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The orientational level structure of o-Hz pairs in a solid p-H, matrix is studied theoretically, 
with pnrticular attention paid to the phonon renornialization of the anisotropic interactions. For 
the two- and three-body multipolar and induction forces. this renormzrliz;rtion is performed 
:rn;~lyticnlly and the results ;Ire expressed in terms of 21 small number of lattice dynnmical 
pafirniete~-s describing the shape of the anisotropic distl-ibution function. g(u12),  of the relative 
zero-point displacement of ;I pair of molecules. A microscopic c;rlculation of these parameters has 
revealed that the difficulties seni;~iningin the theoretical analysiscnrried out by Harris, Berlinsky. 
and Hardy of the micl-owave spectnr observed by Hardy. Berlinsky. and H- ,rrr~s . - ' .  stem - from an 
incorrect parametrization of the deviations of g(u12)  from cylindrical synimetry. Using our 
renormirlizntion results. as well as a more convenient symmetry cl~rssifici~tion of the effective 
interactions in the solid. we arrive at an 21nalysis of the microwave spectra which appears to be 
free of difficulties. From this analysis we obtain the following values of the effective ;lnisotropic 
interaction constants in solid H2 ;it normal pressure: the quadrupolar coupling constant r ,  = 0.5Y6cnir1, kind the van der Waals coupling const;rntsE,, = -0 .013cni1 .  E, = 0.01 1 c m ' .  
and& = -0.018cm-I. 

On etudie theoriquement la structure 01-ientationnelle les nivezrux de paires o-HZ dans une 
mall-ice de p-HZ solide. en pretirnt une nttention particuliel.e b In renornialisarion des phonons des 
interactions anisotropes. Pour les forces niultipolnires. ir deux ou ir trois corps, et pour les Forces 
d'induction, cette renorni;rlisntion est frrite analytiquenient, et les resultats sont exprinies en 
ternie d'un petit nombre de pir~.>rnietres dynamiques du reseau qui decrivent la fornie de la 
fonction nnisotrope de distribution. g(uI2) ,  du deplacement I-elntif d'une paire de molecules. Un 
calcul microscopique de ces pafirmetres a rivele que les difficultes qui restent dans I'nnnlyse 
theorique effectuee pzu. Harris. Berlinsky et Hardy des spectres de micro-ondes observes par 
Hardy. Berlinsky et Hal-ris proviennent d'une palamerisation incorrecte desdevintions de g(u12) 
de la synietrie cylindrique. En utilisant nos resultats de ~.enormalia;rtion de nieme qu'une 
classific~rtion plus commode des symetries des intel-actions effectives dans le solide. nous ~u-ri- 
vons h une annlyse des spectres de micro-ondes qui ne semble p;~s presenter de difficultes. A 
partir de cette analyse, nous obtenons lea v;lleurs suiv;lntes pour les constnntes d7intel.nctio_n 
~rnisotrope effective dans H2 solide 1 pression normale: In constante decouplage qu;rd~-upolaire TI, 
= 0.596cm-I, el lesconstantesdecoupluge vander WnalsE,,= - 0 . 0 1 3 ~ m - ~ , E ~  = -0.01 1 c m l , E ,  
= -0.018cm-I. 
Can. J .  Phys..57.307(197~) [T~xduit  par le journ~rl] 

1. Introduction 
The rotational level structure of pairs of nearest- 

neighbouring ortho molecules in a solid parahydro- 
gen matrix has attracted considerable experimental 
investigation. This structure has been studied by 
nmr and specific heat techniques, and more directly 
by near infrared, neutron, and Raman scattering, 

'Supported by a grant froni the National Research Council 
of Canada. 

and microwave absorption experiments. References 
to these various experiments can be found in refs. 1 
and 2. The microwave spectra of ortho pairs were 
first obtained by Hardy and Berlinsky (I), and then 
by Hardy, Berlinksy, and Harris (2). These experi- 
ments had far greater accuracy than all previous 
determinations of the pair spectra, and the relative 
positions of nearly all the pair levels were established 
to an accuracy on the order of cm-'. These 
results present a challenge since their interpretation 
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requires the introduction of the finer details of the 
anisotropic intermolecular interaction and of the 
interaction of the pair with the surrounding matrix. 

The theory of the anisotropic interactions in solid 
hydrogen existing in 1975 was sun~rnarized by Harris 
(3). According to this theory, the general anisotropic 
interaction between a pair of ortho molecules in solid 
parahydrogen contains two types of terms: those 
which are invariant under siniultaiieous rotations of 
the two ortho molecules about the pair axis (axially 
symmetric terms) and those not invariant under such 
rotations. The most general interaction between two 
isolated hydrogen molecules beloiigs to  the first 
category. In the presence of only the axially sym- 
metric interaction, the nine-fold degenerate rotational 
level of two J = I ortho molecules splits into six 
levels of which three are doubly degenerate. This re- 
maining degeneracy is removed by terms in the inter- 
action of the second type, called "doublet-splitting" 
terms. The origiii of these ternis lies necessarily in 
the interaction with degrees of freedom other than 
the orientations of the two ortho molecules. 

Two types of doublet-splitting terms were con- 
sidered in ref. 3, the cryst~ll ine field and the three- 
body polarization interactions. The former were 
treated phenomenologically and include all the aniso- 
tropic interactions depending on the orientation of 
only one of the two molecules. The latter include the 
orientatio~ial polarizability effects as well as the 
dielectric screening effects which were also con- 
sidered in ref. 4. Hardy and Berlinsky ( I )  attempted 
to interpret the microwave spectra on the basis of 
this theory but concluded that the theory was in- 
complete. The main difficulty concerned the fitting of 
the observed doublet splittings, and agreement with 
experiment could be obtained only by assigning a 
negative value to  the static polarizability of the 
molecules. This difficulty was resolved in refs. 5 and 
6 by introducing the doublet splittiiig interaction 
arising from the anisotropic renormalization of the 
EQQ interaction by the zero-point lattice vibrations. 
The magnitude of this effect is proportional to the 
non-axiality parameter, q ,  (cf. [56]), of the aniso- 
tropic distribution function of the relative displace- 
ments of the two interacting molecules. In ref. 5 
this parameter was introduced phenomenologically 
and its values for in-plane (ip) and out-of-plane (op) 
pairs were obtained by fitting the microwave spectra 
reported in ref. I. However, this fit required rather 
large values of the crystalline field parameters V,  and 
AB describing the effects of the local distortion of the 
lattice due to  ortho impurities (7). This approach was 
criticized by Harris and Berlinsky (S), who compared 
the work (5) with the much more extensive analysis 

of the pair level structure given in ref. 6. The latter 
work is superior to  ref. 5 in that in addition to the 
q-effect it includes several other new effects such as 
the quadrupole-induced strain (mainly axial terms), 
admixtures of the J = 3 states of the ortho mole- 
cules by the EQQ interaction (axial), and the higher 
order polarization interactions which give a small 
doublet-splitting contribution. Nevertheless, the 
theory (6) is not entirely successful in that it fails to  
explain the observed splitting of the F = 1, M = 1 
doublet, where F, M refer to the total angular 
momentum of the ortho pair. As pointed out by 
Harris and Berlinsky (8), this is the main remaining 
problem in the interpretation of the microwave 
spectra whose resolutioii is unlikely to be found in a 
more exact treatment of the strain effects. 

In our opinion, this problem arises in ref. 6 from 
an incorrect parametrization of the q-effect. Accord- 
ing to ref. 6, the main contribution to  11 comes from 
the anisotropy in the immediate crystalline environ- 
ment of the pairs, which is less axially symmetric for 
op than for ip pairs. This led the authors of refs. 2 
and 6, henceforth referred to  as HBH, to  postulate 
that 

A discussioii of the validity of [I]  can be found in 
ref. 9. The main point is that another contribution to  
q exists, arising from the anisotropy of the phonon 
field associated with the uniaxial symmetry of the 
hcp lattice, which gives a larger coiitribution to 
~ ( i p )  than to  q(op). In ref. 9 we have calculated these 
contributions on the basis of a generalized Debye 
model in which the dependence of the phonon fre- 
quencies and polarization vectors on the direction of 
propagation is taken into account. In contrast to [I], 
these contributions have the ratio 

The theoretical values of q obtained in ref. 9 turn 
out to  be in good agreement with the values required 
to  describe the doublet splittings, as will be discussed 
in the present paper. 

Another important feature of the present work is 
a unified treatment of the various phonon renormal- 
ization effects. Our treatment is based on the relation 

t31 1 - k l , l - ,  = constant x I ( /  + I) 

between the reduction factors, ,, of the different 
multipolar interactions, (10, 11). The relation [3] can 
be derived by tensor algebra on the assumption that 
the distribution function of the relative displace- 
ments of two molecules in the solid is independent of 
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their angular momenta. This allows us to parame- 
trize the phonon renormalizations of all the two- and 
three-body interactions whose dependence on the 
position variables of the interacting molecules is 
known accurately, by using only two lattice- 
dynamical parameters. These parameters are 
(u, - u1 2)/R02 and <, cf. [77], [55], describing, 
respectively, the mean radius and eccentricity of the 
oblate ellipsoid associated with the pair correlation 
matrix, cf. ref. 9. We also correct an error appearing 
in ref. 6 in the renormalization of the second-order 
EQQ Fteraction between the two ortho molecules 
(the / B  terms). In ref. 6 it is assumed that this 
renornialization is given by the factor 

which augments the interaction constants by about 
30%. The correct renor~nalization factors, calculated 
in this paper, are different for the different two-body 
terms and lead to increases varying from 50 to 70x .  

Finally we remark that we d o  not attempt here to 
include via a microscopic theory the strain effects, or 
in the terminology of ref. 7, the quasi-static distor- 
tion effects, which were discussed in ref. 8. Agreeing 
in principle that these effects contribute to all the 
different symmetry terms in the effective Hamil- 
tonian, we feel that the inclusion of these effects, 
other than the EQQ-induced strain, at this stage 
requires the introduction of too many adjustable 
parameters. This situation will, of course, change 
once a reliable theory has been developed of the 
quasi-static distortion effect for ortho pairs. 

The organization of this paper is as follows. In 
Sect. 2 we give the symmetry classification of the 
effective, anisotropic Hainiltonian in the manifold 
of rotational states of an ortho pair. This classifica- 
tion is different and, in our view, more convenient 
than that given in ref. 6. Each term in the effective 
Hamiltonian is a tensor operator irreducible under 
simultaneous rotations of the two ortho molecules. 
The products of such operators can be expanded in 
a Clebsch-Gordan series with coefficients given by 
an expression [36] involving no summations over the 
magnetic quantum numbers (12). In Sect. 3 we 
review the various contributions to the effective 
Hamiltonian in the rigid lattice. The renormalization 
of these interactions by the zero-point lattice vibra- 
tional motion is considered in Sect. 4. In Sect. 5 we 
use the theory to interpret the nlicrowave absorption 
spectra (2), and to derive empirical values of certain 
parameters characterizing the anisotropic interac- 
tions in the solid. The paper concludes with a dis- 
cussion of the results obtained here and a com- 
parison with the work of HBH. 

2. Symmetry Properties of the Effective 
Hamiltonian for a Pair of Ortho Molecules in 

Solid Parahydrogen 
In the single-particle manifold, F, corresponding 

to  a given value of the angular momentum, J2 
= F ( F  + l), the operators IFM)(FMII, M,  M '  
= F, F - 1 , .  . . , - F, form a complete set in the sense 
that any linear operator in F can be expressed as a 
linear combination of these operators. A set of 
linear combinations of the operators IFM)(FMII 
with unitary coefficients also forms a complete set. 
For our purpose, a particularly convenient set is the 
one transforming irreducibly under rotations, ob- 
tained by using the Clebsch-Gordan coefficients and 
defined as 

[5] e,,,(F) = IFM)C(F/F; M1mM)(FM'I 
n-lnr' 

The operators [5] are defined in the full Hilbert 
space of the system but have non-vanishing matrix 
elements only within F, where they can be repre- 
sented by explicit expressions in terms of the com- 
ponents of the angular momentum operator, J. 
These so-called equivalent operators (13) will not be 
used here, because we need only the transformation 
properties of the operators [5]. For F = I, the 
operators [5] are proportional to the F,"' introduced 
in ref. 6, 

e,,,, = ( 8 ~ t / 2 5 ) " ~ F ~ " '  

i61 el,ll = (27T/3)112F1m 
Coo = i = (~K) '~~F,O 

In the two-particle manifold F, @ F2, we choose 
as a complete set of operators the composite tensors 

which transform irreducibly under rotations gener- 
ated by J, + J,. Their reduced matrix elements in 
F, @ F2 are given by (ref. 14, p. 152), 

[8] (F1F2F'Il?(f"2'11~,~2F) 

where 

[9] n ( a b  . . . ) = [(2ri + 1)(2b + 1) . . . ]li2 

and 

[lo1 IF,F2FM) 
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The most general effective Hamiltonian in the the ortho molecules (I, = 0 or l2 = 0) when one 
manifold (F, = 1) @ (F2 = I )  of two ortho mole- considers the interactions common to ortho-ortho 
cules in solid parahydrogen can be expressed in terms and ortho-para pairs. One can then use the full point 
of the operators sy~iimetry of the hcp lattice arid show that this con- 

? ( 1 1 / 2 )  T(!;,,'2)(1 , I) = 1 

in the for111 

The coefficients H(;;,fz) satisfy the following symmetry 
conditions (6). From the her~niticity of fi it follows 
that 

whereas time reversal requires that terins with odd 
values of I, + 1, drop out, assuming that velocity 
dependent interactions are absent, 

Further restrictions arise from the symmetry proper- 
ties of the lattice which is hcp (15). In the presence of 
ortho impurities, the anisotropic interactions distort 
the equilibriunl configuration of the molecules, so 
that the lattice loses its periodicity. This would lead 
to the appearance of terms in [I]  with no particular 
syiiimetry other than [I21 and [13]. We treat these 
terms as corrections to the undistorted lattice in a 
phenomenological way. 

To  take advantage of the syminetry of the undis- 
torted hcp lattice with two neighbouring ortho 
impurities, we define, following ref. 3, a local 
coordinate frame for each pair in such a way that 
both ortho molecules lie on the local z axis and the 
local x-2 plane is a plane of reflection symmetry. For 
the precise definition of the local frames, see refs. 3 
and 9. The local frames used in HBH ere slightly 
different. The conditions imposed on H(;;,fZ) by 
symmetry assume their simplest forin in the appro- 
priate local frame. First, the fra~nes have been 
chosen such that 

is real. Next, for ip pairs the plane i - R = 4 is a 
reflection plane, giving 

1151 ~ ( l r I z ) ( i ~ )  = ( - ) l + " : ~ ( l ~ l z ) ( i ~ )  !,,I 1111 

For op pairs, the midpoint between the two molecules 
is a centre of inversion synimetry, 

[I61 ~(;:,, '~)(op) = (-)'H(f;,f1'(op) 

There are no other symmetry elements in a hcp 
lattice with two neighbouring impurities. However, 
certain additional restrictions arise for those ter~ns  
in [I 11 which depend on the variables of only one of 

tributio~i-, AH, is sy~nmetric about the c axis, 

~ 1 7 1   AH(:^) = ~ ~ ( 2 0 )  - - 111 2111 - &l,loAH(;:) 

where m refers to the c axis. If the coefficient AH(;:) 
results from additive, pairwise interactions, it ~iearly 
vanishes in a close-packed lattice, 

ClSl ~ ~ ( 2 0 )  = 
2 0  C J'(R,;) 2 0 

; + I  

as first noted by Naka~nura  (Ib), cf. also ref. 9. 
The symmetry conditions [12]-[I71 leave 17 in- 

dependent parameters in [I I] for each type of pair 
corresponding to the coefficients H(I;,f2) with the 
following values of (I,:,"), where ni refers to the re- 
spective pair frame, 

and 

for both types of pair, and 

A nuniber of these parameters are eliminated by the 
perturbation scheme ~lsed (6) in the calculation of the 
ortho-pair states, whicli we also adopt. The axially 
syininetric interactions [19], of which the EQQ one 
is the most important term (16), are assunied to 
dominate over the interactions of the types [20] and 
[21]. The axial interactions split the nine-fold de- 
generate ortho-pair level into six levels three of 
which are doublets, cf. Fig. 1. The remaining inter- 
actions are included only t o  zeroth order, i.e., only 
within the remaining doublets. The only non- 
vanishing contributions come from the 'doublet- 
splitting' terms [20], and all the terms [21] which are 
neither axial nor doublet-splitting may be neglected. 

3. Interactions in the Rigid Lattice 
The interaction energy between two isolated H 2  

molecules can be written in the form 
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F M molecule, and the effect of the interaction [22] on 
the states in the rotational manifold F, @ F, can - 20 therefore be treated by perturbation theory. The 
unperturbed Hamiltonian is 

T o  second order in the interaction [22], the per- 
turbed energy levels belonging to the manifold 

c ( 2 2 1 f  F, @ F, are given by the eigenvalues of an effective 

- Hamiltonian (17) which operates entirely within this - 00 
1 0  manifold but which receives contributions from other 

c ( 1  I l k  manifolds. This Ham~ltonian is of the form 

\ where 
- 4r c (211 t  [261 = P,, P,? VP,, P,, 

a b [27] PC2)  
FIG. 1. Energy-level diagram for an ortho pair in s o l ~ d  = - C P ~ , P F ~ V P ~ , P J ~ V P ~ ~ P ~ , / A E ( J I J ~ )  

J I  J 2  hydrogen. ( ( I )  Including only the axial terms [19]. (6 )  Including 
the doublet-splitting terms [20]. The  states jFM) are labelled and 
by the eigenvalues of the total angular momentum of the pair, 
cf. eq. 1101, and , ~ ( F M ) +  = I F M )  _+ IFM). The far left [z81 AE(J~J2) = B[J~(J~  + l )  + J2(J2 + 

. .  . , . -  
column represents the structure whlch results f rom including 
only the first order EQQ ~nteraction. - Fl(F,  + 1) - F2(F2 + 111 

where o , ,  o, specify the orientations of the two 
molecules relative to  a space-fixed frame, R , ,  = 

R, - R l ,  and 

are the bipolar harmonics (14), which should be dis- 
tinguished from the corresponding operators [7] in 
the F, @ F, manifold. The sum in [22] is restricted 
to even values of I,, I,, and I. In the solid at normal 
densities, the anisotropic part of [22] is small com- 
pared to the spacing of the rotational levels of an H, 

The interactions contributing to the anisotropic 
part of [22] include, besides the EQQ interaction, the 
valence, dispersion, and induction forces (18). 
Following HBH, we neglect the contributions of the 
non-EQQ interactions to  the second-order term [27]. 
The effect of the non-EQQ interactions on the 
ortho-pair levels (F,  = F2 = 1) can then be de- 
scribed by a relatively small number of parameters, 
viz., 

where I = 0, 2, 4 and 

The most recent ab  initio estimates of the parameters [29] are those of Raich et crl. (19). The values they 
reco~nmend at  the nearest-neighbour separation (which they take to be Rot  = 3.756 A) are given in Table 1. 
These estimates should be regarded as rather crude because of the large uncertainty in the calculation of the 
valence forces. The EQQ contribution to [22], which corresponds to I, = I, = 2, 1 = 4, is known very 
accurately. The fact that EQQ contributes only to  I = I, + 1, is characteristic for multipole interaction (20). 
With respect to  an arbitrary frame, the EQQ interaction can be written in the form 

C311 V E Q Q ( ~ ,  , a , ;  R12) = (25 /6 )a ( :2 ) ro (Ro~~  I ,I5 C c,,,,*(R,,)T(:,~,'(~,, o , )  
111 

where ro = (6e2Q2/25~,'). For v = 0, J = I we have (21) (01 / Ql01) = 0.48529 au, and choosing Ro 
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= 3.784 A,, we get 

[321 

and this is the value we will use. 
The first-order part, P ( ' ) ,  of the effective interaction between two J = 1 n~olecules is obtained from [22] 

by restricting the sum to  I , ,  I ,  I 2 and replacing the bipolar harmonics by the operators [7] using 

[331 ~ , ~ ~ , , T ( f ; f ~ ) ( o , ,  0 2 ) P F I P F 2  = C(F , I ,F l  ; OO)C(F,I,F,; 00)  $ ( : ; 1 1 2 ) ( ~  ,, F,) 

For I ,  = l2 = 2 we obtain in this way 

[341 ? ( I )  = A(;~:) F;,: 
I,,, 

where with respect to the pair frame 

[351 A't,f' = 2a(f"[(5/6)r ,6, ,  + ~ ~ ] 6 , , , ,  

The terms 1, = 2 ,  1, = 0 and I ,  = 0 ,  l 2  = 2 will be considered separately, cf. [42]. 
T o  calculate the second-order contribution [27] due to the EQQ interaction, it is convenient to use the 

following expression (12) for the product of tensor operators with matrix elements restricted to parts of 
Hilbert space, 

C361 P I - ~ P ~ ~ T ( : : ~ ~ ) ( ~ ~ ,  w ~ ) P ~ ~ P ~ ~ T ( ~ ! ' ~ ~ ~ " ( ~ , ,  0 2 ) P r I P 1 2  = X 1 1 p(f; ,112)T(:; ,;2)(~Ir F2)C(ltkr1; 1111'171) 
I111 1 1 1 2  

where 

[37] x = C ( J , I ( , F ,  ; OO)C(J2k2F2; OO)C(F,I(, ' J ,  ; 00)C(F2/ t2 'J2;  OO)FI(JIJ2/ilt') 

and 

With the help of [36]-[38], we can express PEQQ(,) = P'" in the form [I I], viz., 

[391 p(2) = 1 1 ~(1111)*F(1112) 
I,,, 1 ,,! 

I,,, / , I l  

where with respect to the pair frame we have 

with 

Strictly speaking, the coefficients multiplying the three terms in [40] are I-,', I-,I-,', and I-,", where I-,' 
contains the quadrupole matrix element (01/Q103) = 0.48790 au (21), giving I-,' = 0.6706 cm- '  rather 
than [32], but we shall use the simplified form [40]. The resulting numerical values of the coefficients [40] 
are given in Table 2. These results are in agreement wit11 those of HBH except that the top line in the right 
column of Table 5 in ref. 6 should read -(837/6860) instead of -(71 145/514514). 

The remaining contributions to the effective Hamiltonian [ I  I ]  in the rigid lattice include the crystalline 
field, dielectric screening, and rotational polarization terms. These terms are discussed in detail in ref. 3,  and 
we confine ourselves here to listing the resulting contributions to the parameters I-1(:;lL' of [I 11. 

'R. L. Mills, private communication. This value has recently been confirmed by measurenlents of I. F. Silvera who 
obtains R ,  = 3.788 b. (private communication). 
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T l ~ c  c t ~ ~ s t o l l i t i e , f i e l l  contribution in tlie pair frame is of the form 

where p, u are the polar angles of the local r axis relative to tlie crystal frame. If the latter is chosen as in 
ref. 9, we have (p, u) = (An, i n )  for ip pairs, and (p, a) = (Po, 0) for op  pairs, where cos2 po = 5. The nota- 
tions Vc and AB are in accordance w ~ t h  ref. 3. Both contributions are expected to be quite small in the rigid 
lattice, Vc  being proportional to the deviation of c/a from the close-packed value, and AB to a difference 
between the coefficients B(R) defined in [29] for ortho-ortlio and ortlio-para interactions (3). 

Tile rlielectric ~ c r ~ ~ t l i t i g  (3, 4) results from the quadrupole-induced dipole forces and its contribution is of 
the form 

where p = u/Ro3, u being the isotropic H2 polarizability (Table I), and the SLIIII extends over all para mole- 
cules. Tlie dependence of a on the angular momentum of the molecule (22) leads to a sniall contribution to the 
crystalline field term dB,  and the anisotropic part of the polarizability tensor contributes to the coefficients 
E,. However, the magnitude of these two corrections is well within the present uncertainty in these param- 
eters, and these effects will therefore be neglected. 

Tlie orientat iot7al  / ~ o l r ~ r i z a t i o t l  terms (3) give the contributions 

and 

This last term is of tlie crystalline field type. I11 a physically (5) to the difference between the orienta- 
perfect hcp lattice the sum in [45] evaluated in the tional polarizabilities of para and ortho molecules 
pair frame gives - S,,,,, so that ( J  = 0 -+ 2 vs. J = 1 -+ 3). 

The lattice sums in [43] and [44] were evaluated 

C461 
40625 Fo2 ~ ' y '  = - - 

"' 6048 B u ( ~ ~ ) S , , ~ O  TABLE 2. Numerical values of the coeffi- 
cients B(:f,'21, eq. [40], and G(!;:,:), eq. 

A similar term is contained in [40]. The resulting [112]. Tabulated are the values [B('::]/ 
lion-vanishing value of E'i:) + ~'1:) corresponds a('l,'zl] in units of To2/B and [G('y')/ 

a(",'21] in units of g 
TABLE 1. Various cha~acteristics of solid parahydrogen at  

zero pressure . . 

Equation Symbol Value and units Reference 

1241 B 59.339 cm-I 3 1 
[3 1 1 8 0.48529 a u  21 
1291 E ~ ( R ~ )  -0.002 cnl-I 19 
1291 E ~ ( R ~ )  -0.027 cm-' 19 
1291 E ~ ( R ~ )  - 0 . 0 1 ~  cm- l  19 
~ 2 9 1  B(Ro) - 0 . 3 1 0 c m - '  19 
[3 1 1 Ro 3 . 7 8 4 A  
[43] u 5.4138 au -- 7 7 
[981 (u2> 0.48 A2 25 
13 1 1 r o  19.888 G H z  This work 
[40] ro2 /B 0.222 G H z  This work 
[431 To P 0.294 G H z  This work 

[97], [I021 A(l )/2R02 4 . 8  x This work 
1971, [lo71 A(2)/2RoZ 5 . 6  x This work 

[113] g 8 . 5  x This work 

OR. L. Mills, private co~nmunica~ion 
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TABLE 3. Numerical values of the coefficients D'::) (s) (in units of Top) and E':,:' (s) (in units of 
TO2/B) characterising the three-body interactions, eqs. [43] and [44]. The contributions of the first 
(s = I), the second (s = 2), and the residual (s = r )  shells are tabulated separately with respect to 

the pair frame for each type of pair 

In-plane pairs Out-of-plane pairs 

numerically (cf. tlie Appendix) and the results are 
given in Table 3 with respect to the pair frames. 
Only the independent coefficients are given, the 
others being deducible with the help of the symmetry 
relations [12]-[16]. We have tabulated separately the 
co~itributions from the four nearest neighbours 
common to the two ortho molecules (first shell), the 
remaining 14 nearest neighbours of tlie pair (second 
shell), and the net contributions from the more 
distant neighbours. The reason for separating these 
contributions is that they suffer different phonon 
renormalizations, as will be discussed in tlie next 
section. 

It may be useful to indicate the relationship 
between the coefficients [43] and tlie lattice sums 
g,,, of ref. 3 (or, equivalently, tlie a',,,,,,, of ref. 4, 
which are related to tlie g,,. by d ,,,. = (-)"g,,.), 

Similarly, the E(;~: )  of [44] are related to rhe h,,, of 

(3) by 

In ref. 3 o~ily the first-shell contributions to the sums 
g,,, and h,,, were calculated. At an early stage of 
this work (5) we had computed these sums taking 
into accou~it all neighbours, and found that tlie 
second and residual shells contribute appreciably, in  
some cases changing tlie order of ~nag~iitude or the 
sign of a particular sum. However, when co~iibined 
in the forni of irreducible tensors, tlie su~iis usually 
show a niuch faster convergence, as is evident fro111 

Table 3. The result is that the first-shell contributions 
dominate tlie effects of both tlie dielectric screening 
and tlie rotational polarization on tlie ortho-pair 
levels, and that tlie residual-shell contributions are 
negligible. 

4. Phonon Renormalizatiori of the 
Interrnolec~~lar Interactions 

Since we are interested in temperatures ( 5 4  K) 
low compared to tlie Debye temperature (2 100 K), 
we may assume that the crystal is at 0 K. The effect 
of the lattice vibrations on the anisotropic inter- 
actions will be taken into account in the usual way 
by averaging tlie latter over the zero-point motion 
keeping tlie orientations of the niolecules constant 
relative to space-fixed axes. This results in a signifi- 
cant renormalization of all the two- and three-body 
interactions introduced in Sect. 3. Because of the 
relatively large uncertainty in the functional depen- 
dence of the coefficients in [22] on R , ,  for tlie non- 
quadrupolar interactions, we shall not attempt to 
calculate the renormalization of these interactions 
from first principles. If the distribution function of 
tlie relative displacements of the two interacting 
~iiolecules is assumed to be symnietric about the 
intermolecular axis, the11 the renor~iialization does 
not alter the form of the tensorial expansion [22] but 
only the magnitudes of the parameters [29]. The 
s~nall anisotropy of tlie pair distribution function 
may be neglected for the non-EQQ interactions. We 
therefore simply replace the coefficients E ,  by re- 
~iormalized coefficients, g,, and treat the latter as 
adjustable parameters. 

The renormalization of the multipole interactions, 
on the other hand, can be performed in detail if one 
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knows the   air distribution function. The renormali- 
zation of these interactions is very sensitive to the 
precise shape of the distribution function, inasmuch 
as a spherically symmetric distribution leads to no 
renormalization at all for multipole interactions. 
Effects associated with the anisotropy of the pair 
distribution function are considered in Sect. 4A. In 
Sect. 4B we consider the renormalization of the 
polarization interactions, such as the second-order 
effect [39] of the EQQ interaction and the three-body 
interactions [43] and [44], whose functional depen- 
dence on the position variables is known exactly. 

In calculating these renormalization effects it is 
assumed that the lattice vibrations themselves are 

not affected by the rotational motion of the mole- 
cules. In reality, the anisotropic forces due to the two 
ortho impurities slightly alter the zero-point motion 
of the lattice. The elastic energy of the resulting dis- 
tortion (7) depends on the orientations of the mole- 
cules and thus gives rise to an additional effective 
interaction in the manifold of the ortho-pair states 
(7, 8). These dynamical effects are discussed in 
Sect. 4C. 

A. Renormulization of the Mirltipole Interactions 
The electrostatic interaction between a 2"- and a 

2 '~-pole molecular charge distribution can be written 
in the form (20) 

where I = I, + I,, V , , ~ , ( R ~ )  is the coupling constant, and 

[501 f I ,~~(R)  = (R0/RIf + CI,,~(R) 

The average of [49] over the zero-point lattice motion is of the form 

where II = 11, - 11, is the relative displacement of the two molecules from their equilibrium positions, 
R12  = Ro + 11, and g(u) is the probab~lity distribution of 11 in the ground state. If ~ ( I I )  is spherically sym- 
metrical, g(u) = g(i/), we have 

as follows from the fact that the average value of a harmonic function over the surface of a sphere is equal 
to its value at  the centre of the sphere. 

The renormalization of [49] thus depends on the deviation ofg(11) from spherical symmetry. We can express 
this effect in terms of the moments of ~ ( I I )  by expanding the function [50] in powers of I I ,  

Averaging [53] over ~ ( I I ) ,  we find up to second order 

[541 (f11,,(R12)) = fi,rl(Ro) - ilRo2V?fl,,,(Ro) + 4qR,Z(V12 + Vi2)frt,t(Ro) 

where 

and 

and where we have used the fact that Afl,,, = 0. The directions x, y, z refer to the principal axes of the quad- 
ratic form (11,1rp). For ip pairs these axes coincide with the pair frame, as follows from symmetry. For o p  
pairs, the matrix (u,u,,) is not exactly diagonal in the pair frame, which leads to terms in the effective inter- 
action [I I] with m = + 1. Our calculations (9), as well as those in ref. 6, show that the non-vanishing off- 
diagonal element (~i,u,) is small in the pair frame, and we shall neglect it (cf. also the discussion after [21]) 
by assuming that [54] is valid in the pair frames of ip and o p  pairs. 

Using the gradient formula, 

and the explicit expressions for the 3j-symbols (ref. 14, p. 36), we find that in the pair frame 
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where the short-range contribution gives 

and for both types of pair. In the anisotropic Debye 
model the reduction factors for ip and o p  pairs are 

[60] E,,, , , , ("  = I][(/ - I)l(l + I)(/ + 2)]'"/8 slightly different, the results being 
The result [58] is a generalization of the well-known 
quadrupolar reduction factor ( lo,  I I ) .  Since the rela- [65] 

t j4(av) = +[kj4(ip) + kj4(0p)I = 0.98 

tive motion of the molecules has smaller a in~ l i tude  A554 = 554(ip) - kj4(0p) = 0.01 
in the direction of  their separation than in the trans- cf. (9) with the set [N] of elastic constants, con1- 
verse direction, we have generally ( > 0, and all bining [64] [65] we obtain 
multipole interactions are reduced by the zero-point 
lattice motion. The oblateness parameter, (, and the [661 kj4(av) = 0.9 1 
nonaxiality parameter, 11, may be regarded as 
independent of the angular monienta of the two 
iiiolecules, since the lattice vibrations are mainly 
determined by the isotropic intermolecular forces. It 
then follows that the reduction factors for the 
different inultipole interactions satisfy simple alge- 
braic relations. In particular, from [59] we obtain 

where 

is the quadrupolar reduction factor. 
The second term in [58] leads to  an effective inter- 

action with different tensorial properties. The 
existence of such an interaction is contingent upon 
a deviation of the pair distribution function from 
cylindrical symmetry about the pair axis. For the 
EQQ interaction we have (5, 6 )  

and the corresponding interaction term contributes 
t o  the splitting of the ground state doublet. 

In a inicroscopic calculation of the parameters ( 
and q one can distinguish two contributions. One 
can be expressed in terms of properties of the phonon 
dispersion relations, such as the difference between 
the longitudinal and transverse speeds of sound, and 
the dependence of the frequencies and polarization 
vectors on the angle between the direction of propa- 
gation and the crystal axis. These effects can be 
calculated on the basis of an anisotropic Debye 
model (9, 23). The other contribution is due to  the 
short-range correlations between the motions of 
nearest neighbouring molecules, which can be taken 
into account in a perturbed Einstein or Hartree 
model (3, 6 ,  9). For the quadrupole reduction factor 

corresponding to the value ( = 0.012 of the oblate- 
ness parameter. This result agrees with that obtained 
in HBH, E,,, = 0.907, 011 the basis of a self-consistent 
calculation including both the phonon allisotropic 
and the short-range correlations. However, the dif- 
ference Akj4 was not obtained in HBH. 

The non-axiality parameter 11 was calcitlated in 
ref. 9 in the form 

[671 11 = 11 [> + 11 t: 

where q D  and 11, denote tlie contributions in the 
generalized Debye and perturbed Einstein models, 
respectively, which are given by 

and 

The magnitude of A is quite uncertain and in the 
present work we shall treat A as an adjustable 
parameter. Our calculations in ref. 9 gave A = 

-0.77 x lo-" and the results of HBH correspond 
to  A = -0.53 x 10-f agreeing in sign and order of 
magnitude. 

B. Reiior~molizatioii of tlie Polcii~izlitioir 1iiter.cicfioir.c. 
As discussed in Sect. 3, the effective EQQ inter- 

action in the manifold F, @ Fz consists of a first- 
and a second-order part. It was suggested by HBH 
that the renormalization of tlie second-order part, 
[39], can be effected by multiplying the coefficients 
B(;;f2) by the factor f defined by [4]. As will now be 
explained, this approach is not completely correct 
and must be modified. With respect to an arbitrary 
frame which is fixed in space and does not follow the 
molecular motion, the coefficients in [39] can be 
shown to be given by 

C7OI C(441; 00) B'f;,!"( R ,  ,) = C(441; t i~ 'm" i~~)  f ,,,,,( R,, 2)f4,,,,,( R , , ~ ) B ' { ~ " ( R ~ )  
,11'111 " 

where B(fb12)(~,) is given by [40]. Averaging over the zero-point motion, we get 
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where 

We can evaluate g,,,, to second order in the displacenients by putting 1 = C , , ~ I ~ ) ( I I ~  in [72] and retaining only 
the zero- and one-phonon states 111) rather than all phonon states. In this way we obtain 

[731 g1,,, = ~ I , , , ( O )  + g,,,, (1 )  

where 

and 

In evaluating [74], we neglect tlie non-axiality of the pair distribution function, and obtain 

[761 g , , , , ( ~ )  = 5 5 4 2  6rf,0 (1 = 0, 2, 4) 

Since the trace of the tensor Vf, , , , ,  Vf, , , , . .  in [75] does not vanish, we may replace the tensor ( r i 1 2 r i , , )  by its 
isotropic part, 

[771 (~1,21112>,p = +(ll122>6,p 

Using [57], and the relation (ref. 14, p. 130) 

we find that in the pair frame 

Combining [76] and [79], we obtain 

where 

[811 yo = 15, y ,  = 14, y ,  = 3513 

Using the values of <,, and ( r i 1 2 2 ) / R o 2  fro111 [66] and [103], we get 

[821 goo = 1.70, g , ,  = 1.64, g,, = 1.50 

This nieans that the second-order EQQ interaction increases by 50-702, depending on the value of I, when 
averaged over tlie zero-point motion. For comparison, we can treat the factor f  of [4] in the same approxima- 
tion, and we find 

11831 
2 L3 f ' =  E54 + ( i i 1 2 2 ) / ~ 0 2  = 1.31 

Hence this factor is considerably too small and neglects the variation with I. 
It should be noted that the s&ne factors [SO] describe the renornialization of the coefficient [46], so that 

its renormalized value is equal to 

11841 E C 2 0 )  = 
2 0  gzoE(:Oo) 

This can be seen by noting that [46] describes the orientational polarization of tlie 'missing' para molecule a t  
R 2  by the quadrupole field of the ortho molecule at R , .  

The renormalization of the three-body interactions can be performed in a similar way. The instantaneous 
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values of these interactions can be regarded as given by [43] and [44] ,  if in those equations we let 
R i ,  = Ri: + r r i , ,  where r r , ,  = 11,  - u, is the relative displacement of the molecules i and p from their 
equilibrium positions, R: and R:, and Ri>  = R; - R:. The functions to be averaged depend on three 
position variables and are of the form 

where j = 3, 4 refers to the dielectric screening and orientational polarization interactions, respectively. 
Expressing [85] in terms of the harmonic functions fj1,,(R) and averaging, we get 

To second order in the displacements, only the zero- and one-phonon states need be retained in the expan- 
sion I = C, , l i~ ) (nI ,  giving 

In the zero-phonon term we assume that the distribution function of the relative displacements of ~nolecules 
i and y is axially symmetric about Ri; ,  and that its deviation froni spherical symmetry is appreciable only 
for nearest neighbours, for which Ri,O = R,. Then we can write 

[88I (oIfjflt(Rip)IO> = S j +  1 ,  j (Ri,O)fjlll(R;,G) 
where 

C89l 

where S j +  is given by [59] .  Thus, the contribution of the zero-phonon term, 

P O I  (F, , , l ' (R~p,  R2, ) )  = S j +  1, j (Rl,O)Sj+ 1 , j(R2,0)F/,,l'(R~Po, 

to the renormalization of both types of the three-body interactions is expressed in terms of a single parani- 
eter, [, defined by [55].  I n  evaluating the lattice sums [43] and [44],  we must multiply the contributions of the 
first, second, and residual shells by a different power ( S 2 ,  5 ,  and I) of the appropriate reduction factor (5) .  

The one-phonon term in [87] can be written in the form 

where the gradients are taken with respect to the position of particle p ,  and the niatrix A is given by 

Restricting ourselves to the isotropic part of A, 

using [57],  and recombining the spherical harmonics to form bipolar harmonics, we get 

The last line of [94] can be evaluated with the help of a 6j-symbol, giving 

Using an algebraic expression for the 6j-symbol (24),  we finally obtain 

which agrees with the expression given in HBH except for what is probably a misprint in eq. [A. 10] in ref. 
6, which should read ( u , , ~ )  = (312). 
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The isotropic part of the matrix [92], 

[971 A = 4 tr (uprip + ii,ii2 - i i , ~ , ,  - iipii2) 

is described sufficiently accurately by the isotropic Debye model (7) in which the phonon frequencies are 
assumed to be independent of the polarization and propagation directions. In terms of this tiiodel we have 

[98] (uiiij),,, = -:- 6,,,(ii2) (I - cos qD Rij)(qD R ; ~ ) - '  

where (ii2) refers to the single-particle distribution, and qD is the radius of the Debye sphere. For a close- 
packed lattice, rl,Ro = ( 6 7 ~ ~ ~ ' 2 ) ' / ~  = 4.375, and the value of (t i2) in solid H 2  as measured by inelastic 
neutron scattering (25) is (ii2) = 0.48 A2. As seen from [96]-[98], the one-phonon renormalization of the 
three-body interactions depends on the shape of the triangle formed by the three interacting molecules. 
However, the renormalization is appreciable only for nearest neighbours, and hence we need consider only 
the first two shells. We can then express [97] in the form 

where i = 1 or i = 2 and 

1 loo] (lli:) = 2(112)[1 - 2(1 - COS (ID Rip)(qD 

Rip = rpRo being the larger of R I P  and R,, (cf. eq. [A2]). The ratio 

[ lo l l  K = ( ~ ; ~ ~ ) / 2 ( 1 1 ~ )  

is appreciably different froni I only for the molecules 1) in tlie first shell, as can be seen from Table A1 in the 
Appendix, where this ratio is given for all allowed values of 7,. Putting K = I for all niolecules/) in the second 
shell, we obtain A(2) = +(ii2) for the contribution of this shell to A. For tlie colitribution of the first shell we 
get from [99] and [loo], A(1) = 1 .72(ii2)/6, giving 

and 

[I031 ( i i , 2 2 ) / ~ 0 2  = 0.058 

the quantity to be used in 1801. 
The resulting one-phonon contributions to the renormalized three-body interactions are given by 

for the dielectric screening, and 

for the orientational polarization. The index s = 1, 2 refers to  tlie two shells, and the lattice sums are defined 
by 

C 1061 Sl,,rj(~) = C Fl,,,j(Rlp, R2p) 
PES 

These sunis are easily evaluated with the help of the bipolar harmonics T(:',:','( R ,  ,, a,,,) tabulated in the 
Appendix. Our results for the coefficients [104, 1051 are presented in Table 4. 

C. Self-energy Effects and Dynatnical Ret7ort7zalization of tlie Atiisott.opic Ititercrctiotis 
In addition to  the renormalization effects discussed so far, the coupling between the rotational motion of 

the niolecules and the lattice vibrations leads to  a number of typical self-energy effects arising froni the 
eniission and reabsorption of virtual phonons (7). For single ortho impurities these effects are the main 
source of the crystalline field (7, 26). For ortho pairs, several additional effects appear in second-order per- 
turbation theory, viz., the quadrupole induced strain (HBH), exchange of virtual phonons by the two ortho 
molecules, and cross terms between the ortho-ortho and ortho-para interactions. As pointed out in ref. 8, 
these effects contribute to  all of the symmetry parameters [19, 201, and in general these contributions are 
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TABLE 4. Nulnerical values of the coefficie~lts FD(::) (s), eq. [104], in units of [(Top) A(s)/2R02] and FE'::) (s), eq. [105], in units 
of [ (To2/B)  A(s)/2R02]. The co~ltributions of the first (.Y = 1) and the second (.P = 2) shells are tabulated separately with respect 

t o  the pair fra~ile  for each type of pair 

In-plane pairs Out-of-plane pairs 

different for ip and op pairs. The difference in the lowering of the ortho pair levels due to  the phonon self- 
energy effect is of particular importance in determining the relative position of the energy levels of ip and o p  
pairs. Leaving a fuller treatment of these self-energy effects to another paper, we include here only the 
Q-induced strain which is also the only effect included in HBH. This interaction may be calculated by 
assuming that the relative displacement of the two ortho molecules has a spherical distribution and can be 
described by a simple Einstein model. 

The unperturbed Hamiltonian of the two ortho molecules is thus given by 

and the perturbation, V, is the potential of the average force between the two molecules due to the EQQ 
interaction, 

where rr,, = rr2 - 11, and 

The factor 5,, describing the reduction of the quadrupole induced force is related to  5,, by [61]. To  second 
order, the shifts in the energy levels due to  the perturbation [I081 are determined by the equivalent operator 

where Po is the projection operator onto the manifold F, = F2 = I. The intermediate states corresponding t o  
F, = 3 or F2 = 3 may be neglected since 10B >> ho,. Using [57], [36], and [78], we obtain 

where, relative to  the pair frame, 

and g is the dimensionless parameter 

The Einstein frequency can be estimated from the width of the single-particle distribution, eq. [52] of ref. 9, 
giving T,/hw, = 1.3 x In the Einstein model, we have (rr,,') = 2(1r2), giving 

and hence 

which is the value we will use in Sect. 5. 
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5. Tlie Effective Pair Hamiltonian and Frequency Fit of the Microwave Spectra 
The coefficients in the effective Hamiltonian [I I] of the ortho-pair system are given by 

~ 1 1 6 1  H ( ; ; , ; ~ )  = (A" + B: + c" + a + E + c')(;:,;;) 
where the nonvanishing contributions corresponding to the values [I91 and [20] of ll121~n are given by 

[I 1701 A"'?,:' = 2a(:2)C6,,,0E1 + 6ro6l,(5j,6,,,o + 55,'2'6,,1,i2)l 

[117b] fj(f;,J2) = S,rr~gl~B(fbl~) 
M 

[117c] c"(?,:) = a(:0)[-<-pc~2,,,(P, a )  + 26,,,,AB] 

[I 17dl a ( 2 2 )  I,,, = [5432D(l) + 5430(2) + D( I.) + cSD(1) + 6~(2)](;:) 

[117e] ~ ( 2 2 )  IIII = C5542E(1)+kj4E(2)+E(~)+6E(l)+6E(2)I ' : , : )  

[I 1 7 f l  E':;' = g 1110 g 2 0  p 2 0 '  2 0  

C117gl c ' ( l l l 2 )  = g 2 ( I l l z )  
la1 ,110565 10 

The contribution of each term in [I I] to  the energy 
of the pair levels is found by using the Wigner- 
Eckart theore111 (14) and the reduced matrix elements 
[8]. The resultant matrix elements are summarized In 
Table 5. Some of the parameters appearing in [117) 
are well established, viz., 

To, ~ ( I b l ~ ) ,  ~ (? , l f ) ( s ) ,  E(:,~)(S), E(::) 

whereas the values of the other parameters are less 
certain. The coefficients 

depend on the shape of the pair distribution func- 
tion, g(u),  parameterized by 6, q, and (II , ,~)/R,*.  
The parameters El, I = 0, 2 ,4 ,  are quite uncertain due 
to the crudeness of our knowledge of the functions 
E , ( R ~ ~ ) .  Even larger uncertainties arezsocia ted  with 
the crystal field parameters, PC and AB, whose non- 
vanishing values are due to the interaction between 
the rotational motion of the molecules and the lattice 
vibrations. 

The experimental information obtained from the 
microwave spectra of nearest-neighbour pairs was 
summarized by HBH in eqs. [2.1] and [22] of ref. 2, 
which we reproduce here 

and 

[I 1 9 ~ 1  E0"'(22) - EO"'(lO) = 15.134 

where 2A(FM) denotes the splitting and E(FM) the 
mean energy of the doublet (FM), and the ~iulnbers 
are the corresponding frequencies in gigahertz. 
Equations [I 18e] and [I 19fl follow froni the assign- 
ment of the line B2 as due to forbidden transitions 
between the (21), and (10) levels of ip pairs. This 
assignment is less certain than that of the other lines. 
As pointed out by HBH, the intensity of B2 is 
anomalously high and cannot be explained by an 
'electric' violation of the selection rules (1) due to 
the anisotropic part of the polarizability. 'Mechan- 
ical' violation of the selection rules may accoulit for 
the anolnalous intensity, and HBH suggest a possible 
mixing of the states 100) and 110). However, an 
admixture of 100) into 110) would allow only transi- 
tions froni the (21)- state, since the transition 
(21)+ -+ (00) is also forbidden. Moreover, the inter- 
action which would mix the (00) and (10) states 
must be of the form T ( : t 2 )  which is forbidden by the 
crystal symmetry, cf. [IS]. Consequently, even though 
the interpretation of B2 by HBH remains the most 
plausible one, we shall not use it on an equal footing 
with the other assignments. 

Assuming that k j 4  and E l  have the same value for 
the two types of pair, and adopting the theoretical 
value k5, = 0.91 for the quadrupolar reduction 
factor, we are left with eight adjustable parameters, 
viz., 

the other parameters being fixed by [61], [67]-[69], 
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TABLE 5. Matrix elements of the basic operators within the ortho-pair manifold. Tabulated 
are the values of s c ( f l , " ' ( ~ ~ l ? ~ f ; t : ' l ~ ~ )  for the axially symmetric operators [19], and 

(FM!Tu,;b2'1Fm) for the doublet-splitting terms [20]" 

(0) Axially symmetric contributions 

s c ( 1 ; f 2 ) ( ~ ~ l f ~ ' ; ~ ; ) ~ ~ ~ )  for (';,:;) = 
-- 

EM (a:) : )  (::) (z) (;A) (A:) 
20 ISIS 1/10 IIIO 115 - 112 - 112 
2 i 2  315 - 1/10 1/10 - 115 112 - 112 
2 t l  - 1215 1/20 1/10 1/10 - 114 - 112 
10 0 -7110 -112 - 115 - 112 112 
lil 0 7/20 - 112 1/10 114 112 
00 0 0 I 0 0 1 

(b) Doublet splittings 

(FMITu,',j;'lFm) for (::,!" = 

. . . . 

"Nolal ion for the states, IFM) = 11 I FkI) is as defined by [lo]. 

[SO], [102], [103], and [I 151. For To, p, B, R,, and 
( r r 2 )  we take the values given in Table 1. We begin 
by fitting the theoretical expressions for the energy 
levels, [I 161, [I 171, and Table 5, to the experimental 
values, [I 18 b, c, rl] and [I 19 a ,  b, c, rl, el. This yields 
eight independent equations in the eight unknowns 
[120], forming a linear system denoted by So.  At this 
point we are not using [I 18e] and [I l 9 j ]  resulting 
from the assignment of B,, nor [118a] because, 
given the value of c54,  the splittings A(22) contain 110 

adjustable parameters. 
The parameters [120] can be determined by 

solving So. Alternatively, we can reduce the number 
of free parameters further by putting A = 0, which 
amounts to assuming that 11 is given correctly by the 
Debye-model result [68], and by letting Vc(p) = vc 
and AB(p) = 0, which corresponds to neglecting the 
quasistatic distortion induced by the pair of irn- 
purities. By adjusting the remaining four parameters 
(Eo, E2, E4, PC) we find that So can then be satisfied to 
an  accuracy of about 0.3 GHz, which is better than 
the fit in ref. 2 involving a larger number of free 
parameters. By relaxing the above constraints and 
solving So exactly, we find A = -0.25 x 
which has the same sign as predicted by the Einstein 
model (9) and which results in 

Next, we proceed to vary the assumed value of 
554, and for each value of e5, we solve the system 
So exactly for the parameters [120]. For each value 
of c54 we can then calculate Ai"(21) and A0"'(22). 
These calculated values are plotted as functions of 
the assumed value of e5, in Fig. 2. We have included 
the contributions to these doublet splittings of the 
higher-order, three-body polarization interactions 
calculated by HBH and scaled by To3/B2, ToZp/B, 
and Top2. These terms contribute mainly to A(22). 
Using the unrenormalized values TO3/B2 = 2.49 x 

To2p/B = 3.29 x and Top2 = 4.36 x 
lop3 GHz, we find the foliowing values for these 
contributions to the doublet splitting, in gigahertz: 

As seen from Fig. 2, both [118a] and [118~]  are satis- 
fied in the same region of values of tS4. The hori- 
zontal lines are the error bars for these equations 
which we assume to be established to an accuracy of 
f 25 MHz. T o  this accuracy, both equations are 
satisfied for 0.89 5 c5, 5 0.91, which agrees with 
the theoretical values of c,,. The best fit occurs at  
cS4 = 0.899. 

Once the system So is satisfied, the frequency of 
the 'forbidden' transition (21), + (10) for ip pairs 
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FIG. 2. Dependence of our theoretical predictions for the 
doublet splittings Ain(l 1) and A0"'(22) o n  the assumed value 
of t5,(av). The observed splittings along with their estimated 
error margins are indicated by horizontal lines. 

is established indepet~dently of the assumed value of 
e5,. The predicted value, Ein(lO) - Ein(21) = 
70.224 GHz is in excellent agreement with v(B,) = 

70.228 GHz, eq. [I 19fl. If we maintain the assign- 
ment of B, proposed by HBH, this result implies that 
C5, is the same for ip and op  pairs to the accuracy of 
1 in lo3. This is illustrated in Fig. 3, where the pre- 
dicted value of Ei"(lO) - Ein(21) is plotted against 
an assumed difference A5 = C5,(ip) - C,,(op). As 
mentioned earlier, the plot in Fig. 3 is independent of 
an assumed value of the average reduction factor 
6 5 4  ="[C 2 54 (' IP) + 554(0~)1. 

In the region of values defined by 

all the 1 1 independent eqs. [I 181, [I 191 are satisfied 
with the following values of the adjusted parameters, 
in gigahertz: 

FIG. 3. Dependence of our theoretical predictions for the 
transition frequency between the (21) and (10) levels of ip 
pairs on the assumed value of AS5, = t5,(ip) - t5,(op). The 
horizontal lines indicate the frequency of the B, line and its 
estimated margin of error. 

A< = 0, and the error margins reflect the variations 
in the values of the parameters over the region 
[123]. The resulting orientational level structure is 
given in Table 6. The zero of energy chosen in Table 6 
is arbitrary and does not coincide with the energy of 
two non-interacting ortho molecules. With the help 
of Table 6, we can predict the frequencies of the 
most important as yet unobserved lines, L, ,  . . . , L,, 
viz., 

in gigahertz. 

TABLE 6. Orientational level structure (in 
gigahertz) of a n  ortho pair" 

In-plane Out-of-plane 
pairs Level pairs 

d 

[ 1 24.f 1 AB(ip) = 0.157 k 0.06 
-67.324 (2; 1)- -68.071 

4  obtained from [ I  I ] ,  [ I  171, and Table 5, wi th  the 

[124gl AB(op) = -0.330 + 0.08 effective parilrneters as given by Table I .  [ !? I : ,  and 
[124]. The higher-order pol;~rizability contribution 
[I221 is included. 

The first numbers in the right-hand side of [I241 bDesignation O F  the states, &I(PM)+) = IPM) 
f IF&?), where M > 0, is in  accordance with refs. 

correspond to the 'exact fit' at C,, = 0.899 and I.  2. 5, and 6 .  
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We point ou t  once more that  o u r  fit rests o n  the 
interpretation of  the B2 line, eq.  [I 19fl. Without  
[I I9fl the experimental information is not  sufficient 
to  rule ou t  a possible difference in the quadrupolar  
reduction factors for  ip  and  o p  pairs. If we adopt  the 
theoretical value A5 = 0.01 obtained (9) o n  the 
basis of  the generalized Debye model, then [I 19fl 
is not satisfied, but all the other  equations a re  satis- 
fied perfectly with the following values of the 
efrective parameters, 

T h e  predicted frequencies of the lines L , ,  . . . , L, 
this case are  

T h e  line L, has been observed in the Rarnan spec- 
t rum of  solid hydrogen (27). T h e  quoted frequency 
v(L4) = 5.51 f 0.1 c n - '  orv(L,) = (165 f 3) G H z  
agrees within the experimental uncertainty with both 
[I 251 and [I 271. A high-resolution determination of  
any  of  the lines L , ,  . . . , L, would clearly be of  great 
interest. 

6. Discnssion and Conclusions 
The  values [I241 of  the effective interaction param- 

eters obtained in o u r  fit appear  quite reasonable. 
T h e  value of  F,,, defined by 

agrees well with the n m r  da ta  on  dilute o -Hz  pairs in 
p-Hz,  (28), and  o u r  values for tlie E ,  a re  in reasonable 
order-of-magnitude agreement with the theoretically 
calculated, unrenormalized, E, .  T h e  calculations of  
Raich ct 01. (19) give E, = -0.06, E, = -0.81, 
E, = -0.48 G H z .  Froni  the anisotropic potential 
given in (29) one can extract3 the values E, = -0.42, 
E, = -0.57, E, = -0.91 G H z ,  where only the  R - ~  
and  R - a  contributions a re  included. T h e  main dis- 
agreement between these values and [I241 is in the  
sign of  E, and  this may be related t o  our  incomplete 
inclusion of  the quasi-static distortion effect. T h e  
values obtained for  Eo and  E, in ref. 2 a r e  similar t o  
ours, although in other  respects the  results of  o u r  fit 
a r e  quite different. T h e  values of  the crystalline field - .  
paranieters PC and  AB In [I241 a re  different for ip 
and  o p  pairs, and a re  no t  directly comparable t o  the  
crystalline field measured a t  the site of  a single 
o r tho  molecule, for which the  upper limit is I V,I ,< 

3W.  N .  Hardy, private communication. 

0.58 G H z  with the sign uncertain (30). If the sign o f  
V, for  single o r tho  molecules is assumed t o  be the 
same as  the signs of  the parameters given in 
[124], one obtains V, < 0, implying that the ground 
state of a single o r tho  impurity corresponds t o  
177 = f I .  However, in O L I ~  view it is more likely tha t  
n o  simple relation exists between V, and the pair 
parameters VJp). 

T h e  main difference between o u r  work and that  of  
H BH lies in the treatment of  the phonon renorniali- 
zation effects. In analyzing the doublet splittings, 
A(FM),  H B H  used two adjustable parameters, V, 
and  T,, which a re  essentially equivalent to  o u r  
PC and q ,  respectively. It was assumed in H B H  t h a t  
V,(ip) = V,(op) = V, and T,,(op) = 4T,(ip) = T,, 
cf. eq. [I].  It is the latter assumption which we feel 
leads t o  difficulties, a s  d i s c ~ ~ s s e d  in ref. 9. Adoption 
of  [ I ]  forces a positive value on  V, when the theoret- 
ical values a re  fitted t o  the da ta  [I 181. As a result, 
the splitting AoU'(l I), which is one  of  the best known 
experimental values, is not  given con-ectly and in 
fact has the wrong sign, and in this respect o u r  
approach based o n  [67]-[69] is clearly more  accept- 
able. With the three ad.justable parameters Vc(ip), 
Pc(op), and  A, we are  able to  fit the da ta  [I 181 

exactly. Moreover, by putting A = 0 ,  and even 
= PC, i.e., using PC a s  the only free parameter, 

we obtain better agreement with the observed 
splittings, than obtained in ref. 2. Thus,  the mos t  
important  difference between this work and H B H  
lies in the treatment of  the axial asynimetry of  the 
pair distribution function, i.e., in the use of  [67]-[69] 
for the parameters il(p), leading t o  the values [121], 
rather than [I].  

T h e  other  difrerences between the two theories d o  
not  seriously affect the quality of the overall fit, b u t  
they d o  lead t o  appreciably different values for the 
effective paranieters. F o r  example, the parameter j; 
chosen in HBH t o  describe the renormalization o f  
the second-order E Q Q  interaction, was assigned tlie 
value f = 1. 111 view of  o u r  result [82] for  the corre- 
sponding renormalization factors [go], this means 
that  the  effect of  the  two-body terms involving 
Fo2/B was underestimated in H B H  by amounts  
varying from 50 to 70%. T h e  effective quadrupolar  
reduction factor, rc,,/Fo, is varied in HBH inde- 
pendently of  the  renormalization of  the polarization 
interactions and  of  the EQQ-induced strain, whereas 
in o u r  theory the  relations between these effects a r e  
taken into account, cf. Sect. 4. 

T h e  EQQ-induced strain is treated in H B H  on  the  
basis of  a more  sophisticated model than the o n e  
used in Sect. 4C.  However, the main effect is con-  
tained in [112], and  the t w o  theories give similar 
results if o n e  identifies o u r  parameter g,  [113], with 
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the parameter (3GO0 r,/E,) of  HBH.  The  results o f  
a self-consistent, lattice dynamical calculation of  
Goldnian,  quoted in ref. 6, give 

[I291 3GO0 F,/ED = 8.46 x 

which agrees very well with o u r  result, g = 8.5 
x lo-'. The  Einstein model we used describes tlie 
EQQ-induced strain adequately because this effect 
does not depend o n  the detailed shape of  the pair 
d i s t r~but ion  function. One  can regard the result 
[I 151, [I291 as  o n e  of the better established numbers  
in the theory. In HBH this parameter is varied and  
the result obtained for  it by fitting the spectrum, 
4.8 x lo-', should be regal-ded a s  a renormalized 
value, comparable t o  o u r  result 

Finally, we want t o  comment  o n  the result ob-  
tained emp~rical ly  by H B H  that  the effective c o ~ ~ p l i t i g  
constant I= is d i re ren t  for  ip and o p  p a r s .  T h e  dif- 
ference found from the fit in ref. 2, 

[I311 F(ip) - l='(op) = 0.02 G H z  

is of  the same sign a s  predicted by the generalized 
Debye model (9) a n d  corresponds to  A t , ,  = 1 x 

As discussed in ref. 9, a dimerence of  this mag- 
nitude does not  imply a departure froni the c/o ratio 
from the ideal licp value, a s  claimed in HBH. T h e  
result [I311 is rather a consequence of  the single 
positive value for  V,  resulting from a soniewhat 
arbitrary fit of  [I 181, as  discussed above. 
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Appendix 
W e  wish to tabulate the values of  the bipolar 

harmonics involved in the calculation of  the three- 
body lattice sums  [43], [44], [104], a n d  [I051 for  all 
possible angles R , , ,  R,, occurring in tlie first two 
shells of neighbours of  the pair. The  functions 
T '{~,)(R,~, ,  R,,,) defined by [23] are  evaluated in tlie 

'triangle' frame (6) in which the z-axis is a long R , ,  
anci the x-axis in the plane of  the three molecules 1, 
2, a n d  p. In this f rame tlie functions T'ii,' a re  real 

a n d  of  the fo rm 

where Oil, = arccos ( z  . R~,,).  F o r  tlie molecules 11 of 
the first two  shells, the value of  [ A l l  depends only o n  
the magnitude of  tlie largest side in the isosceles 
triangle (R,, ,  Rz1,, R,). Putting 

[A21 I./, = max (RII,lR,, R,,,IR,) 

a n d  using the fact that  

we find that  fo r  even I + 171 (i.e., for  all I a n d  n~ 
occurring in [I91 a n d  [20]) 

indepetidently of  whethel- R , ,  o r  R2, is the largest 
side. T h e  values of  [A41 a re  tabulated in Table A1 
f o r  all possible I . , .  

With  the help o f  Table A l  we can easily coinpLlte 
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TABLE A l .  The possible values of I.,, eq. [All ,  for the nioleculesj~ belonging t o  the first two shells, and the corre- 
sponding values of K,  eq. [ lo l l ,  and T:!:', eq. [A41 

r., = 1 I., = (2)"2 I., = (8/3)'12 r., = (3)"' I., = (1 1/3)'12 r., = 2 
V P  K = 0.86 K = 1.00 K = 0.99 K = 0.98 K = 0.96 K = 0.95 

TABLE A2. Numerical values of the lattice sums Sl,,,j(s) defined by eq. [106] for j = 3, 4, and 5. 
Tabulated are the values of lo3 x S,,,,j(s) for s = 1 (first shell) and s = 2 (second shell), calculated 

with respect to the pair frame for each type of pair 

Sl,,,'(s) for j s  = 

In-plane pairs 
00 661.44 
20 -886.52 
7 7 -- -105.79 
40 - 1080.32 
42 7 .96  
44 516.18 

Out-of-plane pairs 
00 661.44 
20 -886.52 
22 -317.37 
40 - 1080.32 
42 23.89 
44 -663.66 

the lattice sums S,,,,' defined by [106], where now the angle 4, being the azimuthal angle of moleculep. 
The numerical values of the sums S,,,,'(s) for j = 3, 

~ ~ 5 1  F~,,,J( R ,  ,, R~ 4, 5 and s = 1,3 are given in Table A2. 
= ~ ( i i , ) ( r , , )  exp (- ~ , I I $ , , ) / J . , ! - ~  




