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On Electron Transport Across Interfaces Connecting
Materials with Different Effective Masses

Anatoly A. Grinberg and Serge Luryi,Fellow, IEEE

Abstract—We reconsider the problem of electronic transport
across a heterojunction interface connecting two materials with
different effective masses. Thermionic current does not remain
invariant when the positionXint of the interface is shifted relative
to that of the potential energy maximum,Xmax, even if the shift
is smaller than the carrier mean free path. We analyze every
situation that arises whenXmax = Xint, as well as the limiting
caseXmax ! Xint: Besides the effective mass discontinuity at
the interface, we allow for a band-edge discontinuity within a
potential barrier of arbitrary shape. In most practical situations,
the effective Richardson constant governing thermionic emission
over a heterointerface barrier is determined by the effective mass
in the material that contains Xmax: This statement is rigorously
true when the effective mass atXmax is lower than that in the
other material, otherwise it is an approximation dependent on the
value of the interface potential. The issue clarified in this work
has relevance to theoretical constructs involving model boundary
conditions at heterojunction interfaces.

Index Terms—Heterojunction, thermionic emission, transmis-
sion.

I. INTRODUCTION

T HEORY of electronic transport across an interface of
different semiconductors is still being developed. In gen-

eral, this is a difficult problem. For example, considering the
interface between the crystals of Si and Ge, one has to take
into account the different location in the Brillouin zone of
the conduction band minima in these semiconductors. Large
additional crystal momentum is therefore required to match
electronic wavefunctions and transmission becomes forbidden
except at very high energies [1]. As far as we are aware, there
is no satisfactory theory which would describe carrier transport
across a heterointerface in terms of the bulk parameters of
constituent crystals.

Fortunately, for many practical heterojunction pairs, where
the conduction band minima are similar, it is often a reason-
able approximation to use the simplest theory based on the
conservation of the lateral momentum and the total energy of
particles transmitted through the interface. The only parame-
ters of such a theory are the effective carrier masses in the two
crystals and the band discontinuity at the interface.

In this approximation, the heterostructure transport prob-
lem is similar to that of electronic transmission across a
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Fig. 1. Electron transport for an arbitrary-shape continuous barrier. Effective
mass ism1 to left andm2 to the right of planeXint: Thickness of the
transition region is less than the mean free path for all scattering processes
other than electron collision with the barrier itself.

potential barrier. In principle, this problem could be ade-
quately described using a transmission coefficient which would
incorporate on equal footing both the quantum mechanical
tunneling processes and the classical kinematic restrictions at
the interface between two media of different effective mass.
Thus, it should be always possible to write the current per
unit area from side 1 to side 2 of a potential barrier (Fig. 1)
in the form

(1)

where are electron distribution functions in the planes
and is the quantum

mechanical transmission (QMT) coefficient, which is defined
as the ratio of the transmitted to incident flux for an electron
of wavenumber incident on the barrier in plane Such a
procedure, however, is exceedingly difficult to carry out for a
heterointerface that has an arbitrary position within a potential
barrier of general shape.

We shall confine our consideration to purely thermionic
transport, neglecting the quantum mechanical processes of
tunneling and above-barrier reflections and focusing our atten-
tion on the consequences of classical kinematic restrictions.
It is clear that thermionic currents in both directions at a
heterointerface must be described by the same Richardson
constant because in equilibrium the two currents must balance.
What is the value of the common effective Richardson constant
when the effective masses in the two materials are different?

This problem was first discussed by Stratton [2] in the
instance of field emission from a semiconductor into vacuum.
Stratton concluded that the thermionic current is given by
a conventional Richardson formula in which, however, the
constant corresponds to the lower of the two effective
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masses, and , viz

(2)

Similar conclusions were reached by Grinberg [3] for semi-
conductor heterostructures. These results were supposed to
be valid for any two media where constant energy surfaces
are spherical but the effective masses are different. However,
applying essentially the same model to metal-semiconductor
junctions in the limit of a large Schottky barrier height,
Crowell [4] had shown that the common Richardson constant
is determined by the effective mass in the semiconductor,
irrespective of whether it is larger or smaller. Clearly, special
assumptions must be made for (2) to be valid. Elucidation
of these assumptions, and derivation of general results for
thermionic emission are the main goals of the present work.

A number of workers, who considered this problem, have
seemingly circumvented the question of choice of the ap-
propriate Richardson constant by assuming that the potential
maximum is shifted away from the interface, e.g., into vac-
uum in the field emission problem (or into semiconductor in
the Schottky barrier problem) due to the image force or a
distributed surface charge. However, the problem does not go
away if the maximum is shifted by a distance less than the
electronic mean free path, since there will be electrons that
are reflected from the interface and go back over the potential
maximum. Because of this the thermionic transport cannot
be correctly described without specifying the relative posi-
tion of the potential maximum and the heterointerface. This
previously overlooked point is the central focus of our work.
Depending on where is positioned in the barrier, certain
groups of electrons incident on the barrier from the heavier
mass side may or may not be reflected by the interface. This
purely kinematic condition determines an effective Richardson
constant, which thus becomes dependent on

The problem is less apparent but equally critical when
one includes not only thermionic emission but also tunneling
processes. If all the information about the electron transmission
through the barrier and the heterointerface remains hidden in
the QMT, one obtains expressions that are formally correct
but hardly useful, since they are no more amenable to actual
calculation of the current than is the basic equation (1).

In the often cited treatment by Wu and Yang [5] the
current is expressed in the form of quadratures with the QMT
coefficient in the integrand. These expressions are derived
from (1) by assuming a parabolic and isotropic spectra
in both materials and transforming the integration variables
from , , and to energy variables

(3)

(4)

where on side 1 and on side 2. Further
development of this approach should involve specification of
the limits for integration in variables and However,
since Wu and Yang [5] included tunneling processes into
consideration, the limits corresponding to thermionic emission
were not explicitly defined. Moreover, since they had consid-
ered a potential barrier of arbitrary shape, without specifying

the exact position of the heterointerface within the barrier the
information about this position was implicitly hidden within
the QMT. In this situation, the integration limits are meaning-
less—even when tunneling is included—because the resultant
quadrature expressions can be viewed as formally correct only
to the extent that the QMT coefficient implicitly includes all
the unspecified details about the positions of the heterointer-
face and the potential maximum in the transition region.

In light of this, developing a general thermionic theory
including tunneling, does not appear promising for heterosys-
tems. The problem reduces, in general, to a difficult calculation
of the QMT coefficient, followed by a straightforward numeri-
cal evaluation of the integral (1). On the other hand, restricting
the consideration to classical thermionic emission, one can
make further progress, as discussed below. In particular, we
show that the low-mass rule [2], [4], expressed by (2), is valid
only for a special case of a continuous potential, when the
potential energy maximum is located in the plain where the ef-
fective mass suffers a discontinuity. Moreover, for the general
case we show that the low-mass rule (2) remains universally
valid when the potential energy maximum is located in the
lower-mass semiconductor. In contrast, no universal relation
can be established for the case when the top of the barrier falls
within the heavy-mass semiconductor, as in this case the result
depends on the actual potential and the band discontinuity
at the interface. A simple rule emerges, however, when the
energy separation between the top of the barrier and the
interface potential is much larger than In this practically
most relevant case the Richardson constant is determined by
the effective mass in the material that contains the barrier top.

II. CONTINUOUS POTENTIAL

Let us first consider a heterosystem with a potential barrier
of general shape, Fig. 1, which, however, includes no band
discontinuity (the latter case will be treated in Section III).
We assume that outside the transition region marked by
planes and the system is in quasi-equilibrium.
The heterointerface is assumed located at where

and the potential maximum at
where

Leaving aside (till Section IV) the question of validity of the
thermionic approximation, we calculate the thermionic current
assuming that the carrier mean free pathis much larger than
the thickness of the transition region,

Electronic energies in planes and referenced to an
arbitrary common level (Fig. 1) will be denoted by superscripts
(1) and (2), respectively

(5a)

(5b)

where and denote, respectively, the kinetic energies of
the carrier motion perpendicular and parallel to the interface.

Let us denote by the current density of electrons in
plane flying toward the interface with “allowed” energies,
i.e., those energies that enable an electron to reach plane
Formally, in (1) we assign the value to classically
allowed trajectories and otherwise. The similar quantity
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for allowed electrons in plane will be denoted by
Using (1) and (3)–(5), the current densities and
can be brought into the form

(6a)

(6b)

where are Richardson’s
constants of the two materials.

In (6) and throughout this paper, carrier energies are ex-
pressed in units of

The main problem in formulating the thermionic current
is to specify the range of integration in (6), i.e., to formally
separate the classically allowed and the forbidden electronic
trajectories.

In each of (6) one has due to conservation of
energy. Since neither of the quantities and vary in
the course of particle motion through the barrier, except on
crossing the interface, the conservation of momentum parallel
to the interface implies

(7)

From the conservation of energy and (7) it follows that

(8a)

(8b)

where The transformation law for the elementary
area in the planes of variables and
follows from (8)

(9)

Using (8) and (9), we can express the integrands in (6) in
terms of one or the other set of variables. Written in the same
variables, the integrals in (6a) and (6b) are taken between
identical limits. Indeed, for any allowed electron trajectory,
originating in plane and labeled by the

corresponding trajectory, labeled by according
to (8) and originating from plane will be also allowed.
Therefore, combining (6a) and (6b) we can write the current
density in either of the two equivalent
forms:

(10a)

(10b)

To evaluate the current we must specify the range of inte-
gration (10) either in variables or

Consider first what happens to the normal contribution to
kinetic energy when a particle crosses the effective mass
boundary, From the conservation of energy in the
transition from the plane to the plane

, we have

(11)

where and It follows
from (11) that if on crossing a boundary the effective mass of

(a) (b)

Fig. 2. Illustration of electron kinematics for a continuous potential at the
interface.

a particle increases, then so does the normal part,, of its
kinetic energy—for any nonvanishing value of in-plane kinetic
energy, , see Fig. 2.

To carry the analysis further, we need to specify the relative
positions of the planes and Although (10) allow us
to evaluate the current in either set of variables

or , it is more convenient to proceed in that set
which corresponds to the effective mass of the region that
includes This gives rise to a simpler configuration of
allowed energies and hence simpler integration domain.

Consider first the case when An obvious
necessary condition that an electron originating at could
overcome the barrier is

(12)

where This, however, is not a sufficient
condition. Approaching from the left, the normal energy
of this electron will be

and immediately upon crossing the boundary it will be given
by (11)

For the particle to be able to cross the quantity
should be positive, whence we arrive at another inequality

(13)

which must be satisfied together with (12). Evidently, for
the inequality (12) is stronger than (13) and hence the latter
does not affect the allowed energies, cf., Fig. 3(a). In contrast,
for it depends on which of the two inequalities is
more restrictive. The allowed energies for are shown in
Fig. 3(b).

Having defined the domain of integration for
we can write the current density in the general form

(14)
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(a)

(b)

Fig. 3. Allowed energies forXint>Xmax for (a) m1 � m2 and (b)
m1 � m2: Small arrows indicate the domain of integration. They orig-
inate from the domain boundary. LineE1 is described by the equation
E
(1)
? = eVint � E

(1)
C

+ (� � 1)E
(1)
jj

:

where the lower limit in the second integral over
is given by

(15)

and is the step function (i.e., the second integral is
subtracted only when

The case is best considered in variables
and can be derived from the previous case by a

reflection transformation, Expressions for the current
density are obtained from (14) and (15) by transposing the
indices , replacing , and changing the sign of
the current, The result is

(16)

where the lower limit in the second integral over
is given by

(17)

The range of allowed energies for in the
variables is shown in Fig. 4. Fig. 5 illustrates the

(a)

(b)

Fig. 4. Allowed energies and the integration domain in variablesfE
(2)
jj

;

E
(2)
? g for Xint<Xmax and (a)m1 � m2; (b) m1 � m2: Line E2 is

described by the equationE(2)
? = eVint � E

(2)
C

+ (��1 � 1)E
(2)
jj

:

(a)

(b)

Fig. 5. Same as in Fig. 4 but in variablesfE(1)
jj

; E
(1)
? g: Lines E3 are

described by the equationE(1)
? = Emax � E

(1)
C

+ (� � 1)E
(1)
jj

:

same range in variables and shows that in these
variables the domain of integration has a more complicated
form.

It follows from (14)–(17) that for the current
is governed by the Richardson constant (2) corresponding
to the lower effective mass. Thus, for , the second
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term in (14) vanishes and one obtains the usual thermionic
expression with For , the vanishing second term
is in (16) and becomes the effective Richardson constant.

The same rule applies to the case , provided
the potential energy maximum is located in the lower mass
semiconductor.

In contrast, when the potential energy maximum falls in the
heavier mass semiconductor, the effective Richardson constant
depends on the potential energy value at the heterointeface rel-
ative to the maximum Taking the distribution
functions in the nondegenerate Boltzmann form, we find from
(14) for and

(18)

where is given by

(19)

Similarly, from (17) we find for and

(20)

with given by

(21)

Equations (18)–(21) imply that when the potential energy at
the interface is far below , then the common Richardson
constant is governed by the effective mass in the material
where the maximum is located. Indeed, from (19) it follows
that

hence, the effective Richardson constant in (18) tends
to Same conclusion, naturally, follows from (20) where

when in (21)

III. D ISCONTINUOUS POTENTIAL

Consider now the case when the potential suffers a discon-
tinuity at the heterointerface,

for
for

(22)

where (see Fig. 6). This is
the case most relevant to practical semiconductor heterojunc-
tions, such as those used in emitter-base junctions of bipolar
transistors [Fig. 6(a)]. The situation shown in Fig. 6(b) arises
when one introduces interfacial dipoles by epitaxy in order to

(a)

(b)

(c)

Fig. 6. Potential diagrams of heterojunctions with a conduction band dis-
continuity at the interface forXint � Xmax:

enhance a band-edge discontinuity [6]. For completeness, we
shall also consider the situation, described in Fig. 6(c).

Without a loss of generality we can restrict our consideration
to the case as illustrated in Fig. 6. In this
case the convenient variables are As above, the
case is obtained by reflection ; the
corresponding expressions in variables result by
transposing the indices with the obvious replacements:

(23)

Consider first the case when does not coincide with the
interface, viz. , as in Fig. 6(b) and (c). Instead
of Fig. 2 we now have the band diagram shown in Fig. 7.
Evidently, (11) must be replaced by

(24)

On the other hand, (12) remains in force. Following steps
similar to those leading to (13), we find that allowed energies
must satisfy besides (12) an inequality of the form

(25)

which is identical to (13) except that is replaced by
Accordingly, the same replacement must be made in Fig. 3(b)
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(a) (b)

Fig. 7. Illustration of electron kinematics for a potential with a conduction
band discontinuity at the interface.

and hence the lower integration limit in (14) will be given by
the following expression [instead of (15)]:

(26)

As before, if , i.e., when the potential maximum
is in the lower mass semiconductor, the second integral in
(14) is eliminated and we obtain the conventional thermionic
expression with The lower-mass rule remains valid
in this case.

In contrast, for , i.e., when the potential maximum
is in the heavy-mass region, the effective Richardson constant
becomes a function of , similar to the case of
continuous potential considered in Section II. For a nondegen-
erate Boltzmann distribution, (14) now leads to an equation of
the form (18) but with given by

(27)

Another way of arriving at the same result (27), starting
from equations of Section II that have been derived for a
continuous potential, is by the following argument. We note
that, given the quasi-Fermi levels in the two materials, (18)
and (19) are controlled only by the interface potential and
the barrier height , and depend neither on the shape of
the barrier nor the peak position, provided the latter stays in
the heavy mass region, The same is true for the
more general equation (14), given the distribution functions

and in the two reservoirs.
The result of the integration (14) is therefore invariant under

an arbitrary continuous deformation of the potential profile,
subject to the condition and fixed values of
and relative to Such a transformation is illustrated
in Fig. 8(a). In the course of deformation, the potential
may acquire steep walls where its derivative may diverge,

so that the potential at would become
multivalued in the limit. In this case, the relevant value of

in (17) is evidently
Consider now the case , which can be regarded

as the limiting case of Evidently, we can
continuously deform the potential diagram of Fig. 6(b) into
Fig. 6(a), as is illustrated in Fig. 8(b), whereas the diagram

(a)

(b)

Fig. 8. Continuous deformations of the potential profile, which leave
thermionic current invariant.

in Fig. 6(c) cannot be so deformed.1 Hence, when making
the limiting transformation from the side

we must assume that In such
a transformation cf., Fig. 8(b). Hence, the
thermionic expression that results for a nondegenerate distri-
bution in the case is of the form (18) with given
by (27). For the result is of Stratton’s form (2).

Thus, the conclusion we derived at the end of Section II
for a continuous potential, remains valid for an arbitrary
potential with a band-edge discontinuity at the interface:the
Richardson constant is governed by the effective mass of the
material containing the potential maximum. This statement
is rigorously true when the effective mass in this material
is lower; otherwise it is an approximation dependent on the
value of the interface potential. This approximation becomes
accurate (with an exponentially negligible error) when one of
the following inequalities is satisfied:

for (28)

for (29)

IV. CONDITIONS FOR VALIDITY OF

THE THERMIONIC APPROXIMATION

The effective mass discontinuity gives rise to an interesting
question regarding the validity of thermionic approximation.
The invariant deformation of the potential in the region be-
tween and —including re-positioning of the point

—discussed in the preceding Section, is permissible only
if the distances involved are much shorter than the electronic
mean free path This may appear to be an unnecessary
restriction, because it certainly goes beyond the usual condition
for the validity of thermionic approximation. As is well known,
see, e.g. [7], this approximation is valid providedexceeds

1In treating the caseXmax 6= Xint we have naturally assumed that
Emax>V

(+)
int ; V

(�)
int , irrespective of whether�EC is positive [as in

Fig. 6(c)] or negative [Fig. 6(b)].
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the distance in which the barrier falls by from its maximum
value (the Bethe condition). This condition may be insufficient,
however, to ensure the validity of (14).

Indeed, consider electrons whose is large enough to
overcome the potential barrier but not large enough to cross
the interface into the region of lower mass. Such electrons
suffer an internal reflection at the interface and return back
to the quasi-equilibrium ensemble from which they had origi-
nated—unless they are allowed to scatter in between and

If scattering is allowed, even elastic, then (13) is no
longer a restriction, because the normal componentcan
increase at the expense of We therefore conclude that the
validity of the “exotic” thermionic regime with requires
that the Bethe condition be supplemented by

(30)

In contrast, the inequality (30) is not required when is
displaced from in the lighter mass direction. Physically,
the difference is associated with the fact that particles incident
on the heterointerface from the lighter-mass side are not
reflected back, as discussed above in connection with (12)
and (13).

V. BOUNDARY CONDITIONS AT A

HETEROINTERFACECARRYING CURRENT

Boundary conditions at an abrupt heterointerface are often
required in theoretical descriptions of such problems as minor-
ity carrier injection in heterojunction bipolar transistors (HBT)
[8]–[12]. If the quasi-Fermi level of minority carriers were
continuous at the interface, the ratio of electron concentration
on the emitter side to that on the base side in
the vicinity of the discontinuity, would be described by an
equilibrium “barometric” formula

(31)

where and are the conduction band densities of
states in the emitter and base, respectively. However, the
quasi-Fermi level is discontinuous at an abrupt interface under
current, see, e.g., the discussion in [10], and hence the ratio

should be determined from kinetic considerations.
In general, the thermionic model does not prescribe a local

rule for boundary conditions at heterointerfaces, because the
effective common Richardson constant governing thermionic
fluxes at the interface depends on the interface potential
relative to the potential maximum. However, in most practical
cases, including the base-emitter junction in modern HBT, one
of the inequalities (28) or (29) is well satisfied and hence
to a good approximation the common Richardson constant
corresponds to the material where the potential maximum is
located.

In this case the appropriate boundary condition on the flux
of electrons is of the form

(32)

where is the Richardson velocity, and
is the effective mass of electrons in the emitter. Note that

(32) differs from (7) of [10] where the lower-mass rule [2],
[4] was assumed to be universally correct.

VI. CONCLUSION

Thermionic current does not remain invariant if the position
of the interface between two media of different effective
carrier mass is shifted relative to the potential maximum. The
lower-mass rule, governing the effective Richardson constant,
fails when the maximum of potential energy is located in
the heavy-mass semiconductor. Such a situation is realized,
e.g., when one introduces interfacial dipoles by epitaxy in
order to enhance a band-edge discontinuity [6]. Another com-
mon realization of this situation occurs in III-V compound-
semiconductor HBT’s at the junction between a wide-gap
emitter and a narrow-gap base, since the wider gap material
usually has the heavier effective mass.

In most practical cases, however, the potential energy max-
imum is separated from the potential energy at
the interface by several In this situation, the effective
Richardson constant is governed by the of the material
containing the potential maximum.

Thermionic emission is very important for the operation of
modern III-V HBT’s. It is the dominant mechanism of minority
carrier injection into the base. However, existing experimental
data are not sufficient for a meaningful comparison between
predictions of different theories. Such a comparison would
require the design of special test structures.

The issue clarified in this work has a practical relevance
mostly to theoretical constructs involving model boundary
conditions at heterojunction interfaces.
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