the spin- 
lattice coupling as a function of the orientation of 
the ortho molecule. Alternatively, one can say that 
V " ( O )  represents the static renormalization of the 

crystal-field interaction [17] as a result of the zero- 
point motion, where 'static' refers to the averaging 
in [25] being performed at constant a , .  The 
evaluation of [25] is discussed in Sect. 3, where it is 
shown that a nonvanishing value of [25] results from 
a small difference in the relative zero-point motion 
in ip and op pairs in an hcp lattice. The terms p('), 
V"), ... describe the linear, quadratic and higher- 
order couplings, between the spin and the quantum- 
crystal phonons. The main point to note is that to 
second order in the displacements we need consider 
only the term v(", in spite of the fact that the 
expectation value of v(') over the ground state of 
the quantized version of the Hamiltonian [14] does 
not vanish. However, this contribution to the spin- 
lattice coupling would arise from the zero-point 
motion of the si, which should not be included in 
addition to the renormalization already contained in 
[26], as explained below [14] in connection with the 
zero-point energy of the host crystal. On the other 
hand, v(') and the higher-order terms do give rise 
to localized impurity modes in a similar way as the 
linear term v(') as discussed in Sect. 4. However, the 
distortion arising from v(') would in lowest order 
correspond to the emission and re-absorption of 
pairs of virtual phonons and their effect is small 

where +, is left understood in the right-hand side. 
Equation 28 is valid in any frame of reference, but 
we choose the z axis along R,:. Confining our 
attention to nearest neighbouring pairs, we introduce 
the so-called pair frames (9, 14) for ip and op pairs. 
We assume that the matrices (u,u,,) are diagonal in 
the pair frames, which follows from symmetry for 
ip pairs but is only approximately, but very nearly, 
correct for op pairs. Furthermore, we neglect the 
small nonaxiality of the pair distribution function 
(9, 16, 17), so that 

where p and v refer to spherical components of u, 
p = ip or p = op depending on the type of the 
lp-pair, and 

The relevant components of the gradients in [27], 
relative to the pair frames, are given by 

where 

1311 Go(R) = B", Gk1(R) = - B'IR + 3B/R2 

Substituting [28] and [30] into [27], we get 

where 

P 
:"S 

In order to sum [32] over the 12 neighbours, we 
transform to the crystal frame, 

where Q denotes the orientation of molecule 1, and 
Q,, +, of the vector RIP0 with respect to the crystal 
frame. Using [32] and 1341 in [25], we obtain 
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pair correlation matrix in solid hydrogen becomes 
available, the contribution [36] which gives a 
crystal-field splitting v,(') = - (3/5)&,,, therefore 
remains uncertain, though its value is most likely 
small. 

By symmetry, only the 117 = 0 term survives, whence 

with 4. The Linear Spin-Phonon Coupling 
On the basis of the discussion in Sect. 2, we assume 

that the effects of the linear spin-phonon coupling 
are described by a Hamiltonian of the form 

where Ro is the nearest-neighbour equilibrium 
separation. The result, [36] and [37], is the general 
result for the static renormalization of the crystal- 
field interaction. 

If the displacement correlation function were the 
same for ip and op pairs, (R) = h(R), [37] would 
imply E,, = 0. Therefore we can write [37] in the 
form 

which we now regard as a quantum-mechanical 
operator, assuming the standard commutation 
relations between si and xi. The operator v(') is 
given by [26] and R,  by [14] minus the zero-point 
energy [15], i.e., 

where the 6, are the usual amplitude operators. The 
frequencies w, are assumed to coincide with those 
observed in the neutron scattering experiments (13). 

Expressing p') in terms of the normal mode 
variables, we obtain, cf. ref. 10, 

where A[Q] denotes the difference in any pair 
quantity Q(p) between ip and op pairs, 

Using [33], [38] and the relations 

where c, = b, + b-:,and 
we obtain 

where 

The coefficients f"; are given by 

The result [41] shows that a nonvanishing contribu- 
tion to the crystal field is produced by a possible 
difference in the relative zero-point motion of the 
molecules in ip and op pairs. Unfortunately, the 
lattice dynamical parameters entering [41] are quite 
uncertain at  present. Our calculations (9) based on 
the anisotropic Debye model give 

and the functions 

On the other hand, from our analysis (17) of the 
microwave spectrum of ortho pairs (7) it was inferred 
that lA[<]l,< This discrepancy is not surprising, 
since an important contribution to the oblateness 
parameter < comes from the short wavelength modes 
for which the Debye model cannot be expected to be 
accurate. From a numerical integration using a self- 
consistent ground-state wave function, the authors 
of ref. 16 also inferred that A[L]-0 to about 1 part 
in lo4. Until a more accurate determination of the 

are the so-called bipolar harmonics (23). We note 
that the funCtS5 B(R) used here is related to the 
function g(R) of ref. 10 by B(R) = (5/16n)'I2g(~). 

As discussed in Sect. 1, the coupling [46] gives 
rise to self-energy effects which result in a lowering 
[2] of the centre-of-gravity of the J = 1 level and in 
a splitting of the level due to the anisotropy of the 
coupling and of the phonon field. As shown in ref. 
10, both of these effects are adequately described, 
because of the weakness of the spin-phonon 
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coupling, by second-order perturbation theory in 
which the self-energy effect is described in terms of 
virtual phonon emission and re-absorption processes. 
However, it is useful for gaining more insight into 
the dynamics of the coupled system to proceed 
somewhat differently and to diagonalize part of the 
spin-lattice Hamiltonian exactly by using the point 
symmetry of the lattice, which is D,,. Since the 
Hamiltonian A ,  [45], is invariant under the opera- 
tions of D,,,, it is possible to express i? as a sum of 
products of linear combinations of the spherical 
harmonics on the one hand and of the Bloch phonon 
modes (definite q)  on the other, which both trans- 
form according to irreducible representations of 
D,,. We will not carry out this transformation 

"explicitly but consider only the behaviour under the 
Abelian subgroup, G, of D,,, consisting of the identity 
and the reflections o ,  and o, in the horizontal 
symmetry plane (the x.v plane) and one of the three 
vertical symmetry planes (the xz plane), respectively. 
We separate V(')  into a part, FS('), containing the 
functions belonging to the completely symmetric rep- 
resentation (+ +) of G, and a remaining part, 
F?('), containing the functions belonging to the 
other representations, + -, - +, and - - 

where 

can be diagonalized exactly as follows. We first 
remark that the eigenstates, I$) ,  of A, can be 
chosen to be products of spin (i.e., rotational) and 
phonon states, 

[561 I $ )  = Ispin) lphonon) 

This can be seen as follows. The spin-dependent 
factors, C,, and C,,', in H,  are invariant under the 
operations of G. Let G' be the group of operators in 
Hilbert space corresponding to the symmetry opera- 
tions of G, but acting only on the spin and not on 
the phoilon variables. Then A, commutes with the 
operators of G'. Note that this is not true of qI(" 
nor of A ,  although these operators are, of course, 
invariant under the symmetry operations of G. The 
eigenstates of A, can hence be chosen to be simul- 
taneous eigenstates of the operators of G'. Further- 
more, the linear combinations of the rotational 
states, IJI~), for J = 1, where n? refers to the crystal 
frame, transforming irreducibly under G', to be 
denoted by lo), o = 0, 1, - 1, are given by 

and belong to the - +, + -, and + + representa- 
tions of G', or G. The key point is that no representa- 
tion occurs more than once here, and from this it 
follows that the eigenstates of A, can indeed be 
chosen to be of the form [56], viz., 

By symmetry the two states I$, ,) of lowest energy 
(there is a continuum of excited states of the form 

[531 [58] corresponding to  the presence of one or more 
+ C - Ai(h)l*Czl-(fi)ch real phonons) have the same energy, and since the 

A 
phonon parts of [58] are different for o = 1, one 

= vl+  + v, 
- 

cannot say that the lowest eigenstates of A, are all 
of the form [56]. 

v.2' = C k A~(h)l*C22k(fi)~A 
A For each of the spin states lo), the remaining 

phonon part off?,, (olR,lo), can be diagonalized 
and by means of the transformation 
[541 , = C C ) ,  (nz = I ,  2) [591 bh = CIA, + PA(o) 

If the Bloch modes h in the term v, are expressed in 
terms of the linear combinations transforming 
irreducibly under G, it is clear that only the terms 
corresponding to the + + modes survive, and the 
same is true of the term v,'. Hence the terms v, and 
v,' describe the coupling of the spin to the + + 
modes and the remaining terms v, and v,- the 
coupling to all the other modes. 

The part of the Hamiltonian [44] containing the 
coupling to the + + modes, 

to new phonon operators a,,, where the c-number 
parameters P A ( a ) ~  given by 

[60] 5hwhPA(o) = (3 (01 - 2) A,@) * 
+ (3/2) ' / 'o[~~(h)  + Af (A)]+ 

For  each value of o ,  the lowest eigenstate of [55], 
I$,), satisfies the equations 

[61 I a,.,lQ,> = 0 (all 

and the excited states are obtained by acting on 
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I$o> with products of a,,+ operators. From [59] and 
[61] we see that the three eigenstates of A, con- 
taining no real phonons are given by 

C621 I$,> = lo> I1 IPr(o)>, , 
where IP,(o)), is a coherent state of mode h with 
amplitude P,(o), 

[63 I b, l P,(o)), = Pdo) l P,(o>>, 

The phonon part of [62] describes the local distor- 
tion of the lattice induced by the impurity in the 
state o, assuming v,(') = 0. The energy shifts of the 
states [62] are easily found to be given by 

8 ES(O) = -4~" '  
[64 I 

E,(+ 1) = -&''I - 3 ~ ' ~ )  

where 

The same energy shifts [64] are obtained when ps(') 
is treated in second-order perturbation theory. 

We now add to [64] the second-order energy shifts 
due to the term v,"' in [50], which are given by 

so that the total energy shifts due to the linear spin- 
lattice coupling are given by 

In the presence of the term v,(') the eigenstates are, 
of course, no longer of the form [58] but are linear 
combinations of such states. In first order in the 
wave functions, these linear combinations may be 
written in terms of the states [58] or in terms of the 
states of the uncoupled system. The main point to 
remember is that the labels 0, f 1 in [66] and [67] 
refer to the unperturbed states and do not imply 
that the corresponding states are of the product form 
[58]. The remaining two-fold degeneracy, E(l) = 
E(- 1), is due to the D,,, symmetry and remains 
valid to all orders. 

In an isotropic model in which the environment 
of the impurity and the phonon dispersion relations 
are assumed to be rotationally invariant, the 
quantities [65] are all equal, E ( ~ )  = E, as can easily 
be shown from [47]. From [67] we then see that 
E(0) = E(+ l), so that no crystal-field splitting 
results in this case, as expected. We remark that in 
ref. 12 only the term v, in [53] was taken into 
account giving E ( ' )  = E ( ~ )  = 0 and hence 

which leads to the erroneous prediction of a positive 
definite splitting. As remarked in Sect. 1, the energies 
quoted in ref. 12 correspond to V, = GE(') rather 
than [68], because the elastic deformation energy 
was not taken into account in ref. 12, which in this 
case is equal to minus one half times the anisotropic 
interaction energy. In reality, the crystal-field 
splitting due to the linear spin-lattice coupling is 
given by 

[69 I Vcc') = E(f 1) - E(0) 
- - 3[&'O' + & ( I )  - 2&(2)] 

and the sign of V,") hence clearly depends on the 
relative magnitudes of the quantities [65]. The 
evaluation 'of these quantities is discussed in the 
next section. 

5. Calculation of the Crystal-field Splitting Due 
to the Phonon Anisotropy 

As shown previously (lo), the contribution of the 
anisotropy of the spin-lattice coupling to the splitting 
[69] is small and we may therefore replace the 
coupling [46] by the isotropic coupling obtained by 
averaging the coefficients [47] over the directions of 
the vectors R,,, giving 

x ~,,(")(ij, e 3  

Substituting this expression into 1651, we evaluate 
the resulting sums over the phonon modes by using 
the anisotropic Debye model introduced previously 
(9), which is characterized by the dispersion relations 

where vj(Q) is the velocity of sound of polarization j 
and propagation direction ij. The directional depen- 
dence of vj(ij) and of the polarization vectors 
e, = ej(q) are parameterized in terms of the elastic 
constants of the solid for which we take the values 
determined by neutron scattering (13). Replacing the 
summation over the Brillouin zone by an integral 
over the Debye sphere, we obtain 

~ 7 2 1  E ( ~ )  = K C $l$l'~v(ll ')kll '  
L:s 11' 

where 

are dimensionless, renormalized interaction con- 
stants, and 
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In a close-packed lattice we have qDRo = (67c2 J2)'I3, giving 

The coefficient K in [72] is equal to 

and 

where 6 is the average sound velocity defined by 

using the values of the density and of the elastic 
constants given in ref. 13 is fi = 1348.3 m/s, corre- 
sponding to a Debye temperature 

The values of the coefficients [77] obtained in our 
model are given in Table 1. We note that for iso- 
tropic dispersion relations, i.e., assuming the fre- 
quencies [71] to be independent of 4, we have 

The splitting [69] then vanishes, and the energy 
shifts [67] are all equal to the self-energy shift of the 
J = 1 level, 

which agrees with eq. [97] of ref. 10. 
With the help of [72]-[77] and Table 1, one can 

calculate the crystal-field splitting [69] once the 
interaction parameters [48] are known. Unfortun- 
ately there is still considerable uncertainty in the 
values of these parameters because of our poor 
knowledge of the anisotropic intermolecular poten- 
tial and the additional uncertainty brought about by 
the renormalization. 

We point out that the contribution [69] of the 
linear spin-lattice coupling to the crystal-field 
splitting is predicted to be negative in our model for 
any anisotropic potential. An examination of the 
coefficients av(ll') in Table 1 shows that the quantities 
E(') - do) and E ( ~ )  - E('), where E(') is given by 
[72], are positive definite quadratic forms in the 
parameters 6, and $,, defined by [73], and E(')  z 
E ( ~ )  implying that V,") < 0 for all values of the 
couplingconstants , f l .  This result is a consequence of 
the nature of the elastic anisotropy of solid hydrogen 

and can be traced back to the property that the 
velocity of propagation of the L mode is a maximum, 
and that of the T2 mode a minimum, in the direction 
of the c acis, cf, ref. 24. The TI mode is nearly 
isotropic and does not contribute to the splitting. 

To our knowledge, the most recent ab initio cal- 
culation of the anisotropic pair potential for H2 is 
that of Gallup (25). In ref. 25 the radial part of the 
potential is presented in the form of a series of spline 
functions. Taking derivatives of the spline in Table 3 
of ref. 25 corresponding to the range 6.6 R 7.2 
bohr, we obtain at the nearest-neighbour separation 
Ro = 3.784 A the values (in cm-') 

where B(R) is defined in [18]. The values of the 
parameters [42] corresponding to [82] are 

The spline form of the potential is not very con- 
venient for the purpose of renormalization, and to 
estimate the parameters f; defined by [48], we there- 
fore use instead an exp-6 model, 

which was also used in refs. 10, 14, and 12. Choosing 
the potential used in ref. 12 and R, = 3.784 A, we 
obtain the values 

The values of the parameters [42] following from 
[84] and [85], 

are not very different from [83], and the difference 
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TABLE 1. Coefficients a,(ll') defined by [77] 

v a,(ll) a,(33) a,(13) = a,(31) 

0 0.633 0.663 -0.266 
1 0.999 0.739 -0.425 
2 0.925 0.762 -0.429 

indicates the magnitude of the uncertainty remaining 
in the values of these parameters. 

The phonon renormalization of a potential of the 
form [18], [84] was calculated in ref. 10 where the 
distribution function of the relative displacements 
of neighbouring molecules was assumed to be 
Gaussian. This calculation was improved in ref. 14 
by including the effect of the short-range correlations 
via a Jastrow function. The resulting renorinalization 
factors depend on the value of q in [84]. The 
potential used in ref. 14 corresponds to q = 13.29 
which is sufficiently close to the value in [ 8 5 ]  so that 
we may use the results of ref. 14 which in the present 
notation are 

The values of the dimensionless parameters [73] 
obtained from [85] and [87] are 

From [67] and [72] we then obtain the following 
values for the energy shifts, 

~891 
E'" = 0.13 GHz, E ( ' )  = E(') = 0.1 8 GHz 

E(0) = - 1.62 GHz, E(+ 1) = - 1.75 GHz 

and hence from [69], 

[go] V C ( ' )  = -0.13 GHz 

We emphasize that this result is only an order-of- 
magnitude estimate of Vc( ' ) .  For example, if instead 
of [87] we use the renormalization results of ref. 10, 
correcting a sign error in the expression for T3, 

which differ from [87] in the neglect of the short- 
range correlations, then with the values [85] for the 
potential parameters, we get Vc( ' )  = -0.77 GHz, 
almost an order-of-magnitude change from [go]. 
And using the unrenormalized values, 

the result is V,(') = -0.045 GHz. The calculated 
values of v,(') therefore depend very strongly on the 
renormalization, and of particular importance is the 
shape of the pair correlation function in the hard- 
core region of the anisotropic potential. ,With our 
present limited knowledge of the anisotropic 
potential and of the pair correlation function, all we 
can conclude is that the contribution of the linear 
spin-lattice coupling to the crystal-field splitting lies 
in the range between 0 and -0.5 GHz. 

To obtain the full crystal-field splitting, we must 
add to v,(') the contribution 

due to the static renormalization, where E,, is given 
by 141 1. Using the values [83] or [86] for g, and g,, 
and $he estimate [43] for the lattice dynamical param- 
eters based on the anisotropic Debye model, we get 

As discussed below [43], the true value of v , (O)  may 
be considerably smaller, but most likely it is positive 
and lies in the range between 0 and 1 GHz. 

The experimental values of Vc inferred from nmr 
measurements (2-6) also show a rather wide varia- 
tion. Schweizer et al. (6) reported the value IVcI = 
(0.29 f 0.06) GHz in agreement with earlier results 
of the same group (4), which placed an upper limit, 
I VcI < 0.6 GHz 011 the magnitude of Vc, but left the 
sign undetermined. These results are seen to be con- 
sistent with our estimates for reasonable values of the 
parameters involved. On the other hand, Gaines et al. 
(5) have recently reported a positive value, Vc = 0.92 
GHz, from nmr spectra in single crystals. If Vc is 
indeed positive, this implies a nonvanishing con- 
tribution from VC(O), since v,(') is always negative 
according to our theory, and the magnitude of the 
required VC(O) is of the order of [94]. If this result is 
confirmed, the Debye model prediction [43] for ALL] 
should be taken seriously. In particular, this result 
would have important consequences for the inter- 
pretation of the microwave pair spectra (7). As dis- 
cussed in ref. 17, the adoption of the theoretical 
estimate [43] contradicts the tentative assignment of 
one of the observed lines, B,, in the microwave 
spectrum, and would lead to a modified set of values 
for the p a r a m s s  of the effective anisotropic pair 
potential in h e  ?olid, cf. eqs. 11261 and [127] of 
ref. 17. 

6. Conclusions 
We have investigated the rotational energy level 

structure of a single orthohydrogen molecule in a 
parahydrogen matrix. To describe the interaction 
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between the rotational motion of the ortho molecule 
and the quantum-crystal lattice vibrations we con- 
structed a Hamiltonian which combines the orienta- 
tion dependent potential with an effective harmonic 
model for the lattice dynamics. On the assumption 
that the host lattice has the hcp structure with 
c /a  = (8 /3 ) '12 ,  we identified and calculated two 
distinct contributions to the crystal-field splitting, Vc, 
of the J = 1 level, both originating from the anisot- 
ropy in the lattice vibrations associated with the 
uniaxial crystal structure. One contribution which 
we call 'static', arises when the anisotropic inter- 
action between the ortho molecule and the sur- 
rounding molecules is averaged over the zero-point 

1 lattice vibrations, and results from the difference in 
the relative motion of the molecules in ip and op 
pairs. The second, 'dynamical,' contribution arises 
from the self-energy, or lattice-polarization, effects, 
and corresponds in second-order perturbation theory 
to  the emission and re-absorption of virtual self- 
consistent phonons by the rotating molecule. In the 
presence of the dynamical coupling, the ortho mole- 
cule is no longer in a definite quantum state, and the 
splitting Vc refers to the states of the combined 
rotational-phonon system. The dynamical contri- 
bution to Vc is mainly due to the anisotropy of the 
phonon field which we described by a generalized 
Debye model in which the anisotropy of the long- 
wavelength modes is ex~ressed in terms of the 
elastic constants of the cristal. 

Our results for Vc are expressed in terms of the 
parameters characterizing the lattice dynamical 
model and the effective anisotropic pair potential in 
the solid. The static and dynamical contributions to 
V,  are of opposite sign, and although our results in 
order-of-magnitude are consistent with the experi- 
mental data, the accuracy of our knowledge of the 
relevant parameters is not sufficient to calculate the 
two contributions with certainty. The main limitatioil 
in calculating the dynamical contribution arises from 
the uncertainty in the parameters of the renormalized 
anisotropic pair potential. For the static effect, one 
needs a more accurate calculation of the displace- 

ment correlation matrix for ip and op pairs. Further 
theoretical work is also needed to predict the 
behaviour of Vc at  higher pressures. 
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