Products of generalized equivalent operators in angular momentum theory!

SERGE LURYI
Departinent of Physics, University of Toronto, Toronto, Ont., Canada M5S 147
Received September 22, 1978

Generalized operator equivalents to the (bipolar) spherical harmonics T w, . 0, ) are consid-
ered, viz. P Pp T\ @, ©;) P; P;,. where the P, are projection operators on the manifolds of
definite angular momenta. A closed formulais derived for the coefficients of the Clebsch—Gordan
decomposition of products of such operators.

On considere des opérateurs généralisés équivalents aux harmoniques sphériques (bipolaires)
TH{iNw,, @) a savoir Pe Pp, T, @) Py Py, ot les P, sont des opérateurs de projection
sur les ensembles de moments cinétiques a valeurs définies. On établit une expression finie pour
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les coefficients de la décomposition Clebsch—Gordan des produits d*opérateurs de ce type.
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1. Introduction
In various physical problems one meets irreducible
tensor operators formed by restricting spherical
harmonics to a finite portion of the Hilbert space,
viz.

[1] Clm(Fr ‘1) = PFClm(m)PJ/<FI ICIH‘])

where C,,(®) is a spherical harmonic in the notation
of Brink and Satchler (1), and P, is the projection
operator on the manifold of states of angular
momentum J? = F(F + 1), i.e.,

F
2] Pr= ¥ IFMXFM]
When F = J, one usually replaces the operators
[3] Clm(j) = Clm(‘/’ ‘1)

by explicit expressions constructed out of the com-
ponents of the vector operator J. These explicit
expressions, first introduced by Stevens (2), are
called the equivalent operators, and their equivalence
to [3] is valid only within the manifold J.

In certain problems one encounters products of
equivalent operators C,(J) or the generalized
equivalent operators C,,(F, J). These problems arise,
for example, in studying rotational correlation func-
tions for particles confined to a given manifold (3).
To calculate matrix elements of a product of equiva-
lent operators it is convenient to expand the latter
in a Clebsch-Gordan series, e.g.,

[4] Cllml(Fa J)Cizlllz(J’ F)
= Z O(Inlc(lllzl; ]”1’_772"7)611”(1:)

im

where the coefficients «,,, depend on Fand J. One of
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the purposes of this work is to give a closed expres-
sion for these coefficients. It should be noted that, in
general, the class of operators C,,(F) which appears
in the right-hand side of [4] is wider than that defined
by [1] and [3], since spherical harmonics do not form
a complete set of operators in £. In ref, 3, the coeffi-
cients o, were tabulated for the case J = F = 1|
which is relevant for ortho-hydrogen molecules at
low temperature.

Another example of equivalent-operator products
occurs in perturbation calculations (4). In problems
involving two orientations one often uses the so-
called bipolar harmonics (I), which are the irredu-
cible tensors formed by coupling two spherical
harmonics with different arguments,

[5]1 T (0, o))

im

= Z C(IIIZ[! ’”1’”2’”)Cl;m,(ml)clﬂng(mZ)
myny -
These tensors can be used to expand an arbitrary
anisotropic potential ¥(w,, ®,, g), viz.
[6] V((Dl, m27 (1) = Z Z V(;ylnll)(q)*Ttgllnll)(mla(DZ)
tm 1l>

where ¢ denotes the totality of variables other than
o, and ®, on which the potential may depend. Con-
sider two particles which, in the absence of aniso-
tropic interaction [6], are in the degenerate angular
momentum manifold

(7] Fy ® F, = Span {|F M} |F,M,)}

The effect of [6] on the states [7] to second order is
given by the eigenvalues of an effective operator (5)
which contains operator products of the form

[8] O(I: 2) = Pp Pp, T (8:,(22)((01’ ;)

x P, P, T8N0, 0,)P Py,
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The operator O(1, 2) is not a function of ®, and o,
in the coordinate representation, and thus cannot be
expanded in terms of the bipolar harmonics [5] even
within the manifold F. Choosing a complete set
T2 of tensor operators in F, we can write
910(1,2) = 3 Y BT HCQQ']; q9'm)

Im iz
where the coefficients B are functions of F, F,,J,,J,
as well as of all the Q's. In the present work a closed
formula for these coefficients is derived, which
involves no summation over the magnetic quantum
numbers. For the special case with F; = 1,J;, = 1 or
3, a set of coefficients equivalent to B2 was
tabulated in ref. 4.

2. Expressions for the Coefficients « and
A complete set of tensor operators in the single-
particle manifold F is defined by
[10] C,(F) = Y |FMYC(FIF; M mM)}XFM'|

MM’

[12]

noompmz
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These are ‘unit’ operators, in the sense that their
reduced matrix elements in the manifold F are equal
to unity. It is easy to prove that the tensors [10]
transform irreducibly under rotations. As pointed
out by Biedenharn and Van Dam (ref. 6, p. 8), the
assertion of completeness of such a set of operators is,
in essence, the content of the Wigner—Eckart
theorem. For even values of / the operators C,,(F)
coincide with those given by [I] and [3], whereas for
odd / explicit expressions for C,,(F) can be con-
structed out of components of the angular momen-
tum operator J, e.g.,

[11] C\(F) = Py J P[F(F + D]'/?

(cf. the operator harmonics of Schwinger, ref. 6,
p. 226).

To derive an expression for the coefficients a,,, in
[4], we invert [4] by using the orthogonality of the
Clebsch—-Gordan coefficients, and then take matrix
elements on both sides of the operator equation, viz.

otlm<1:]\/1|C\wlrn’f-/\/ll> = Z Z C(111217 /7711772177)<FM[CII,,,1IJ17><JHIC[2,,,2|FM,>

Multiplying [12] by C(FIF; M'mM) and summing over M, M’', we get

2F + 1

[13] 20 +1

Uy =y, CFIF; M'mM)C(1, 1,15 mymym)C(J F s pm M)C(FI,J 5 M m, )

where the summation is over all the magnetic numbers but m. Contraction of the Clebsch-Gordan coeffi-

cient gives, finally,

[14]

Oy = (_)IH(IJ)

{rrrf

independent of /. Here and in what follows we use the notation

[15] Mab...) = [2a +

Db+ 1)...]42

As an example of the application of this formula, we shall evaluate the commutator of two equivalent

operators,

[16]

im

[Cllml(F): CAlzmz(F)] = Z 2Y1C(11121’ ’”l’"l’”)clm(}:)

The coefficients v, in [16] vanish for even values of /; + /, + / and are given by

[17]

n = (—ymap)pf|

\FFF{

for odd /|, + I, + [ This result agrees with that derived by Nakamura (7) for the special case F = |[.
Next, we derive an expression for the B-coefficients, eq. [9]. As a complete set of two-body operators in the

manifold F, ® F, we take the following tensors

[18]

T(111111[2) = Z Cl”ul(Fl)Clzmz(FZ)C(ll121; ’771’”2”7)

The reduced matrix elements of these operators are given in terms of a single 9/ symbol (ref. 1, p. 152).
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The operator O(l, 2) in [8] can be rewritten in the form
[19] A_IO(I, =% CQ;ql(Fh JI)CQ,'(,,'(Jla FI)CQZqz(FZ’ Jz)CQZ'qZ'(Jb F)C(Q,0:0; q19:9)

x C(Q,'0,'0":4:'9:'9")

where

[20] A= C(J,QF;00)C(J,Q,F,; 00)C(F,Q,"J,; 00)C(F,Q,"J,; 00)

is the factor containing the product of the reduced matrix elements of the spherical harmonics C,,(®).
Evaluating the one-body operator products with the help of [4] and [14], and using [18] we get

- a0 f Q1011 J0205'15
2) _‘; “le T(gm )11: F J ({F F2J2 n(lllz-IIJZ)(_

X Z CL LI mymym)C(Q,0, 15 q1q, ' m)C(Q205'155 424, 1m)C(0,0,0:¢4,4.4)C(Q,'0,'Q"14,'q5'q")

In the bottom line of [21] the summation extends over all the magnetic quantum numbers, except ¢, ¢’, and
m. The sum contracts to

[21] A™'O(,

)11+13

Q Q1
[22] 0(1,1,00)<0,0,'1, ) C(QQ'; ')
\QzQzllz

whence we find that the B-coefficients are also independent of m and are given by

00 I
g =y 0.0/ 11 f0:0:1: _5 |

A number of examples of the use of this formula are given in an accompanying paper (8).
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