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The orientational level structure of o-H, pairs in a solid p-H, matrix is studied theoretically,
with particular attention paid to the phonon renormalization of the anisotropic interactions. For
the two- and three-body multipolar and induction forces, this renormalization is performed
analytically and the vesults are expressed in terms of a small number of lattice dynamical
parameters describing the shape of the anisotropic distribution function. g(«;,), of the relative
zero-point displacement of a pair of molecules. A microscopic calculation of these parameters has
revealed that the difficulties remaining in the theoretical analysis carried out by Harris, Berlinsky,
and Hardy of the microwave spectra observed by Hardy, Berlinsky, and Harris stem from an
incorrect parametrization of the deviations of g(u,,) from cylindrical symmetry. Using our
renormalization results, as well as a more convenient symmetry classification of the effective
interactions in the solid, we arrive at an analysis of the microwave spectra which appears to be
free of difficulties. From this analysis we obtain the following values of the effective anisotropic
interaction constants in solid H, at normal pressure: the quadrupolar coupling constant
[y = 0.596cm™!, und the van der Waals coupling constants g, = —0.013¢cm™', &, = 0.0l 1cm™',
andg, = —0.018cm™'.

On étudie théoriquement la structure orientationnelle les niveaux de paires o-H, dans une
matrice de p-H, solide, en prétant une attention particuliere a la renormalisation des phonons des
interactions anisotropes. Pour les forces multipolaires, a deux ou a trois corps, et pour les forces
d’induction, cette renormalisation est faite analytiquement, et les résultats sont exprimés en
terme d’un petit nombre de parametres dynamiques du réseau qui décrivent la forme de la
fonction anisotrope de distribution, g(u,,), du déplacement relatif d une paire de molécules. Un
calcul microscopique de ces parametres a révélé que les difficultés qui restent dans "analyse
théorique effectuée par Harris, Berlinsky et Hardy des spectres de micro-ondes observés par
Hardy. Berlinsky et Harris proviennent d‘une paramérisation incorrecte des déviations de g(u,,)
de la symétrie cylindrique. En utilisant nos résultats de renormalisation de méme qu'une
classification plus commode des symétries des interactions effectives dans le solide, nous arri-
vons i une analyse des spectres de micro-ondes qui ne semble pas présenter de difficultés. A
partir de cette analyse, nous obtenons les valeurs suivantes pour les constantes d'interaction
anisotrope effective dans H, solide & pression normale: 1a constante de couplage quadrupolaire Iy,
=0.596cm™!. et les constantes de couplage van der Waalsg,= —0.013cm !, 8, = —0.0l1cm™', &,
= ~-0.0i8cm"".
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1. Introduction

The rotational level structure of pairs of nearest-
neighbouring ortho molecules in a solid parahydro-
gen matrix has attracted considerable experimental
investigation. This structure has been studied by
nmr and specific heat techniques, and more directly
by near infrared, neutron, and Raman scattering,

ISupported by a grant from the National Research Council
of Canada.

and microwave absorption experiments. References
to these various experiments can be found in refs. 1
and 2. The microwave spectra of ortho pairs were
first obtained by Hardy and Berlinsky (1), and then
by Hardy, Berlinksy, and Harris (2). These experi-
ments had far greater accuracy than all previous
determinations of the pair spectra, and the relative
positions of nearly all the pair levels were established
to an accuracy on the order of 1072 cm™!. These
results present a challenge since their interpretation
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requires the introduction of the finer details of the
anisotropic intermolecular interaction and of the
interaction of the pair with the surrounding matrix.

The theory of the anisotropic interactions in solid
hydrogen existing in 1975 was summarized by Harris
(3). According to this theory, the general anisotropic
interaction between a pair of ortho molecules in solid
parahydrogen contains two types of terms: those
which are invariant under simultaneous rotations of
the two ortho molecules about the pair axis (axially
symmetric terms) and those not invariant under such
rotations. The most general interaction between two
isolated hydrogen molecules belongs to the first
category. In the presence of only the axially sym-
metric interaction, the nine-fold degenerate rotational
level of two J = | ortho molecules splits into six
levels of which three are doubly degenerate. This re-
maining degeneracy is removed by terms in the inter-
action of the second type, called “doublet-splitting”
terms. The origin of these terms lies necessarily in
the interaction with degrees of freedom other than
the orientations of the two ortho molecules.

Two types of doublet-splitting terms were con-
sidered in ref. 3, the crystalline field and the three-
body polarization interactions. The former were
treated phenomenologically and include all the aniso-
tropic interactions depending on the orientation of
only one of the two molecules. The latter include the
orientational polarizability effects as well as the
dielectric screening effects which were also con-
sidered in ref. 4. Hardy and Berlinsky (1) attempted
to interpret the microwave spectra on the basis of
this theory but concluded that the theory was in-
complete. The main difficulty concerned the fitting of
the observed doublet splittings, and agreement with
experiment could be obtained only by assigning a
negative value to the static polarizability of the
molecules. This difficulty was resolved in refs. 5 and
6 by introducing the doublet splitting interaction
arising from the anisotropic renormalization of the
EQQ interaction by the zero-point lattice vibrations.
The magnitude of this effect is proportional to the
non-axiality parameter, 1, (cf. [56]), of the aniso-
tropic distribution function of the relative displace-
ments of the two interacting molecules. In ref. 5
this parameter was introduced phenomenologically
and its values for in-plane (ip) and out-of-plane (op)
pairs were obtained by fitting the microwave spectra
reported in ref. 1. However, this fit required rather
large values of the crystalline field parameters V, and
AB describing the effects of the local distortion of the
lattice due to ortho impurities (7). This approach was
criticized by Harris and Berlinsky (8), who compared
the work (5) with the much more extensive analysis
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of the pair level structure given in ref. 6. The latter
work is superior to ref. 5 in that in addition to the
n-effect it includes several other new effects such as
the quadrupole-induced strain (mainly axial terms),
admixtures of the J = 3 states of the ortho mole-
cules by the EQQ interaction (axial), and the higher
order polarization interactions which give a small
doublet-splitting contribution. Nevertheless, the
theory (6) is not entirely successful in that it fails to
explain the observed splitting of the F = |, M = +1
doublet, where F, M refer to the total angular
momentum of the ortho pair. As pointed out by
Harris and Berlinsky (8), this is the main remaining
problem in the interpretation of the microwave
spectra whose resolution is unlikely to be found in a
more exact treatment of the strain effects.

In our opinion, this problem arises in ref. 6 from
an incorrect parametrization of the n-effect. Accord-
ing to ref. 6, the main contribution to 1 comes from
the anisotropy in the immediate crystalline environ-
ment of the pairs, which is less axially symmetric for
op than for ip pairs. This led the authors of refs. 2
and 6, henceforth referred to as HBH, to postulate
that

(1] n(op)/m(ip) = 4

A discussion of the validity of [l] can be found in
ref. 9. The main point is that another contribution to
N exists, arising from the anisotropy of the phonon
field associated with the uniaxial symmetry of the
hep lattice, which gives a larger contribution to
n(ip) than to n(op). In ref. 9 we have calculated these
contributions on the basis of a generalized Debye
model in which the dependence of the phonon fre-
quencies and polarization vectors on the direction of
propagation is taken into account. In contrast to [1],
these contributions have the ratio

(2] n(op)/n(ip) = —0.8

The theoretical values of mn obtained in ref. 9 turn
out to be in good agreement with the values required
to describe the doublet splittings, as will be discussed
in the present paper.

Another important feature of the present work is
a unified treatment of the various phonon renormal-
ization effects. Our treatment is based on the relation

3] I — &, ,-, = constant x I{(/ + 1)

between the reduction factors, &, ,_, of the different
multipolar interactions, (10, 11). The relation [3] can
be derived by tensor algebra on the assumption that
the distribution function of the relative displace-
ments of two molecules in the solid is independent of
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their angular momenta. This allows us to parame-
trize the phonon renormalizations of all the two- and
three-body interactions whose dependence on the
position variables of the interacting molecules is
known accurately, by using only two lattice-
dynamical parameters. These parameters are
{up, u, >R and ¢, cf. [77], [55], describing,
respectively, the mean radius and eccentricity of the
oblate ellipsoid associated with the pair correlation
matrix, cf. ref. 9. We also correct an error appearing
in ref. 6 in the renormalization of the second-order
EQQ interaction between the two ortho molecules
(the T2/B terms). In ref. 6 it is assumed that this
renormalization is given by the factor

(4] [ = (4r/9)Re ([ Yao(R12)[R1.° 1>

which augments the interaction constants by about
30%,. The correct renormalization factors, calculated
in this paper, are different for the different two-body
terms and lead to increases varying from 50 to 70%.

Finally we remark that we do not attempt here to
include via a microscopic theory the strain effects, or
in the terminology of ref. 7, the quasi-static distor-
tion effects, which were discussed in ref. 8. Agreeing
in principle that these effects contribute to all the
different symmetry terms in the effective Hamil-
tonian, we feel that the inclusion of these effects,
other than the EQQ-induced strain, at this stage
requires the introduction of too many adjustable
parameters. This situation will, of course, change
once a reliable theory has been developed of the
quasi-static distortion effect for ortho pairs.

The organization of this paper is as follows. In
Sect. 2 we give the symmetry classification of the
effective, anisotropic Hamiltonian in the manifold
of rotational states of an ortho pair. This classifica-
tion is different and, in our view, more convenient
than that given in ref. 6. Each term in the effective
Hamiltonian is a tensor operator irreducible under
simultaneous rotations of the two ortho molecules.
The products of such operators can be expanded in
a Clebsch—Gordan series with coefficients given by
an expression [36] involving no summations over the
magnetic quantum numbers (12). In Sect. 3 we
review the various contributions to the effective
Hamiltonian in the rigid lattice. The renormalization
of these interactions by the zero-point lattice vibra-
tional motion is considered in Sect. 4. In Sect. 5 we
use the theory to interpret the microwave absorption
spectra (2), and to derive empirical values of certain
parameters characterizing the anisotropic interac-
tions in the solid. The paper concludes with a dis-
cussion of the results obtained here and a com-
parison with the work of HBH.

309

2. Symmetry Properties of the Effective
Hamiltonian for a Pair of Ortho Molecules in
Solid Parahydrogen

In the single-particle manifold, F, corresponding
to a given value of the angular momentum, J?
= F(F + 1), the operators |FM>{FM'|, M, M’
=F,F—1,..., —F, form a complete set in the sense
that any linear operator in F can be expressed as a
linear combination of these operators. A set of
linear combinations of the operators |FM){FM’|
with unitary coefficients also forms a complete set.
For our purpose, a particularly convenient set is the
one transforming irreducibly under rotations, ob-
tained by using the Clebsch-Gordan coefficients and
defined as

[5]1 CiF) = Y, |FM)YC(FIF; M'mM)XFM'|
M

The operators [5] are defined in the full Hilbert
space of the system but have non-vanishing matrix
elements only within F, where they can be repre-
sented by explicit expressions in terms of the com-
ponents of the angular momentum operator, J.
These so-called equivalent operators (13) will not be
used here, because we need only the transformation
properties of the operators [5]. For F =1, the
operators [5] are proportional to the 4 ,” introduced
in ref. 6,

Cap = (81/25)' 27"
(@2n/3)! 27"
I =@mrr°

»

(6]

Im

Coo =

In the two-particle manifold F; ® F,, we choose

as a complete set of operators the composite tensors
(71 TUR2(Fy, Fy)

= Z CL L mlmZm)Cllm1(F1)Clzlrrz(F2)

mymy

which transform irreducibly under rotations gener-
ated by J; + J,. Their reduced matrix elements in
F, ® F, are given by (ref. 14, p. 152),

(81 (FF,F||TYF F,oF)
F'Fl
= II(F,F,FD){F F,l,
FyF,l
where
9] Hab...)=[QRa+ D20+ 1 ... 12
and

[10] |F F,FM)

= Z C(F,F,F; MleM)|F1M1>lF2M2>

MMz
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The most general effective Hamiltonian in the
manifold (F; = 1) ® (F, = 1) of two ortho mole-
cules in solid parahydrogen can be expressed in terms
of the operators

T(lrlz)(l’ l) = T(gllz)

tm m

in the form

[1] H=3 5 HGeT

Im Il

The coefficients H 1! satisfy the following symmetry

conditions (6). From the hermiticity of H it follows
that

[12] H(Il’,”lg)* — (_)11+12+1+'“1_1({112)

m

whereas time reversal requires that terms with odd
values of /; + /, drop out, assuming that velocity
dependent interactions are absent,

[13] H(;'xnlz) — (_)“+’2HUI’2)

im

Further restrictions arise from the symmetry proper-
ties of the lattice which is hep (15). In the presence of
ortho impurities, the anisotropic interactions distort
the equilibrium configuration of the molecules, so
that the lattice loses its periodicity. This would lead
to the appearance of terms in [1] with no particular
symmetry other than [12] and [13]. We treat these
terms as corrections to the undistorted lattice in a
phenomenological way.

To take advantage of the symmetry of the undis-
torted hcp lattice with two neighbouring ortho
impurities, we define, following ref. 3, a local
coordinate frame for each pair in such a way that
both ortho molecules lie on the local = axis and the
local xz plane is a plane of reflection symmetry. For
the precise definition of the local frames, see refs. 3
and 9. The local frames used in HBH eare slightly
different. The conditions imposed on H''?) by
symmetry assume their simplest form in the appro-
priate local frame. First, the frames have been
chosen such that

(14]

is real. Next, for ip pairs the plane £-R =4 is a
reflection plane, giving

(151 HYRGR) = ()" H G Gp)

Im
For op pairs, the midpoint between the two molecules
is a centre of inversion symmetry,

L16] H\P(op) = (=)'H"},(op)

There are no other symmetry elements in a hcp
lattice with two neighbouring impurities. However,
certain additional restrictions arise for those terms
in [11] which depend on the variables of only one of

i, L
H(I:]n-) = H(llln-)*
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the ortho molecules (/, = 0 or /, = 0) when one
considers the interactions common to ortho-ortho
and ortho-para pairs. One can then use the full point
symmetry of the hep lattice and show that this con-
tribution, AH, is symmetric about the ¢ axis,

[17] AHGY = AHGY = §,,AHSS

2m m
where m refers to the ¢ axis. If the coefficient AH 23’
results from additive, pairwise interactions, it nearly
vanishes in a close-packed lattice,
A =

[18] Y J(Rp=0

i#F1
as first noted by Nakamura (16), cf. also ref. 9.
The symmetry conditions [12]-[17] leave 17 in-
dependent parameters in [11] for each type of pair
corresponding to the coefficients H!:'2) with the

im
following values of (}i/2), where m refers to the re-
spective pair frame,

091 (3g)- (30)- (60)- (o) (30) (o0) (a0)
() (o) (o) () (32)

for both types of pair, and

B0
G E) L

A number of these parameters are eliminated by the
perturbation scheme used (6) in the calculation of the
ortho-pair states, which we also adopt. The axially
symmetric interactions [19], of which the EQQ one
is the most important term (16), are assumed to
dominate over the interactions of the types [20] and
[21]. The axial interactions split the nine-fold de-
generate ortho-pair level into six levels three of
which are doublets, cf. Fig. 1. The remaining inter-
actions are included only to zeroth order, i.e., only
within the remaining doublets. The only non-
vanishing contributions come from the ‘doublet-
splitting’ terms [20], and all the terms [21] which are
neither axial nor doublet-splitting may be neglected.

[20]

[21a]

[216]

3. Interactions in the Rigid Lattice

The interaction energy between two isolated H,
molecules can be written in the form

[22] V(o o, R,
=3 Y VU R )T (@), o)

Im U1z
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< (22)%

00
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a b

FiG. 1. Energy-level diagram for an ortho pair in solid
hydrogen. (a) Including only the axial terms [19]. (6) Including
the doublet-splitting terms [20]. The states |FM > are labelled
by the eigenvalues of the total angular momentum of the pair,
cf. eq. [10], and 2(FM). = |FM)> + |FM). The far left
column represents the structure which results from including
only the first order EQQ interaction.

where ®,, ®, specify the orientations of the two
molecules relative to a space-fixed frame, R, =
R, — R, and

[23:] T(f[l"h)((!)l, (DZ)
= z C(lllzlv '”1’”2’n)cllml((!)l)Clzmz(mZ)

are the bipolar harmonics (14), which should be dis-
tinguished from the corresponding operators [7] in
the F; ® F, manifold. The sum in [22] is restricted
to even values of /,, /5, and /. In the solid at normal
densities, the anisotropic part of [22] is small com-
pared to the spacing of the rotational levels of an H,

o!_(éz) _ 51/2,
[30] a4 = 3172,
a§” = af? = —(2/9)'"2,

23D = ()17,
allD = (3272

molecule, and the effect of the interaction [22] on
the states in the rotational manifold F; ® F, can
therefore be treated by perturbation theory. The
unperturbed Hamiltonian is

(24] Hy = B(J,* + J5%)

To second order in the interaction [22], the per-
turbed energy levels belonging to the manifold
F, ® F, are given by the eigenvalues of an effective
Hamiltonian (17) which operates entirely within this
manifold but which receives contributions from other
manifolds. This Hamiltonian is of the form

[25] A=7pY4 @
where
[26] y& = pp Py VPp P,
[271 v®
= — J§1 Pp PpVP; P, VPp Pp|AE(J J;)
and -
[28) AE(WJ,) = B[J,(J, + 1) + J,{(J; + 1)

— Fy(F, + 1) = Fy(F, + 1))

The interactions contributing to the anisotropic
part of [22] include, besides the EQQ interaction, the
valence, dispersion, and induction forces (I8).
Following HBH, we neglect the contributions of the
non-EQQ interactions to the second-order term [27].
The effect of the non-EQQ interactions on the
ortho-pair levels (F, = F, = 1) can then be de-
scribed by a relatively small number of parameters,
viz.,

VG(R) = 2B(R)
VEP(R) = 50178 (R)
where [ = 0, 2, 4 and

(29]

Ot(iz) = 70!/2

alf® = |

The most recent ab initio estimates of the parameters [29] are those of Raich et @l. (19). The values they
recommend at the nearest-neighbour separation (which they take to be R," = 3.756 A) are given in Table 1.
These estimates should be regarded as rather crude because of the large uncertainty in the calculation of the
valence forces. The EQQ contribution to [22], which corresponds to /, = [, = 2, [ = 4, is known very
accurately. The fact that EQQ contributes only to / = [, + [, is characteristic for multipole interaction (20).
With respect to an arbitrary frame, the EQQ interaction can be written in the form

[31] Vega(®y, ©,; Ry,) = (?-5/6)01(2%2)ro(Ro/AR12)S z C4m*(R12)T(421-12n)(m1> ®,)

m

where Iy = (6¢>Q%/25R,”). For v = 0, J = | we have (21) <01]Q|01)> = 0.48529 au, and choosing R,
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= 3.784 A2 we get
(32] T, = 0.6634 cm™!

and this is the value we will use.
The first-order part, V), of the effective interaction between two J = 1 molecules is obtained from [22]
by restricting the sum to /;, /, < 2 and replacing the bipolar harmonics by the operators [7] using

[33] Py Pp, TG (0, 0,)Pp Pp, = C(F I, Fy; 00)C(F,l,F,; 00)TUL2(F,, F))

im im
For I, =/, = 2 we obtain in this way
[34] P =y qen e

im
im

where with respect to the pair frame
[35] AGD = 20751606814 + £18,0

The terms /, = 2,1, = 0and /; = 0,/, = 2 will be considered separately, cf. [42].

To calculate the second-order contribution [27] due to the EQQ interaction, it is convenient to use the
following expression (12) for the product of tensor operators with matrix elements restricted to parts of
Hilbert space,

[36] PF1PF2T(£;1k:)(m1a mZ)P.I]PJzT(II:E’ﬁ%‘)((DI’ ml)PﬂPI’z =X z z B(llllnll)T({':n’Z)(Fla FZ)C(I(/(,]’ ””’I”)

Im Uyl

where
{37] X = C(J k,F,; 00)C(J,k>Fy; 00)YC(F kT, ; 00)C(Fyk,'J,; 00T J,kk')
and
| okl
[38] (;’l”lz) — (_)h+11(2[1 + 1)(2/2 + I)II‘ k IJ 2 2 Uk k 1
1FFJI}12 J)k/(l‘
200 1)

With the help of [36]-[38], we can express Vego'?’ = V) in the form [11], viz.,
[39] Ve = z z Bl plifz)

Im 16y

where with respect to the pair frame we have

[40] B = DB 5 (P BB, 3) 4 UG, 1) + 1643, 3)]
with
L. ‘441
22
[417 b, J,) = (21, + 1021, + T4l 00)[C(12J,; 60)C(12J,: L0024 22h ’22/21}22/,'\
VI LS {22,75

Strictly speaking, the coefficients multiplying the three terms in [40] are [, [\[,', and [y'%, where [y’
contains the quadrupole matrix element (01[{Q[03> = 0.48790 au (21), giving [, = 0.6706 cm~' rather
than {32}, but we shall use the simplified form [40]. The resulting numerical values of the coefficients [40]
are given in Table 2. These results are in agreement with those of HBH except that the top line in the right
column of Table 5 in ref. 6 should read —(837/6860) instead of —(71145/514514).

The remaining contributions to the effective Hamiltonian [11] in the rigid lattice include the crystalline
field, dielectric screening, and rotational polarization terms. These terms are discussed in detail in ref. 3, and
we confine ourselves here to listing the resulting contributions to the parameters H'}!/*) of [11].

2R. L. Mills, private communication. This value has recently been confirmed by measurements of 1. F. Silvera who
obtains R, = 3.788 A (private communication).
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The crystalline field contribution in the pair frame is of the form
[42] C(Izn(y)) = d(i())[_%VcCZm(B: d) + 2ABSIM0]

where f3, o are the polar angles of the local z axis relative to the crystal frame. If the latter is chosen as in
ref. 9, we have (B, o) = (ix, 4r) for ip pairs, and (B, o) = (B,, 0) for op pairs, where cos? B, = 2. The nota-
tions V. and AB are in accordance with ref. 3. Both contributions are expected to be quite small in the rigid
lattice, V. being proportional to the deviation of ¢/a from the close-packed value, and AB to a difference
between the coefficients B(R) defined in [29] for ortho-ortho and ortho-para interactions (3).

The dielectric screening (3, 4) results from the quadrupole-induced dipole forces and its contribution is of
the form

22y \[331 1 ;
[43] DY = ST 3y 3
where p = a/R,*, o being the isotropic H, polarizability (Table 1), and the sum extends over all para mole-
cules. The dependence of o on the angular momentum of the molecule (22) leads to a small contribution to the
crystalline field term AB, and the anisotropic part of the polarizability tensor contributes to the coefficients
g;. However, the magnitude of these two corrections is well within the present uncertainty in these param-
eters, and these effects will therefore be neglected.
The orientational polarization terms (3) give the contributions

2 875, {44l 5 . N
[44] E(Tn%) = - TT? {222} , Z (RO/RlI))D(RO/RZI))ST(?I::.)(Rlpa RZ[))

#1,2

(Ro/Ry P} (Ro/Ry ) TGI(R, ,, R,

and

40625 I'y?
(20) _ (20) VY&eS 1 0
[43] B’ = —a 6048 B £,

(RO/RII))IOCZ:H( Rl [1)

2Zm 2

This last term is of the crystalline field type. In a
perfect hep lattice the sum in [45] evaluated in the
pair frame gives —39,,q, so that

40625 T,
E(20) — 0
L46] 2 = 76048 B

physically (5) to the difference between the orienta-
tional polarizabilities of para and ortho molecules
(J=0->2vs.J=1->3).

The lattice sums in [43] and [44] were evaluated

a(%0)6n10 i

2 TaBLE 2. Numerical values of the coeffi-
cients BYi?, eq. [40], and G2, eq.
(112]. Tabulated are the values [B‘4//
a®™/®] in units of To?/B and [G%2)/

at2)] in units of g

A similar term is contained in [40]. The resulting
2 2 ©
non-vanishing value of E‘28) + B3 corresponds

TaBLE 1. Various characteristics of solid parahydrogen at
Zero pressure ’

INA
- - Im Bla Gla
Equation Symbol Value and units Reference :
22 279 —25
[24] B 59.339 cm™! 31 40 ~1372
[31] Q 0.48529 au 21
[29] £o(Ro) —~0.002 cm™! 19 22 _s _300
[29] £2(Ro) —0.027 cm~" 19 20 2058 9
[29] £4(Ry) —0.016 cm™! 19 22 31 175
29] - B(Ro) —0.310 cm™! 19 00 —84 -3
[31] Ro 3.784 A “
[43] a 5.4138 au 2 20 B _lis0
(98] Cu?d 0.48 A2 25 20 8 9
[31] I, 19.888 GHz This work 11 5 700
[40] I'?/B 0.222 GHz This work 20 ) -3
[43] Top 0.294 GHz This work 1" , 175
[97], [102] A(D/2R,? 4.8% 1073 This work L
970, [107)  AQ)2Ro 5.6x 102 This work 00 4 '
[113] g 8.5x107% This work 00 77 350
00 24 73

9R. L. Mills, private communication.
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TasLE 3. Numerical values of the coefficients D27 (5) (in units of Ipp) and E452 (s) (in units of

I'y%/B) characterising the three-body interactions, eqs. [43] and [44]. The contributions of the first

(s = 1), the second (s = 2), and the residual (s = r) shells are tabulated separately with respect to
the pair frame for each type of pair

In-plane pairs

Out-of-plane pairs

I D() D) D(r) D(1) D(2) D(r)

00 19.566 —2.648 —1.832 19.566 —2.587 —1.846
20 —21.715 —5.963 ~1.398 —21.715 —6.015 —1.371
22 —2.592 1.193 —0.048 —-7.774 3.216 ~0.066
40 ~13.353 1.397 —0.161 13.353 1.334 —0.145
42 0.098 —0.189 0.038 0.295 —0.373 0.020
44 6.380 —0.769 —0.014 —8.203 1.152 0.014
im E(1) E(Q2) Er) E(1) E(Q2) E(r)

00 16.758 3.083 —0.132 16.758 3.145 —0.150
20 —5.607 —5.462 ~0.627 —5.607 —5.478 —0.612
22 —~1.815 1.310 —0.055 —5.446 3.510 —0.088
40 —12.042 0.161 —0.075 —12.042 0.118 —0.066
42 —0.663 0.039 0.007 —1.989 0.178 0.002
44 5.071 —0.887 —0.039 —6.519 1.461 0.004

numerically (cf. the Appendix) and the results are
given in Table 3 with respect to the pair frames.
Only the independent coefficients are given, the
others being deducible with the help of the symmetry
relations [12]-[16]. We have tabulated separately the
contributions from the four nearest neighbours
common to the two ortho molecules (first shell), the
remaining 14 nearest neighbours of the pair (second
shell), and the net contributions from the more
distant neighbours. The reason for separating these
contributions is that they suffer different phonon
renormalizations, as will be discussed in the next
section. '

It may be useful to indicate the relationship
between the coefficients [43] and the lattice sums
g, of ref. 3 (or, equivalently, the d,, of ref. 4,

mn

which are related to the g,,- by d,,» = (—)"gs,),

[471 DYY = —65—4F0p Y C2L vV m)g,y

Similarly, the E72 of [44] are related to the /.. of
(3) by

[48] EGQ2 = — 22

Im - 13824 (FOZ/B) Z C(22[, VV’H?)[]‘,vf

In ref. 3 only the first-shell contributions to the sums
g,y and . were calculated. At an early stage of
this work (5) we had computed these sums taking
into account all neighbours, and found that the
second and residual shells contribute appreciably, in
some cases changing the order of magnitude or the
sign of a particular sum. However, when combined
in the form of irreducible tensors, the sums usually
show a much faster convergence, as is evident from

Table 3. The result is that the first-shell contributions
dominate the effects of both the dielectric screening
and the rotational polarization on the ortho-pair
levels, and that the residual-shell contributions are
negligible.

4. Phonon Renormalization of the
Interinolecular Interactions

Since we are interested in temperatures (<4 K)
low compared to the Debye temperature (2100 K),
we may assume that the crystal is at 0 K. The effect
of the lattice vibrations on the anisotropic inter-
actions will be taken into account in the usual way
by averaging the latter over the zero-point motion
keeping the orientations of the molecules constant
relative to space-fixed axes. This results in a signifi-
cant renormalization of all the two- and three-body
interactions introduced in Sect. 3. Because of the
relatively large uncertainty in the functional depen-
dence of the coefficients in [22] on R, for the non-
quadrupolar interactions, we shall not attempt to
calculate the renormalization of these interactions
from first principles. If the distribution function of
the relative displacements of the two interacting
molecules is assumed to be symmetric about the
intermolecular axis, then the renormalization does
not alter the form of the tensorial expansion [22] but
only the magnitudes of the parameters [29]. The
small anisotropy of the pair distribution function
may be neglected for the non-EQQ interactions. We
therefore simply replace the coefficients €, by re-
normalized coefficients, &, and treat the latter as
adjustable parameters.

The renormalization of the multipole interactions,
on the other hand, can be performed in detail if one



LURYI AND VAN KRANENDONK 315

knows the pair distribution function. The renormali-
zation of these interactions is very sensitive to the
precise shape of the distribution function, inasmuch
as a spherically symmetric distribution leads to no
renormalization at all for multipole interactions.
Effects associated with the anisotropy of the pair
distribution function are considered in Sect. 44. In
Sect. 4B we consider the renormalization of the
polarization interactions, such as the second-order
effect [39] of the EQQ interaction and the three-body
interactions [43] and [44], whose functional depen-
dence on the position variables is known exactly.

In calculating these renormalization effects it is
assumed that the lattice vibrations themselves are

[49]

not affected by the rotational motion of the mole-
cules. In reality, the anisotropic forces due to the two
ortho impurities slightly alter the zero-point motion
of the lattice. The elastic energy of the resulting dis-
tortion (7) depends on the orientations of the mole-
cules and thus gives rise to an additional effective
interaction in the manifold of the ortho-pair states
(7, 8). These dynamical effects are discussed in
Sect. 4C.

A. Renormalization of the Multipole Interactions

The electrostatic interaction between a 2"'- and a
2"2_pole molecular charge distribution can be written
in the form (20)

Vl,lz(mu 0,; R,) = Ul,lz(RO) Z ,/flm*(Rlz)T([t:,fl)(mh ;)

m

where [ = [, + /5, v;,,,(Ro) is the coupling constant, and

[50]

flm(R) = (RO/R)H—1 CIm(R)

The average of [49] over the zero-point lattice motion is of the form

[51]

where u = u, —

Vo, 0,5 R ;) = j Vlllz(ml: ®,; Ry + u)g(u) du

u, is the relative displacement of the two molecules from their equilibrium positions,

R,; = R, + u, and g(u) is the probability distribution of « in the ground state. If g(u) is spherically sym-

metrical, g(#) = g(u), we have
[52]

Yo, 0,5 R ) = Vl;lz(mla 0;; Ry)

as follows from the fact that the average value of a harmonic function over the surface of a sphere is equal

to its value at the centre of the sphere.

The renormalization of [49] thus depends on the deviation of g(u) from spherical symmetry. We can express
this effect in terms of the moments of g(x) by expanding the function [50] in powers of «,

(53]

flm(RIZ) = .flm(RO) + Lluvm,f}ryl(RO) + 'ZL”uu[)VuVDflm(RO) + oo
Averaging [53] over g(u), we find up to second order

[54] CSinlR12)D = finlRo) — Ilt‘l;Rozvzzflm(Ro) + zlz‘nRoz(V12 + VTZ)fIm(RO)
where

[55] {=<ul + uy2 — 2R

and

[56] =l — u Ry

and where we have used the fact that Af,,, = 0. The directions x, y, z refer to the principal axes of the quad-
ratic form (w,uy>. For ip pairs these axes coincide with the pair frame, as follows from symmetry. For op
pairs, the matrix (u,up,) is not exactly diagonal in the pair frame, which leads to terms in the effective inter-
action [11] with m = + 1. Our calculations (9), as well as those in ref. 6, show that the non-vanishing off-
diagonal element {u ., ) is small in the pair frame, and we shall neglect it (cf. also the discussion after [21])
by assuming that [54] is valid in the pair frames of ip and op pairs.

Using the gradient formula,

{57] RoV, fiu(R) = = [ + D@L+ DIP2CU L, L+ 15 mp) fih g s o(R)
and the explicit expressions for the 3j-symbols (ref. 14, p. 36), we find that in the pair frame
(58] SimR12)D = Eri1,Bmo + &i 1 PGz + 8,3)
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where

[59] Srpry =1 =0+ D)X+ 2)/4

and
[60] &y, = n[(/ — DI+ DU+ 2))'728

The result [58] is a generalization of the well-known
quadrupolar reduction factor (10, 11). Since the rela-
tive motion of the molecules has smaller amplitude
in the direction of their separation than in the trans-
verse direction, we have generally { > 0, and all
multipole interactions are reduced by the zero-point
lattice motion. The oblateness parameter, £, and the
nonaxiality parameter, n, may be regarded as
independent of the angular momenta of the two
molecules, since the lattice vibrations are muainly
determined by the isotropic intermolecular forces. [t
then follows that the reduction factors for the
different multipole interactions satisfy simple alge-
braic relations. In particular, from [59] we obtain

(I = &/l = &43) = 2/3

(61]

(1 - E.>65)/(1 - E.>54) = 7/5
where
(62) Csq = 1 — (15/2)C

is the quadrupolar reduction factor.

The second term in [58] leads to an effective inter-
action with different tensorial properties. The
existence of such an interaction is contingent upon
a deviation of the pair distribution function from
cylindrical symmetry about the pair axis. For the
EQQ interaction we have (5, 6)

[63] E.>54(2) = 3\/m7]/4

and the corresponding interaction term contributes
to the splitting of the ground state doublet.

In a microscopic calculation of the parameters
and n one can distinguish two contributions. One
can be expressed in terms of properties of the phonon
dispersion relations, such as the difference between
the longitudinal and transverse speeds of sound, and
the dependence of the frequencies and polarization
vectors on the angle between the direction of propa-
gation and the crystal axis. These effects can be
calculated on the basis of an anisotropic Debye
model (9, 23). The other contribution is due to the
short-range correlations between the motions of
nearest neighbouring molecules, which can be taken
into account in a perturbed Einstein or Hartree
model (3, 6, 9). For the quadrupole reduction factor

(70] C(441; 00) B, (R, ) =

m'm’’
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the short-range contribution gives

[64] Eey = 0.93

for both types of pair. In the anisotropic Debye
model the reduction factors for ip and op pairs are
slightly different, the results being

Esalav) = $[Es4(ip) + Es4(op)] = 0.98
Alsy = Es4(ip) — Es4(op) = 0.0]

cf. (9) with the set [N] of elastic constants. Com-
bining (64] and [65] we obtain

[66] Es(av) = 091

corresponding to the value { = 0.012 of the oblate-
ness parameter. This result agrees with that obtained
in HBH, &5, = 0.907, on the basis of a self-consistent
calculation including both the phonon anisotropic
and the short-range correlations. However, the dif-
ference AEs, was not obtained in HBH.

The non-axiality parameter n was calculated in
ref. 9 in the form

(67]

[65]

n="Np + Mg

where M, and ng denote the contributions in the
generalized Debye and perturbed Einstein models,
respectively, which are given by

nolip) = 1.20 x 107°

[68] nplop) = —0.95 x 1077
and
(69] ne(ip) = § nelop) = A <0

The magnitude of A is quite uncertain and in the
present work we shall treat A as an adjustable
parameter. Our calculations in ref. 9 gave A =
—0.77 x 1073, and the results of HBH correspond
to A= —0.53 x 1077 agreeing in sign and order of
magnitude.

B. Renormalization of the Polarization Interactions

As discussed in Sect. 3, the effective EQQ inter-
action in the manifold F;, ® F, consists of a first-
and a second-order part. It was suggested by HBH
that the renormalization of the second-order part,
[39], can be effected by multiplying the coefficients
B! by the factor f defined by [4]. As will now be
explained, this approach is not completely correct
and must be modified. With respect to an arbitrary
frame which is fixed in space and does not follow the
molecular motion, the coefficients in [39] can be
shown to be given by

Y. C(44l m'm” m)f anA Ry 2) fam A R12) B (Ro)

where BUp'9(R,) is given by [40]. Averaging over the zero-point motion, we get
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[71] <B($IIHIZ)(R12)> = glmB(ﬁ(l)IZ)(RO)
where
[72] C(441;00)g,, = Y, C@4L; m'm" m) fom Ry fun (R 2)D

m'm’’

We can evaluate g, to second order in the displacements by putting I = ,|#>{#n| in [72] and retaining only
the zero- and one-phonon states |#) rather than all phonon states. In this way we obtain

(73] &im = &uw'" + g

where

[74] C(441;00)g,, > = > C(441; m'm" m)<0| £,,,105<0| £,,,-10>

and "

[75] C(441;00)g,,' ") = > C@4l; m'm" m)uy 0,501 V f1 (R V iy A Ry)

In evaluating [74], we neglect the non-axiality of the pair distribution function, and obtain
[76] gIm(O) = E_v542 61110 (/ = 01 21 4)

Since the trace of the tensor Vfy,,. Vf4,, in [75] does not vanish, we may replace the tensor {u,,u,,) by its
isotropic part,

[77] <"12”12>ua = %’<"122>615
Using [57], and the relation (ref. 14, p. 130)

[78] 3 (6 ) (6) (o r0) = ~ {0010

we find that in the pair frame

551\

[79] C(441; 00)g,,,'" = —165C(55I; 00)1441j'5mo<"122>/R02
Combining [76] and [79], we obtain

(80] 8im = o [E54> + v, <u12* Y/ Ro’]

where

(81] J Yo = 15, v, = 14, v, = 35/3

Using the values of &5, and {u,,2>/R,? from [66] and [103], we get

[82] Zoo = 1.70, g20 = 1.64, 840 = 1.50

This means that the second-order EQQ interaction increases by 50-707, depending on the value of /, when
averaged over the zero-point motion. For comparison, we can treat the factor f of [4] in the same approxima-
tion, and we find

[83] f= &542 + 23_5<”122>/R02 = 1.31

Hence this factor is considerably too small and neglects the variation with /.
It should be noted that the same factors [80] describe the renormalization of the coefficient [46], so that
its renormalized value is equal to

[34] E9D) = g0E 39

This can be seen by noting that [46] describes the orientational polarization of the ‘missing’ para molecule at
R, by the quadrupole field of the ortho molecule at R;.
The renormalization of the three-body interactions can be performed in a similar way. The instantaneous



318 CAN. J. PHYS. VOL. 57, 1979

values of these interactions can be regarded as given by [43] and [44], if in those equations we let
R, = R,-,,0 + w;,, where u;, = u, — u; is the relative displacement of the molecules / and p from their
equilibrium positions, R and R,®, and R;,° = R, — R°. The functions to be averaged depend on three
position variables and are of the form

[85] Flmj( RI 2 RZ p) = (ROZ/RI pRZ p)j+ ! T({;’;x)( Rl p* RZ p)

where j = 3, 4 refers to the dielectric screening and orientational polarization interactions, respectively.
Expressing [85] in terms of the harmonic functions f;,(R) and averaging, we get

[86] <Flnlj(Rlp> RZ[J) = Z C(JJ[’ ’711’7’12”1) <0,_f:iml(Rlp)’l\.fjmz(RlZp)|0>
To second order in the displacements, only the zero- and one-phonon states need be retained in the expan-
sion | = X, In><{n|, giving

[87] <F1mj> = <Flmj>(0) + <Flmj>(1)

In the zero-phonon term we assume that the distribution function of the relative displacements of molecules

i and p is axially symmetric about R;,°, and that its deviation from spherical symmetry is appreciable only

for nearest neighbours, for which R;° = R,. Then we can write

[88] <0|f_,m(R|p)|O> = §j+1,j (Ripo)fjm(Ripc)
where

- féj+1,1 if R;,° = R
[89] E.:j+1.j(Ripo) - l l ifRipo > RZ

where §;., ; is given by [59]. Thus, the contribution of the zero-phonon term,
[90] <Flnlj(Rlp’ RZp)> = E.!j+ 1,j (RlpO)E_:j+ 1 ,j(RZpo)Flmj(Rlpos RZ po)

to the renormalization of both types of the three-body interactions is expressed in terms of a single param-

eter, {, defined by [55]. In evaluating the lattice sums [43] and [44], we must multiply the contributions of the

first, second, and residual shells by a different power (£2, €, and 1) of the appropriate reduction factor (5).
The one-phonon term in [87] can be written in the form

[91] <Flmj>(1) = Z C(JJ[1 ’771’”2”7)A: Vf:iml(Rlpo)V.fjmz(RZpo)

mymy

where the gradients are taken with respect to the position of particle p, and the matrix A is given by

[92] A= <0|u1pu2p|0>
Restricting ourselves to the isotropic part of A,
[93] Ay = Ady

using [57], and recombining the spherical harmonics to form bipolar harmonics, we get

[94] (F,>® = AR7*(j + D2j + D@j + 3) ¥ (=)"Frn’ (R, Ry,

'm’

cnan -y ’_)("“J_l)(f“il)(-’“ )
e mymy m)\m +pn mpf\m, —p myp/\m +p o my—pm

The last line of [94] can be evaluated with the help of a 6j-symbol, giving

i+ 1j+11
95 _ l+m+16 ,6””"’_{] + ' }
[95] () by T T
Using an algebraic expression for the 6j-symbol (24), we finally obtain
[96] P = —(A2RA( + 2/ + DU+ 2 + ) — 2/ — (0 = 2/ — DI'? F, !

which agrees with the expression given in HBH except for what is probably a misprint in eq. [A. 10] in ref.
6, which should read <u,*> = (3/A).
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The isotropic part of the matrix [92],
[971 A=4tr luu, + upny, — wn, — u,uy)

is described sufficiently accurately by the isotropic Debye model (7) in which the phonon frequencies are
assumed to be independent of the polarization and propagation directions. In terms of this model we have

(98] <ui"j>aﬁ =3 aﬂ<"2> (I — cos ¢p Rij)((lD Rij)_z

where {w®) refers to the single-particle distribution, and gy, is the radius of the Debye sphere. For a close-
packed lattice, goR, = (6n2/2)'/* = 4.375, and the value of (#®> in solid H, as measured by inelastic
neutron scattering (25) is (u*> = 0.48 A2. As seen from [96]-[98], the one-phonon renormalization of the
three-body interactions depends on the shape of the triangle formed by the three interacting molecules.
However, the renormalization is appreciable only for nearest neighbours, and hence we need consider only
the first two shells, We can then express [97] in the form

[99] A=35tr luu,) = 1/6(11,-,,2>
where i = 1 ori = 2 and

[100] <"ip2> = 2<"2>[1 - 2(1 — cos gp, Rip)((ID Rip)_z]
R;, = r,R, being the larger of R, and R,, (cf. eq. [A2]). The ratio

[101] K = {u;,t )2 u?)

is appreciably different from I only for the molecules p in the first shell, as can be seen from Table Al in the
Appendix, where this ratio is given for all allowed values of r,. Putting « = | for all molecules p in the second
shell, we obtain A4(2) = +{u?) for the contribution of this shell to 4. For the contribution of the first shell we
get from [99] and [100], A(1) = 1.72{u*)/6, giving

[102] A2 RyE = 4.8 x 1073, A(2))2 Ry = 5.6 x 1073
and
[103} uy 2 /R, = 0.058

the quantity to be used in [80].
The resulting one-phonon contributions to the renormalized three-body interactions are given by

A(s) (330 < 4.
T (I + 10)(/ + 11)(10 — )9 — 1)1221;5,,,, (s)

[104] SDC2(s) = —175T4p

for the dielectric screening, and

875 [y2 A(s)
E(ZZ) — 0
[105] 6 Im (S) 3 B 2R02

I+ 12)( + 13)(12 — D11 — /){‘2“21:’2}-5,,,,5(5)

for the orientational polarization. The index s = 1, 2 refers to the two shells, and the lattice sums are defined
by

[106] Slmj(s) = Z Flrnj(Rlpa RZp)

pes

These sums are easily evaluated with the help of the bipolar harmonics T4/)(R Rzp) tabulated in the

im

Appendix. Our results for the coefficients [104, 105] are presented in Table 4.

1p>

C. Self-energy Effects and Dynamical Renormalization of the Anisotropic Interactions

In addition to the renormalization effects discussed so far, the coupling between the rotational motion of
the molecules and the lattice vibrations leads to a number of typical self-energy effects arising from the
emission and reabsorption of virtual phonons (7). For single ortho impurities these effects are the main
source of the crystalline field (7, 26). For ortho pairs, several additional effects appear in second-order per-
turbation theory, viz., the quadrupole induced strain (HBH), exchange of virtual phonons by the two ortho
molecules, and cross terms between the ortho—ortho and ortho-para interactions. As pointed out in ref. 8,
these effects contribute to all of the symmetry parameters [19, 20], and in general these contributions are
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TaBLE 4. Numerical values of the coefficients D22 (s), eq. [104], in units of [(Top) A(s)/2Re*] and SEZ2) (s), eq. [105], in units

of [(T*/B) A(s)/2R4?]. The contributions of the first (s = 1) and the second (s = 2) shells are tabulated separately with respect
to the pair frame for each type of pair

In-plane pairs Out-of-plane pairs
im 3D(1) 8D(2) SE(l) S8E(2) 8D(1) 8D(2) SE(1) SE(2)
00 1134.3 208.7 —676.1 419.0 1134.3 212.9 —676.1 420.9
20 —394.1 —383.9 1570.5 —349.5 —394.1 —385.0 1570.5 —346.6
22 —127.6 92.0 90.2 22.3 —382.8 246.7 270.6 213.3
40 —954.3 12.7 —1068.3 ~44.7 —954.3 9.4 —1068.3 —48.2
42 —52.5 3.1 —108.2 17.6 —157.6 14.1 —324.8 53.0
44 401.9 —~70.3 —72.3 —50.0 —516.7 115.8 93.0 9t.1

different for ip and op pairs. The difference in the lowering of the ortho pair levels due to the phonon self-
energy effect is of particular importance in determining the relative position of the energy levels of ip and op
pairs. Leaving a fuller treatment of these self-energy effects to another paper, we include here only the
Q-induced strain which is also the only effect included in HBH. This interaction may be calculated by
assuming that the relative displacement of the two ortho molecules has a spherical distribution and can be
described by a simple Einstein model.

The unperturbed Hamiltonian of the two ortho molecules is thus given by

[107] Hq = (Pl2 + Pzz) + %"770)52("12 + "22) + B(le + Jzz)

2m

and the perturbation, V, is the potential of the average force between the two molecules due to the EQQ
interaction,

[108] V=u,"ho,on,)
where u,, = u, — u; and
(109] Ko, 0,) = <VVEQQ((D1> 0y R3)> = &s VVEQQ((DU 0;; Ry)

The factor &5 describing the reduction of the quadrupole induced force is related to &s, by [61]. To second
order, the shifts in the energy levels due to the perturbation [108] are determined by the equivalent operator

[110] G = —(hwp) ' <0lu,u,,0>:Py h Py h Py
where P, is the projection operator onto the manifold F;, = F, = |. The intermediate states corresponding to
F, =3 or F, = 3 may be neglected since 10B >» hwg. Using [57], [36], and [78], we obtain
[111] G=¢&s")y Y G Tq
m

where, relative to the pair frame,

441"

: 551 221, §221,)
[112] Gl = 8662508,,08(21, + )21, + I)C(SSI;OO)I { e {221
! oM 2 V4410 LI fQILL 221;

and g is the dimensionless parameter

[113] g = (Do/hwg) <u;,*)/Ry?

The Einstein frequency can be estimated from the width of the single-particle distribution, eq. [52] of ref. 9,
giving [o/hoz = 1.3 x 1072, In the Einstein model, we have {(u,,>> = 2<{u*>, giving

[114] {u 2Ry = 6.7 x 1072
and hence
[115] g=285x10"%

which is the value we will use in Sect. 5.
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5. The Effective Pair Hamiltonian and Frequency Fit of the Microwave Specira

The coefficients in the effective Hamiltonian [I 1] of the ortho-pair system are given by

L116] HU =@+ B+C+ D+ E+ G4

lm

where the nonvanishing contributions corresponding to the values [19] and [20] of /,/,/m are given by

[117a] AGYH = 2032)[5, E, +
[117b] Bl = § o BUD
[117¢] CEO = o3[ -

[1174]

[117¢] EGYH —

[1171] EGY) = 8,0820E%0
[117¢] GO = 8,0865° G5

The contribution of each term in {11] to the energy
of the pair levels is found by using the Wigner—
Eckart theorem (14) and the reduced matrix elements
[8]. The resultant matrix elements are summarized n
Table 5. Some of the parameters appearing in [117}
are well established, viz.,

I*O, B(f})IZ),D(ZZ)(S), E(ZZ)( ) E(?-O)

Im lm

whereas the values of the other parameters are less
certain. The coefficients

2 22 22
glnn &j-é—l,j’ &54( ) 8D( ) SE( )

im > im

depend on the shape of the pair distribution func-
tion, g(u), parameterized by £, m, and {u,,*>/Ry?.
The parameters €,/ = 0, 2, 4, are quite uncertain due
to the crudeness of our knowledge of the functions
g,(R;,). Even larger uncertainties are associated with
the crystal field parameters, ¥, and AB, whose non-
vanishing values are due to the interaction between
the rotational motion of the molecules and the lattice
vibrations.

The experimental information obtained from the
microwave spectra of nearest-neighbour pairs was
summarized by HBH in eqs. [21] and [22] of ref. 2,
which we reproduce here:

[118a] A(22) = —1.484
[1185] A1) = —0.422
[118¢] A°'(21) = 0.663

[118d] AiN22) 4+ Al"(2]) = 1.241
[118¢] A"(21) = 0.0

and

{119a] E°UY(22) — E°*(10) = 15.134
[1195] E“Y(10) — E°M'(21) = 70.497

DG = [E43*D(1) + E43D(2) + D(r) + 3D(1) + 8D(2)]75)

3000,4(E548,0 + 554(2)8",,1:2)]

3 V C2IH(B cx) + 2611(OZ§]

Im

[E542E(1) + Es,E(Q2) + E(r) + SE(1) + SE(2)]152

[119¢] E®Y(11) — E°"(21) = 65.192
[1194] E"(22) — E'"(21) = 85.354
[119e] E™(00) — E'"(21) = 71.280
[119f] Ei"(10) — E'"(21) = 70.228

where 2A(FM) denotes the splitting and E(FM) the
mean energy of the doublet (FM), and the numbers
are the corresponding frequencies in gigahertz.
Equations [118¢] and [119f] follow from the assign-
ment of the line B, as due to forbidden transitions
between the (21), and (10) levels of ip pairs. This
assignment is less certain than that of the other lines.
As pointed out by HBH, the intensity of B, is
anomalously high and cannot be explained by an
‘electric’ violation of the selection rules (1) due to
the anisotropic part of the polarizability. ‘Mechan-
ical’ violation of the selection rules may account for
the anomalous intensity, and HBH suggest a possible
mixing of the states |00)> and |10). However, an
admixture of [00) into |10) would allow only transi-
tions from the (21)_ state, since the transition
(21), — (00) is also forbidden. Moreover, the inter-
action which would mix the (00) and (10) states
must be of the form 7/4/>) which is forbidden by the
crystal symmetry, cf. [I5]. Consequently, even though
the interpretation of B, by HBH remains the most
plausible one, we shall not use it on an equal footing
with the other assignments.

Assuming that &5, and &, have the same value for
the two types of pair, and adopting the theoretical
value Es, = 091 for the quadrupolar reduction
factor, we are left with eight adjustable parameters,
viz.,

[120] £, 2, Ea, V), BB(p), A
the other parameters being fixed by [61], [67]-[69],
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TaBLE 5. Matrix elements of the basic operators within the ortho-pair manifold. Tabulated
are the values of o'/ (FM|T"IDFM > for the axially symmetric operators [19], and
{FMITY 2| FAM )y for the doublet-splitting terms [20]°

(a) Axially symmetric contributions

(t112) Flyi2) Uyla) —
oD CFMT DI FM ) for (3 =

(o)

(30)

()

(30)

(a0)

M
20 18/5 1/10 1/10 1/5 —1/2 —~1/2
2+2 3/5 - 1/10 1/10 —1/5 1/2 —1/2
2x1 —~12/5 1/20 1/10 1/10 —1/4 —-1/2
10 0 —7/10 —1/2 —1/5 -1/2 1/2
1 +£1 0 7/20 -1/2 1/10 1/4 1/2
00 0 0 1 0 0 1
(b) Doublet splittings
<FM’T(lllnl: ) > Or “l:l:” =
22 22 22 20 11
FM (44) (42) <22> (22) (22)
22 3/5 0 0 0 0
(3 VENE
o 0 13" Q) 1
6 1 1/2 l _3 _1 i 1/2
2 0 _§<7> 0(7) 2(5) 1

«Notation for the states, |[FM > = |11 FM ) is as defined by [10].

[80], [102], [103], and [lI5]. For Iy, p, B, Ry, and
(u*» we take the values given in Table 1. We begin
by fitting the theoretical expressions for the energy
levels, [116], [117], and Table 5, to the experimental
values, [118 b, ¢, d]and [L19 a, b, ¢, d, ¢]. This yields
eight independent equations in the eight unknowns
[120], forming a linear system denoted by S,. At this
point we are not using [l18¢] and [119f] resulting
from the assignment of B,, nor [ll8a] because,
given the value of &5,, the splittings A(22) contain no
adjustable parameters.

The parameters [120] can be determined by
solving S,. Alternatively, we can reduce the number
of free parameters further by putting A = 0, which
amounts to assuming that 1 is given correctly by the
Debye_model result [68], and by letting V.(p) = V.
and AB(p) = 0, which corresponds to neglecting the
quasistatic distortion induced by the pair of im-
purities. By adjusting the remaining four parameters
(o, &,, &4, V) we find that S, can then be satisfied to
an accuracy of about 0.3 GHz, which is better than
the fit in ref. 2 involving a larger number of free
parameters. By relaxing the above constraints and
solving S, exactly, we find A = —0.25 x 1073
which has the same sign as predicted by the Einstein
model (9) and which results in

n(ip) = 1.1 x 1073

121
[i21] n(op) = —1.2 x 1073

Next, we proceed to vary the assumed value of
Es4, and for each value of €5, we solve the system
S, exactly for the parameters [120]. For each value
of &5, we can then calculate A(21) and A*'(22).
These calculated values are plotted as functions of
the assumed value of s, in Fig. 2. We have included
the contributions to these doublet splittings of the
higher-order, three-body polarization interactions
calculated by HBH and scaled by [,*/B2, TI'y*p/B,
and Iyp? These terms contribute mainly to A(22).
Using the unrenormalized values [}/B% = 2.49 x
1073, Ty?p/B =329 x 1073, and Typ? = 4.36 x
107* GHz, we find the following values for these
contributions to the doublet splitting, in gigahertz:

A(22) A(LD) AQ21)
[122] ip -0.232 0.003 —0.030
op 0.304 0.0l5  —0.090

As seen from Fig. 2, both [118a] and [118¢] are satis-
fied in the same region of values of &s,. The hori-
zontal lines are the error bars for these equations
which we assume to be established to an accuracy of
+25 MHz. To this accuracy, both equations are
satisfied for 0.89 < &5, < 0.91, which agrees with
the theoretical values of &5,. The best fit occurs at
s4 = 0.899.

Once the system S, is satisfied, the frequency of
the ‘forbidden’ transition (21), — (10) for ip pairs
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od
A" (213 [on:z)
o1f
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0.21
=
3 o™ (22) [oH: ]
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e
0.84 0.86 0.88 0.90 092
€sa

FiG. 2. Dependence of our theoretical predictions for the
doublet splittings A"(11) and A°*(22) on the assumed value
of &sa(av). The observed splittings along with their estimated
error margins are indicated by horizontal lines.

is established independently of the assumed value of
£s4. The predicted value, E™(10) — E(21) =
70.224 GHz is in excellent agreement with v(B;) =
70.228 GHz, eq. [[19f]. If we maintain the assign-
ment of B, proposed by HBH, this result implies that
Es4 1s the same for ip and op pairs to the accuracy of
1 in 10°. This is illustratéd in Fig. 3, where the pre-
dicted value of E™(10) — E™(21) is plotted against
an assumed difference A& = &5,(ip) — &s4(0p). As
mentioned earlier, the plot in Fig. 3 is independent of
an assumed value of the average reduction factor

Esq = »~[§54(1P) + &s4(0p)].

In the region of values defined by
[123] 0.89 < &5, < 091, |AE| < 1073

all the Il independent egs. [118], [119] are satisfied
with the following values of the adjusted parameters,
in gigahertz:

[124a] g = —0.382 + 0.02
[124b] £, = 0.333 +0.06
[124¢] £, = —0.552 + 0.20
[124d] V(ip) = —0.427 + 0.06
[124e] 7(op) = —0.170 + 0.12
[1241] AB(ip) = 0.157 + 0.06
[124g) AB(op) = —0.330 + 0.08

The first numbers in the right-hand side of [124]
correspond to the ‘exact fit’ at &;, = 0.899 and

ElO)-E@1) [6H1]

70.2

701+

70.0r

69.91

-20 -10 0 10 20
A, x 10

F1G. 3. Dependence of our theoretical predictions for the
transition frequency between the (21) and (10) levels of ip
pairs on the assumed value of Afs, = E54(ip) — Esa(op). The
horizontal lines indicate the frequency of the B, line and its
estimated margin of error.

AE = 0, and the error margins reflect the variations
in the values of the parameters over the region
[123]. The resulting orientational level structure is
given in Table 6. The zero of energy chosen in Table 6
is arbitrary and does not coincide with the energy of
two non-interacting ortho molecules. With the help
of Table 6, we can predict the frequencies of the
most important as yet unobserved lines, L, ..., Ly,
viz.,

wWL,) = E™20) — E™(00) = 91.99
[125] v(L;) = E*'(20) — E*(11)_ = 97.54

v(Ly) = E®'(20) — E°(11), = 98.38

v(Ly) = E™20) — E™Q21)_ = 163.27

in gigahertz.

TaBLE 6. Orientational level structure (in
gigahertz) of an ortho pair®

In-plane Out-of-plane
pairs Level® pairs

95.943 2,0 95.741
19.271 2,2)+ 16.739
16.794 (2,2)- 19.708
3.956 (0, 0) 3.969
2.903 (1, 0) 3.089
—2.477 {a, D, —2.638
—1.749 (1, - —1.794
—67.319 2, D+ —66.745

—67.324 @, 1)_ —68.071

eQbtained from [11], {117}, and Table S, with the
effective parameters as given by Table I, [121], and
[124]. The higher-order polarizability coniribution
[122] is included.

sDesignation of the states, 2[(FM).> = |FM)
+ |FM), where M > 0, is in accordance with refs.
1,2, 5,and 6.
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We point out once more that our fit rests on the
interpretation of the B, line, eq. [119f]. Without
[119f] the experimental information is not sufficient
to rule out a possible difference in the quadrupolar
reduction factors for ip and op pairs. If we adopt the
theoretical value AE = 0.0 obtained (9) on the
basis of the generalized Debye model, then [I119f]
is not satisfied, but all the other equations are satis-
fied perfectly with the following values of the
effective parameters,

g, = —0.54, &, = 0.55,
V.(ip) = —0.43, V.(op) = —0.17
AB(ip) = 0.60,  AB(op) = —0.72

The predicted frequencies of the lines L,,
this case are

w(L,) = 93.4,
w(L;) = 97.5,

g, = —0.54
[126]

L,

w(L,) = 96.6
v(L,) = 164.7

The line L, has been observed in the Raman spec-
trum of solid hydrogen (27). The quoted frequency
v(Ly) =550 £ 0.lem™'orwl,) = (165 + 3) GHz
agrees within the experimental uncertainty with both
[125] and [127]. A high-resolution determination of
any of the lines L,, ..., L, would clearly be of great
interest.

[127]

6. Discussion and Conclusions

The values [124] of the effective interaction param-
eters obtained in our fit appear quite reasonable.
The value of I', defined by

[128] T = EsuTo + (6/5)8, = 17.22 GHz

agrees well with the nmr data on dilute o-H, pairs in
p-H,, (28), and our values for the &, are in reasonable
order-of-magnitude agreement with the theoretically
calculated, unrenormalized, €,. The calculations of
Raich er al. (19) give g, = —0.06, &, = —0.81,
g, = —0.48 GHz. From the anisotropic potential
given in (29) one can extract® the values g, = —0.42,
g, = —0.57, e, = —0.91 GHz, where only the R™¢
and R™® contributions are included. The main dis-
agreement between these values and [124] is in the
sign of ¢, and this may be related to our incomplete
inclusion of the quasi-static distortion effect. The
values obtained for €, and &, in ref. 2 are similar to
ours, although in other respects the results of our fit
are quite different. The values of the crystalline field
parameters V. and AB in [124] are different for ip
and op pairs, and are not directly comparable to the
crystalline field measured at the site of a single
ortho molecule, for which the upper limit is |V | <

3W. N. Hardy, private communication.
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0.58 GHz with the sign uncertain (30). If the sign of
V. for single ortho molecules is assumed to be the
same as the signs of the parameters ¥(p) given in
[124], one obtains ¥, < 0, implying that the ground
state of a single ortho impurity corresponds to
m = +1. However, in our view it is more likely that
no simple relation exists between V. and the pair
parameters V.(p).

The main difference between our work and that of
HBH lies in the treatment of the phonon renormali-
zation effects. In analyzing the doublet splittings,
A(FM), HBH used two adjustable parameters, V,
and 7, which are essentially equivalent to our
V. and 7, respectively. It was assumed in HBH that
Vip) = V(op) = V. and Ty(op) = 4T (ip) = T,
cf. eq. [1]. It is the latter assumption which we feel
leads to difficulties, as discussed in ref. 9. Adoption
of [1] forces a positive value on ¥, when the theoret-
ical values are fitted to the data [118]. As a result,
the splitting A°*'(11), which is one of the best known
experimental values, is not given correctly and in
fact has the wrong sign, and in this respect our
approach based on [67]-[69] is clearly more accept-
able. With the three adjustable parameters V. (ip),
V.(op), and A, we are able to fit the data [[18]
exactly. Moreover, by putting A =0, and even
V.(p) = V,i.e., using V. as the only free parameter,
we obtain better agreement with the observed
splittings, than obtained in ref. 2. Thus, the most
important difference between this work and HBH
lies in the treatment of the axial asymmetry of the
pair distribution function, i.e., in the use of [67]-[69]
for the parameters 1(p), leading to the values [121],
rather than [1].

The other differences between the two theories do
not seriously affect the quality of the overall fit, but
they do lead to appreciably different values for the
effective parameters. For example, the parameter f,
chosen in HBH to describe the renormalization of
the second-order EQQ interaction, was assigned the
value f = 1. In view of our result [82] for the corre-
sponding renormalization factors [80], this means
that the effect of the two-body terms involving
[,2/B was underestimated in HBH by amounts
varying from 50 to 70%,. The effective quadrupolar
reduction factor, [',/[y, i1s varied in HBH inde-
pendently of the renormalization of the polarization
interactions and of the EQQ-induced strain, whereas
in our theory the relations between these effects are
taken into account, cf. Sect. 4.

The EQQ-induced strain is treated in HBH on the
basis of a more sophisticated model than the one
used in Sect. 4C. However, the main effect is con-
tained in [112], and the two theories give similar
results if one identifies our parameter g, [113], with
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the parameter (3G,° I'o/Ep) of HBH. The results of
a self-consistent, lattice dynamical calculation of
Goldman, quoted in ref. 6, give

[129] 3G To/Ey = 8.46 x 107

which agrees very well with our result, g = 8.5
x 107*. The Einstein model we used describes the
EQQ-induced strain adequately because this effect
does not depend on the detailed shape of the pair
distribution function. One can regard the result
[115], [129] as one of the better established numbers
in the theory. In HBH this parameter is varied and
the result obtained for it by fitting the spectrum,
4.8 x 107*, should be regarded as a renormalized
value, comparable to our result

[130] Eeslg =63 x 1074

Finally, we want to comment on the result ob-
tained empirically by HBH that the effective coupling

constant I is different for ip and op pairs. The dif-
ference found from the fit in ref. 2,

[131] I(ip) — T'(op) = 0.02 GHz

is of the same sign as predicted by the generalized
Debye model (9) and corresponds to Afs, = 1 x
1073, As discussed in ref. 9, a difference of this mag-
nitude does not imply a departure from the ¢/a ratio
from the ideal hcp value, as claimed in HBH. The
result [131] is rather a consequence of the single
positive value for V. resulting from a somewhat

¢

arbitrary fit of [118], as discussed above.
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Appendix

We wish to tabulate the values of the bipolar
harmonics involved in the calculation of the three-
body lattice sums [43], [44], [104], and [105] for all
possible angles R, fizp occurring in the first two
shells of neighbours of the pair. The functions
TY5(R,,, R,,) defined by [23] are evaluated in the
‘triangle” frame (6) in which the z-axis is along R,,
and the x-axis in the plane of the three molecules I,
2, and p. In this frame the functions TYJ) are real
and of the form
[Al]  TYXR,, Ry, = TG0, , 6,,)

im

where 0;, = arccos (z - I?,-,,). For the molecules p of
the first two shells, the value of [A1] depends only on
the magnitude of the largest side in the isosceles
triangle (R, ,, R,,, Ro)- Putting

/ROa RZp/RO)

1p>

[A2] r, = max (R

P ip

and using the fact that
[A3] TY)(m—0

im

2’)7Tt - Olp)

= (_ )’+1”T(jj)(el ps 921))

Im

we find that for even / + m (i.e, for all / and m
occurring in [19] and [207)

[A4] TG = T
independently of whether R, or R,, is the largest
side. The values of [A4] are tabulated in Table Al

for all possible r,,.
With the help of Table A1 we can easily compute
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TABLE Al. The possible values of »,, eq. [A2], for the molecules p belonging to the first two shells, and the corre-

sponding values of k, eq. [101], and T¢7, eq. [A4]
i, =1 r, = (2)U2 r, = (8/3)1/2 r, = ()12 r, = (11/3)42 r,=2

Fa K = 0.86 Kk = 1.00 k= 0.99 k= 0.98 Kk = 0.96 K = 0.95
T3 0.16536 0.06682 —0.05143 —0.12275 —0.28648 — (172
TGP —0.22163 —0.25074 —0.14848 —0.05315 0.23722 (4/21)112
TGP —0.23803 —0.16536 ~0.09659 —0.06510 —0.01510 0
TGP —0.27008 -0.02137 0.19007 0.21917 —0.07246 —(18/77)112
TGY 0.01792 0 —0.10981 —0.15517 —0.12495 0
T3P 0.21332 0.08939 0.03058 0.01368 0.00056 0
TGsH —0.09635 —0.13542 —0.06019 0.00781 0.20457 1/3
TGS 0.04303 0.18993 0.17411 0.11129 —0.15877 —(100/693)*/2
TGP 0.12540 0.20354 0.17016 0.13630 0.04840 0
TGO 0.24318 0.07753 —0.12644 —0.18111 0.02486 (162/1001)'/2
TG 0.12051 0.03092 0.04875 0.07192 0.07159 0
TG —0.16928 —-0.16070 —0.08917 —0.05387 —0.00653 0
T¢ —0,02709 0.11326 0.11283 0.06732 —0.13607 —(1/11)/2
T 0.08768 —0.09430 —0.16260 —0.14032 0.09470 (50/429)*12
T 0.04532 —0.14321 —0.18492 —0.17186 —0.07793 0
TE¢D —0.17480 —0.12152 0.06572 0.14373 0.01245 —(18/143)t/2
TED —0.15942 —0.07438 —0.02757 —0.02562 —0.03174 0
TG —0.01957 0.11479 0.09538 0.06653 0.01023 0

the lattice sums S,/ defined by [106], where now

TABLE A2. Numerical values of the lattice sums S;,,/(s) defined by eq. [106] for j = 3, 4, and 5.
Tabulated are the values of 103 x §,,,/(s) for s = 1 (first shell) and s = 2 (second shell), calculated
with respect to the pair frame for each type of pair

Si(s) for js =

Im 31 32 41 42 51 52
In-plane pairs

00 661.44 880.69 —385.40 —70.92 —108.36 67.16
20 —886.52 902.22 172.12 167.67 350.72 —78.06
22 —105.79 —22.16 55.73 —40.20 20.14 4.99
40 —1080.32 884.21 972.72 —12.98 —699.20 -29.26
4?2 7.96 —32.92 53.56 —-3.19 —70.85 11.55
44 516.18 —87.69 —409.62 71.66 —47.35 —32.72
Out-of-plane pairs

00 661.44 445.21 —385.40 —72.33 —108.36 67.46
20 —886.52 438.10 172.12 168.18 350.72 —77.40
22 —317.37 —292.28 167.20 —107.75 60.43 47.64
40 —-1080.32 393.54 972.72 —9.56 —699.20 —~31.52
42 23.89 —289.91 160.68 —14.40 —212.56 34.66
44 —663.66 303.54 526.65 —118.05 60.88 59.63

[AS:] Flmj( Rl P> RZ p)

=T

()

im

the angle ¢, being the azimuthal angle of molecule p.
The numerical values of the sums S,,/(s) for j = 3,
4,5and s = 1,2 are given in Table A2.

(r,) exp (—imd)/r,/ ™"





