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At millikelvin temperatures the quantized Hall effect (QHE) is characterized by sharp steps
connecting the quantized Hall resistance plateaus. We explain this behavior on the basis of the
single-electron approximation and continuum percolation theory. It is shown that even when
the magnetic field corresponds to partially filled Landau level on average, locally the sample
breaks into patches having the occupation numbers 0 or 1. This represents a peculiar type of
the metal-insulator transition, driven by disorder. Extended (global) electron states may not ex-
ist at equilibrium or arbitrarily small applied voltage V. Global states begin to appear at a certain
critical voltage V., which is of the order of characteristic magnitude of potential fluctuations on
the scale of the sample size. For small ¥ > ¥V, the fraction of global states is still small owing
to the smallness of the average electric field compared with the fluctuating field in the inversion
layer. Because of this, transitions between the QHE plateaus require only a minor change in the
density of states and at 7' =0 they occur in small intervals of the magnetic field. Owing to the
tail of the Fermi-Dirac distribution at nonzero T the deviation of the Hall conductivity from its
nearest quantized value, (e2/h) Xinteger, is activated. This explains the plateau flatness and

the high precision of the QHE measurements of the fine-structure constant.

The quantized Hall effect (QHE) is a microscopic
quantum phenomenon recently discovered in silicon
MOSFETs! (metal-oxide-semiconductor field-effect
transistors) and then also observed in GaAs/GaAlAs
heterojunctions.? Inversion layers formed at the in-
terface in these structures represent, at low tempera-
tures, a truly two-dimensional electronic system with
the electron motion along the magnetic field (.e.,
perpendicular to the plane of the inversion layer)
frozen out. The QHE manifests itself in certain
ranges of the applied magnetic field B and electron
concentration N in the inversion layer. In these
ranges, called ‘‘the plateaus,’’ the Hall conductivity
G,, has quantized values given by

Gy =ne?/h (1

with 7 integer, while the longitudinal conductivity Gy,
and the longitudinal resistance Ry = Gy/(GZ +G2)
nearly vanish. Existence of these wide plateaus in
which Eq. (1) holds, independent of sample geometry
and unaffected by disorder, allowed remarkably accu-
rate measurements of the quantity e?/4 and the fine-
structure constant. The QHE is of great theoretical
interest primarily because it reveals a long-range or-
der in the fermionic system of electrons in the inver-
sion layer.> The meaning of this order is that elec-
trons delocalized along electrostatic equipotential
lines remain self-coherent over macroscopic dis-
tances. Exactness of the quantization can also be
viewed* as a topological property of equipotentials in
the plane of the inversion layer. This is especially
clear in the Corbino ring geometry where all equipo-
tentials distinctly fall into two classes: global which
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encircle a central electrode and local which can be
contracted to a point by a continuous deformation. It
is the existence of electrons delocalized along global
equipotentials which embodies the long-range order
in the QHE.

An outstanding theoretical problem has been to ex-
plain the observed width of the plateaus, especially at
low temperatures where it was found™ ¢ that the
quantized plateaus begin to occupy nearly 100% or
the range of the parameter (B) variation. Regions
between the plateaus (in which a dissipative current
can flow) shrink with temperature gradually,” with no
apparent discontinuity.

Several theories have been advanced to explain the
plateau width. These include the Baraff-Tsui
mechanism?® (pinning of the Fermi level Er by donor
impurity bands), ‘‘exchange gap’’® (increase of the
effective gap between the Landau levels due to ex-
change interaction), and the Fukuyama-Platzman
mechanism!? (pinning and melting of charge-density
waves, existence of which was earlier suggested by
Fukuyama et al.'). It is of course generally under-
stood!? that the existence of real localized states in
response to potential fluctuations in the inversion
layer can also contribute to the plateau width. It is
the purpose of the present work to develop the latter
point of view on the basis of a microscopic model of
both localized and delocalized states. Our model as-
sumes that in the strong magnetic field all electron
states are confined within narrow tubes or ‘‘fibers,”*
extended along equipotential lines.”* The potential is
assumed to vary smoothly [on the scale of the mag-
netic length a = (#c/eB)'?], so that at every point in
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the sample one has a well-defined Landau-level sys-
tem. Therefore, we do not need to assume the ex-
istence of states with energies between the local Lan-
dau levels. We shall show that this picture alone is
sufficient to explain the remarkable results of Refs. 5
and 6.

It is generally believed that the Hall plateaus corre-
spond to the situations when the Fermi level is
pinned between two adjacent Landau levels. This al-
ready implies the fundamental importance of disorder
for the QHE. Indeed, in an ideal case with a uniform
electron density o, the Fermi level is pinned to a
Landau level at all B except for discrete values,

B, =nohc/e?, at which the Fermi level jumps
between the nth and the (n +1)st level. This means
that in an ideal system with no disorder, the plateaus
are reduced to discrete points. The finite width of
the plateaus is usually attributed to pinning of the
Fermi level by localized states, whose energies are
continuously distributed in the gaps between Landau
levels. The integer 7 is identified as the total number
of ““filled”” Landau levels, i.e., those below the Fermi
level. In the presence of potential fluctuations this
picture, however, must be qualified since in a disor-
derd system there are two-dimensional patches where
a particular Landau level is filled and complementary
regions where this level is empty, depending on the
position of the local self-consistent potential with
respect to the Fermi level. There also exists a one-
dimensional manifold, in general multiply connected,
where the Fermi level and a particular Landau level
coincide.

The spatial inhomogeneity of the self-consistent
potential is brought about by fluctuations in the fixed
positive charge responsible for the creation of the in-
version layer in a heterojunction system. The fact
that the self-consistent potential in a strong magnetic
field does indeed fluctuate, thus giving rise to patches
with occupation numbers 0 or 1, is rather subtle and
requires further elaboration. The crux of the matter
is that the surface density X of the fixed positive
charge much exceeds the electron density in the in-
version layer (in GaAs QHE samples X is mainly
compensated by a fixed negative charge), i.e.,

3 >> o. Supppose we are dealing with the lowest
Landau levels, so that o = o =e/2ma?, where
oo=e2B/hc is the density of states per Landau level.
Consider first an ideal situation in which we create a
fluctuation 8X. So long as 8% < o, the potential
variation is perfectly screened by the inversion layer.
On the other hand, when 83 > o, then screening
does not occur and the self-consistent potential in the
inversion layer fluctuates. The spatial scale of the
fluctuation 83 = gy is given by

_ /0" _ (2a3)”

A
aole a9

)

=a

It is seen from (2) that A >> a provided T >> o,

which makes our model self-consistent. Thus, even
at a value of B for which the average o in the inver-
sion layer corresponds to a partially filled Landau lev-
el, the fixed-charge fluctuations induce a peculiar
metal-insulator transition. As will be shown below,
the remaining metallic regions (the above mentioned
one-dimensional manifold, corresponding to inter-
secting Landau and Fermi levels) are, generally,
disconnected, except for discrete values of the mag-
netic field.

Let us generalize the above identification of 7 to
this situation: # is the number of the highest Landau
level whose filled patches are globally connected
forming a region we shall refer to as the sea (using
the terminology adopted in the continuum percola-
tion theory'“!®). Within the sea there are both local
and global fiber states but as shown in Ref. 4 the en-
tire applied Hall voltage drops on the global fibers
(similarly, in the case when current is injected into
the sample, the entire Hall emf develops across the
global fiber subsystem). The complement to the sea
region of the inversion layer represents isolated is-
lands within which the Landau level under considera-
tion is not populated. When the magnetic field B is
increased, the area of these islands grows. This oc-
curs because the Landau-level degeneracy is propor-
tional to the magnetic field, so that when B grows
electrons fall onto the lower levels and the population
of the top nth level decreases. As a sufficiently large
B one has a qualitatively different situation in which
filled patches represent lakes in a globally connected
continent corresponding to the nth level unfilled. It is
easy to see that in both of these limits the coastline
corresponding to the intersecting Fermi and Landau
levels is not percolating. The fundamental theorem
of the continuum percolation theory'* ! requires the
existence of a transition point at which the islands-
in-the-sea topology goes over into that corresponding
to lakes in the continent. In two dimensions the
transition occurs at such position of the Fermi level
at which the areas of filled and empty patches are sta-
tistically equal.

An important question is whether the coastline per-
colates at the transition point, i.e., forms an infinite
cluster. If the answer were positive, this would imply
the existence of global equipotentials in equilibrium.
We shall now argue, however, that this is not the
case, at least in all practically studied QHE samples
(both of the Hall-bridge and the Corbino geometry).

There are two different ways in which the coastline
can, in principle, percolate at the transition point.
One way corresponds to an isotropic cluster. In this
case neither the sea nor the continent are present.
An example of such a situation is provided by any
periodic potential, a map of which at the percolation
point breaks into lakes and islands, like a checker-
board, while the coastline does form a global cluster
passing through an infinite set of saddle points of the
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potential surface. However, a random potential does
not generate such an isoenergetic set of saddle points.

The other possibility corresponds to the coexistence
at the percolation transition of both the sea and the
continent. This situation is actually realized for ran-
dom potentials, as follows from the well-known
divergence of the correlation radius at the transition
point.!® The latter means that the area of certain
lakes (islands) goes to infinity as we approach the
percolation transition from the continent (sea) side.
It is clear that the length of the largest shoreline
must also diverge in this case. In a finite-size sample
this implies the existence of equipotentials connecting
opposite edges of the sample. However, in this case
the coastline percolation in one direction (north-
south) excludes the possibility of percolation in the
other (east-west) direction. It is easy to see that for
an uneven sample the percolation will be necessarily
established in the shortest direction. This direction
does not coincide, usually, with that of the Hall
current.

The above arguments show that for a randomly
disordered potential in the inversion layer at equili-
brium there are no global equipotentials, either filled
or empty, in the direction of the Hall current. It then
follows that for an arbitrarily small applied voltage
the QHE will not be observed. This brings us to the
concept of a critical Hall voltage!” V. At voltages
greater than V; global equipotentials begin to appear.
This is easy to visualize by thinking about a funnel
with crimped surface. If the height of the funnel is
greater than the characteristic height of the potential
fluctuations on the scale of the distance between its
edges, the water-level boundary (which, of course,
coincides with an equipotential) will be globally con-
nected. In this case there exists a whole range of glo-
bal equipotential lines. For the QHE the value of V,
must be of the order of the characteristic magnitude
of potential fluctuations on the scale of the sample
size.

When the Hall voltage is less than critical, V' < V,
there are no global states. These states do appear
when V > V, but even when V >> V. the number
of global states is exceedingly small compared to the
total number of electrons. This is due to the fact that
the average applied field is negligible compared to the
local field of the fluctuating potential (typically their
ratio is less than 107%). Indeed, consider a fluctua-
tion of geometric dimensions A. For an uncorrelated
distribution of the fixed charge one has
83/3 =1//N where N =\23/q. This fluctuation of
charge gives rise to a field 8F =83/¢ or

1/2
il . 3)
q

5F=-L
e

The shorter the wavelength of a fluctuation the larger
is the fluctuating field. However, the field due to
fluctuations of wavelength less than d (where dis the

distance between the fixed charge and the inversion
layer) averages out without reaching the inversion
layer. Thus, the largest fluctuating field is given by
Eq. (3) with A=d. For the typical QHE experiments
this gives 8F of order 10 kV/cm or greater, while the
average applied field is only 10~2¥/cm. This means
that the local topography of the potential surface is
only slightly modified by the applied field so that the
area occupied by the local states changes very little
compared to 100% at equilibrium. The energy range
of global states may be referred to as the percolation
band. We see that this band emerges already having
a finite width equal to the applied voltage, inasmuch
as the entire Hall voltage develops across the global
states.* At V < V,, there is no quantum percolation
band.'®

We have shown that global states constitute a small
fraction of the total number of states in the inversion
layer. On the other hand, the variation of the chemi-
cal potential u (the quasi-Fermi level) on the global
states follows exactly the variation of the electrostatic
potential {s; in other words, all global states corre-
sponding to the same Landau level are equally popu-
lated. This can be seen as follows. At voltages
greater than critical, streams of the Hall current break
the inversion layer into disjoint regions. Each of
these regions (labeled i) is surrounded by a local
(though quite extended) equipotential y; and is,
therefore, in equilibrium. These regions are macro-
scopic, and have a well-defined chemical potential u;
and a fluctuating electron concentration. Since the
average electron concentration is given by the surface
charge density o and is the same in each macroscopic
region, the quantity u; — (¢); (where the average is
taken over the isolated region i) has the same value
throughout the sample. The gist of our argument is
to note that y;= (¢),. Indeed, the boundary of a
macroscopic region is a very extended local equipo-
tential. As such it must be very close in energy to
the percolation threshold (i); of region i (A similar
argument was advanced recently by Trugman and
Doniach in relaticn to vortices in inhomogeneous su-
perconducting films.!) On the other hand, the edges
of each Hall stream have the same energy ¢ and
chemical potential u as the adjacent local equipoten-
tials. We thus come to the conclusion that the differ-
ence u— ¢ is the same for all global states.

We can now give a simple explanation to the ob-
served steplike behavior of the QHE plateaus (R, vs
B curves) at low temperatures. Summing over all glo-
bal states, as we did in Ref. 4 but with a Fermi-Dirac
distribution function f = f(u — ), we can take the
function fout of the sum since it is constant on glo-
bal states. The result is an expression of the form
(1) with 7 given by

i=3 (A . @

n=l
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where A, =pu(x) —y(x) — nkw, is constant for each
Landau level n. Transitions between the Hall pla-
teaus are due to the variation of A, with the magnet-
ic field, mainly because of the dependence w(B).
For an ideal situation with no disorder, global states
constitute 100% of all states and the Fermi level is
pinned at every Landau level, jumping to the next
level abruptly once a particular Landau level is filled.
In this situation the Hall plateaus would reduce to a
set of discrete points. The observed QHE plateaus
are due to the fact that in a real system the opposite
limit occurs as discussed above. The Fermi level is
pinned to the global states only in a small interval of
B proportional to the fractional area occupied by the
global equipotentials. Outside this interval the value
of ngiven by Eq. (4) is integer to within tails of the
Fermi-Dirac distribution.

Thus, at zero temperature T =0 the width §B(0)
of the interplateau regions is finite but small as deter-
mined by the ratio of the number of global to local
states in the sample. At a nonzero T these regions
grow due to the washing-out of the Fermi step func-
tion, as expressed by Eq. (4). Varying the tempera-
ture at a fixed B outside 8B(0) we are simply tracing
the tail of Fermi’s distribution. Therefore, the
dependence Gy, (T) at fixed B must be exponential,
characterized by an activation energy A, =E,(B).
Such behavior was indeed observed in the low-
temperature experiments.” When B is well outside
8B(0), i.e., far from the center of the interplateau
region, then the activation energy is large and any de-

viation of 7 from an integer becomes intangible.
This explains the high precision of the QHE in deter-
mining the fine-structure constant.

Finally, let us briefly discuss the longitudinal con-
ductivity Gy describing the dissipative current. In
the plateau regions the conductivity Gy (as well as
the resistance R,) is exponentially small at low tem-
peratures? as described by Mott’s law for hopping
conductivity. At T =0 this conductivity vanishes
completely. No current can flow across global states
due to the absence of scattering. Although, as dis-
cussed above, the area occupied by global states is
small, streams of the quantum Hall current slice the
sample into disjoint regions each of which remains at
equilibrium. In the interplateau regions electrons in
global states can scatter and the connectivity of the
sample changes, giving rise to a possible metallic con-
ductivity at T=0. This brings about the bursts of dis-
sipative current observed in the low-temperature
QHE experiments between the plateaus. Detailed
analysis of the dissipative current components in the
interplateau regions is beyond the reach of our quali-
tative approach.

ACKNOWLEDGMENTS

We are deeply grateful to Mikko Paalanen for a
number of helpful discussions and especially for shar-
ing with us some of his unpublished results. We are
also grateful to W. F. Brinkman, D. S. Fisher, and T.
M. Rice for helpful comments.

IK. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett.
45, 494 (1980).

2D. C. Tsui and A. C. Gossard, Appl. Phys. Lett. 38, 550
(1981).

3R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).

4R. F. Kazarinov and S. Luryi, Phys. Rev. B 25, 7626
(1982).

SM. A. Paalanen, D. C. Tsui, and A. C. Gossard, Phys. Rev.
B 25, 5566 (1982).

6G. Ebert, K. von Klitzing, C. Probst, and K. Ploog (unpub-
lished).

M. A. Paalanen (private communication).

8G. Baraff and D. C. Tsui, Phys. Rev. B 24, 2274 (1982).

9P. W. Anderson (private communication).

104, Fukuyama and P. M. Platzman, Phys. Rev. B 25, 2934
(1982).

ITH, Fukuyama, P. M. Platzman, and P. W. Anderson, Phys.
Rev. B 19, 5211 (1979).

12D, C. Tsui and S. J. Allen, Jr., Phys. Rev. B 24, 4082
(1981).

BStrictly speaking, these fibers are extended along the lines

of constant classical energy. The latter includes also the
kinetic energy mv%,/Z which is associated with the Hall
velocity vy = cF/B and hence depends on the local electric
field F, cf. Ref. 4. Throughout this work, speaking of the
equipotentials, this comment is left understood.

4R, Zallen and H. Scher, Phys. Rev. B 4, 4471 (1971).

15B. I. Shklovsky and A. L. Efros, Electronic Properties of Doped
Semiconductors (Nauka, Moscow, 1979), Chap. 5, in Russian.

16D, Stauffer, Phys. Rep. 54, 1 (1979).

I7R. F. Kazarinov and S. Luryi, in Proceedings of the 1982
International Electron Devices Meeting, San Francisco,
California, December 1982 (unpublished).

18This point of view clearly contradicts that of S. V. Iordan-
sky (unpublished) who attempted to explain the QHE by
postulating an infinitely narrow percolation band, which
exists even at equilibrium.

19, A. Trugman and S. Doniach (unpublished). We are in-
debted to D. S. Fisher for bringing this work to our atten-
tion.

20D, C. Tsui, H. L. Stérmer, and A. C. Gossard, Phys. Rev.
B 25, 1405 (1982).



