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Abstract—We have developed a theory describing the operation
of lasers based on intersubband transitions in a quantum well.
The theory combines a first-principles description of the inter-
subband lineshape and the optical gain with kinetic models for
carrier heating. The theory is consistent with the experimental
data available and suggests new ways of improving the laser
design for room-temperature operation with high output power.
At low carrier concentrations, it is possible to achieve positive
values of the gain at room temperature even in the absence of
an overall population inversion between quantum-well subbands.
For higher (but still moderate) concentrations, the theory predicts
a peculiar dependence of the output wavelength on the pump
current, including a regime where the lasing wavelength switches
“digitally” between two stable values.

I. INTRODUCTION

MPLEMENTATION of the quantum cascade laser (QCL)

[1] is a great milestone in the history of semiconductor
devices. The intersubband laser has many potential applica-
tions in the mid-infrared range (A = 4 pm). Since the first
demonstration, the Bell Laboratories group has continued a
rapid development of the QCL, improving such characteristics
as the threshold and the maximum temperature of operation
[2]1-[4]. Nevertheless, the QCL operation is not yet fully under-
stood. The temperature behavior of the threshold, the abrupt
disappearance of lasing above a certain critical temperature
T.;, the nature of T.., the low differential efficiency, and
the disappearance of lasing with increasing current—this is
only a partial list of questions which lack clear understanding.
Theory lags behind the dramatic experimental progress, despite
a quarter-century-long quest for an intersubband laser [5].

One reason for the lack of a quantitative theory of the QCL
is inadequacy of the usual approach which treats intersubband
lasers by analogy with a two-level atomic system, assuming
parallel parabolic subbands. This analogy fails not so much
because of the nonparabolicity effects—which have been taken
into account in one form or another by many workers—but
because of the very existence of the transverse degrees of
freedom, corresponding to in-plane motion of carriers. These
degrees of freedom store a considerable amount of energy
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dissipated in the carrier motion through a QCL period, fun-
damentally changing the lineshape of intersubband resonance
and the spectral characteristics of gain. Theoretical expression
for these characteristics has been obtained in our earlier work
[6]. Based on these results, we presently develop a kinetic
model of the QCL operation—including the all-important hot
carrier effects.

The intersubband gain spectral function g(2) has been
described [6] as a functional on the distribution functions,
fi(e1) and fo(eq), corresponding to the occupation proba-
bilities of kinetic energy states in the subbands 1 and 2,
respectively. Generally, these distributions are nonthermal and
must be derived from a transport model. As carriers cascade
down the QCL heterostructure, they gain energy. Depending
on the laser design, there may be different scenarios of
how this energy is distributed among various electrons and
dissipated into the lattice. In this work, we consider two
simplified situations, referred to as the “high-concentration”
and the “low-concentration” models. The former corresponds
to the situation when the electron—electron (ee) interaction
is sufficiently fast to equilibrate the input power among
all free carriers in a QCL period. The low-concentration
model describes the opposite limit, when the ee interaction
is negligible and hence different groups of electrons have
different average energies and different energy distributions.

The intersubband gain has a strong dependence on the
shape of the carrier energy distributions in the two subbands
because these distributions conirol the rate of scattering which
breaks the phase of intersubband resonance. For high-carrier
kinetic energies, the dominant phase breaking mechanism is
“transverse,” i.e., controlled by intrasubband scattering [7].
The intersubband processes are typically slower because they
involve a large momentum transfer.

Among the possible transverse phase-breaking mechanisms,
we shall focus on the interaction with polar optic phonons
[8]-[10]. This implies the dependence of g(£2) on the lattice
temperature 7', which governs the population Ny of optic
phonons fiwpy,. Most importantly, the gain becomes strongly
influenced by the nonequilibrium distributions f; 2(¢) in the
two subbands, because the dominant scattering process, emis-
sion of optic phonons, has a threshold nature, its rate ~y(e)
being proportional to the step function 6(e — fiwpn).

Assumption of the dominant role of optical phonons in
transverse phase breaking involves the neglect of two key
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Fig. 1. Schematic diagram of the quantum cascade laser structure and the
kinetics of carrier transport. To ensure identical conditions, each cascade
period must be neutral. The mobile charge in the undoped quantum well
is compensated by the positive donor charge in the reservoir. The rates of
(nonradiative) transitions between the subbands and the escape rate from the
lower subband into the reservoir are characterized by time constants 701 and
Tlout, respectively.

mechanisms, the impurity scattering and the ee interaction.
We have considered these effects and will discuss them in a
separate publication [11]. Qualitatively, we found that distant
impurities had only a minor influence, owing to a characteristic
cancellation effect for transverse phase relaxation by elastic
scattering [7]. On the other hand, we found that the ee
scattering is very important and becomes dominant at high
carrier concentration.! Our present approach is valid when the
total sheet carrier concentration np per period is not too high
np < 10! cm~2. The theory presented in this paper can
be considered nearly rigorous in the low-concentration regime
and semiquantitative in the moderate-concentration regime.

II. RATE EQUATIONS

Kinetics of the carrier transport in the QCL and the device
structure are illustrated in Fig. 1. Under the operating condi-
tions, each period must have net zero charge: by Gauss’ law,
this is necessary in order that subsequent periods could repli-
cate each others’ electrostatic state. To avoid the space charge
accumulation associated with current flow, one therefore needs
a reservoir of positive fixed charge, compensating the negative
mobile charge in each period. Introduction of such a reservoir,
implemented as a doped superlattice region, is the key design
innovation that led to the successful implementation of a
unipolar laser [1]. Subsequent QCL designs [3] entrusted the
reservoir with an additional mission to suppress the unwel-
come tunneling from the upper level into the continuum. For
this purpose, the superlattice is implemented as an electronic
Bragg filter with a stop band in the range of energies of upper
level states. This elegant approach places stringent demands on
band structure modeling and layer control by molecular beam
epitaxy. We shall assume that carriers enter the quantum well
(QW) only via the upper and leave only via the lower subband,
neglecting a leakage from the upper subband directly into the
IeServoir.

Uncreasing the sheet carrier concentration per QCL period above np <
101! cm~? degrades the performance of an intersubband laser, as has been

noted empirically [12]). However, this effect should not be attributed to
impurity scattering. It arises mostly due to the phase breaking by ee collisions.
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As the carrier density in the QW rises with the current,
the total sheet concentration in both subbands n; + ny may
not exceed the doping level np (per unit area), provided in a
reservoir outside the QW. The subband concentrations n; are
found from the following rate equations:

Ons ny

AL A Ny 1
8t J T21 g ( a)
O _ T2y g5 M (1b)
ot T21 Tlout

where J is the current flux and S is the photon density
per unit area in the lasing mode (frequency ). The gain
g = ¢g(Qr) is the intersubband gain (in units of sec™') at the
lasing frequency, where ¢ = ¢/ /Koo is the speed of light in
the lasing mode. The time constants 7o; and Ti,4¢ describe,
respectively, the rate of nonradiative intersubband transitions
and carrier removal from the bottom subband. The ratio of
these constants

go = ot @)
T21

is an important design parameter of an intersubband laser, as
it determines the carrier density ratio in a steady state below
threshold, n; = &ynq. Above the threshold, the ratio n;/ns
may deviate from &y due to the influence of lightwave S.
However, the relation nqy = J7yo4¢ remains rigorous. In order
to calculate the characteristics above threshold, we need to
solve (1), including terms with S. The steady-state values of
ny and no are given by ny = J7iou and

ny o o

=, 1o 95]7 ~ 1= GarosS/TT

3

The subband concentrations n; and ny continue to vary
above the threshold, even though the gain itself is pinned
at the threshold value § = Caress/I'. We remark that in
conventional bipolar lasers, dependence of the gain on the
carrier temperature 7, does also give rise to a variation in
the carrier concentration above the threshold [13]. A new
feature of the unipolar laser is the dependence of gain g on the
n1 /no ratio, the latter being affected by the optical wave. This
dependence has no analogy in the bipolar case, where local
neutrality condition ensures equal concentration of injected
electrons and holes. In the QCL, the total QW charge n; + ns
is compensated only by the donor charge in the reservoir (see
Fig. 1).

III. SPECTRAL GAIN FUNCTION AND THE SCATTERING MODEL

The dispersion relations €1 2(k) in both subbands are dif-
ferent and nonparabolic. An excellent approximation to all the
effects of interest here is obtained by regarding the subbands
themselves as parabolic, but characterized by different effec-
tive masses m; and mo. In this approximation, the density of
states in each subband becomes constant and the functions f;
are normalized in a simple way as

m;
Th?

/OO fi(Ei)dEi =n;, 1= 1,2. (4)
0
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Fig. 2. Optical phonon scattering rate in two-dimensional subbands. Electron
energy ¢ is referenced to the subband bottom. The dashed and the solid lines
describe the cases of low and high lattice temperatures, respectively.

Assuming that the characteristic electron scattering rates are
much lower than optical frequency €2, the gain spectra can be
expressed in the form [6]

_ 4e|ziaPma [ dey(e)[f2(e) — filen)]
9(Q) = Bacyie Jo  [0— QP+ (e

where 212 is the transition matrix element, /K, the refractive
index, a the QW width, . the optical transition frequency
for the in-plane electron momentum ik = /2mae, namely,
AQ. = hQo+¢e2 —¢e1, whereeg =c and 1 = h2k2/2m1 are
kinetic energies in the upper and lower subbands, respectively,
characterized by the effective masses mq and my and the dis-
tribution functions f» and f;. The function ~(e) describes the
transverse phase relaxation rate due to intrasubband scattering.

Validity of (5) is not restricted to any particular scattering
mechanism, responsible for the transverse phase relaxation. In
this work, it is assumed that () is dominated by the inter-
action with polar optical phonons. Optical phonon scattering
in two-dimensional subbands has a sharp step at the phonon
emission threshold (see. Fig. 2)

(&)

_— N h
7€) =70 x {(]Gph + 1)0(e — hwph) ©

where the top line corresponds to absorption and the bottom
line to emission of optical phonons, N,y is the phonon Planck
function, and #(¢) is a step function. The threshold nature of
~v(e) has important consequences for the lineshape. However,
the ultimate sharpness of the step, peculiar to the QW case, is
not essential for our calculations below. Results obtained with
the three—dimensional (3-D) scattering rate function are quite
similar (in the 3-D case, where the density of states vanishes at
low energies, the step is softer). For a sufficiently narrow QW
of any shape, the constant g ~ 1013 s~ is given by [8], [9]

271 1
o ”—(— - —)qph %)
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where gpn = +/2mewpn/h.
The above expression (5) for the intersubband optical gain
takes into account the transverse degrees of freedom of QW
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electrons and in essence replaces the conventional two-level
model of intersubband transiticns by a two-band model, which
includes from the first principles such effects as energy-
dependent scattering and the subband nonparabolicity. Inclu-
sion of these effects leads to a qualitative change in the
lineshape of the intersubband resonance, so that the maximum
spectral intensity is no longer related to the linewidth, as it
would be in a parabolic model (see the Appendix).

IV. NONEQUILIBRIUM CARRIER DISTRIBUTIONS
AND INTERSUBBAND GAIN SPECTRA

Deviations from equilibrium arise from the power P;, ~ J -
K2 per unit area, dissipated in each cascade period. Depending
on the QCL design, there may be different scenarios of
how this power is distributed among various electrons and
dissipated into the lattice. In this work, we consider two
simplified situations, referred to as the high-concentration (A)
and the low-concentration (B) models. Model A corresponds
to the situation when np = 10 cm™2 and the ee interaction
is sufficiently fast that P;, is shared among all free carriers
in the period. In this limit, it is permissible to characterize
the distribution functions of carriers in each subband by a
quasi-equilibrium, characterized by an effective temperature
T. and, moreover, assume the same 7, for both subbands (and
also for the ensemble of carriers remaining in the reservoir).
Model B describes the opposite limit, np < 101 cm?, when
the ee interaction is negligible and hence different groups of
electrons have different energy distributions. The concept of
an effective temperature is no longer valid in this situation.
At low concentrations, most of the input power is dissipated
via the lower subband.

A. High-Concentration Model

It is well known [14] that when the bulk carrier concen-
tration is well above 10'7 ¢m™2, the ee scattering process
dominates over optical phonon emission. In this regime, it is
perfectly justified to use the electron temperature approxima-
tion for f;(e;) and assume, in the energy balance equation,
that all np electrons in the cascade period acquire the same
T.. However, in this range, one should also consistently take
into account the phase-breaking effect of ee collisions, as
well as the dependence of the electron cooling rate on the
carrier density and effective temperature. We shall discuss
these effects quantitatively in a separate publication. Here
we confine ourselves to the consideration of optical phonon
scattering as the dominant phase-breaking mechanism, which
limits the validity of model A to a range near but not much
above np &~ 10™ ecm™2, which is similar to the experimental
situation in reported intersubband lasers [1]-{4].

At these moderate levels of injection, we can use Boltz-
mann’s statistics, since even for T, = 100 K, we have
ny/N¢ < 1, where No = mkT, /7z'h2 is the effective density
of states in a 2-D subband. The distribution functions f; and
f2, normalized as in (4), are then given by

2
filei) = mhTn e/

= 8
m;kT, ®
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In the Boltzmann approximation, the energy balance equa-
tion is of the form P, = npk(T, — T)/7., where 7. is
the energy relaxation time. Whence we see that the carrier
temperature is a linear function of the current

JT R

KT =T) = =

©

In the Boltzmann approximation, our expression (5) for the
gain can be further simplified to

_ 4€2t212|2ﬂ2ﬂ

9() = hacy/ Kook,

oS —e/kTe
O S\ R
o [= Q]+ [v(e)] fo
where €3 = ¢ and £, = emy/my4, so that
fi_ MM ikt -mam) (11

f2 B 2

Equations (10) and (11) suggest that the gain can be positive
even in the absence of inversion between the two subbands,
i.e., for ny = ny. This effect—in model A—occurs owing
to the nonparabolicity (my > my): at a sufficiently high
wavevector k, the occupation probability of state so(k) in
the upper subband is higher than that of state £;(k), even
though the lower subband has higher overall population. This
can be also seen in a different way: in the high-concentration
regime, where both subbands are characterized by the same
effective temperature, it is possible to introduce the subband
quasi-Fermi levels Fp, and Ep, for the distributions f; and
fa, respectively. One can then show that the range of g(Q) > 0
corresponds to the relation R} < Ep, — Ep,, familiar from
the theory of conventional semiconductor lasers [15].

Gain spectra calculated in the high-concentration limit,
np = 10'' cm™2, are shown in Fig. 3. We have assumed
a Maxwellian distribution in both subbands, characterized by
an effective temperature 7, which for concreteness we take
to coincide with the lattice temperature, T, = 7. Note the
existence of a range of ¢ > 0 in Fig. 3(a), even though
we assumed no overall inversion between the two subbands,
& = 1. In this regime, the peak gain is rather low and the peak
shifts to longer wavelengths at higher 7'. These effects have
been observed experimentally [4]. In the high-concentration
regime, the range of positive gain for ny > no arises entirely
due to nonparabolicity. Dependence of the gain spectra on
the subband inversion parameter £ = njy/ny is shown in
Fig. 3(b) for a constant temperature. As expected, the gain
spectra improve, as the ratio ¢ decreases.

B. Low-Concentration Model

In contrast to the case described in Section A, this model
is rigorous in the limit np < 10*' ¢cm~2 and requires no
additional assumptions. In the low carrier density limit, all
of the power P, is dumped into the lower subband and the
distribution functions of carriers in the upper subband and in
the reservoir both remain near equilibrium. Optical phonon
bottleneck effects are not important in this limit either.
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Fig. 3. Calculated intersubband gain spectra in the high-concentration limit,
np & 10" cm~2, and the following material parameters: Eg = 1 eV and
a =76 A, resulting in £y = 138 meV, Ey = 438 meV, (2l = 0.3 eV),
and my, = 1.28 me, mo = 1.88 me, where m. = 0.04 mg is the Kane
effective mass at the conduction band bottom [6]. We assume the transition
matrix element z12 = 15 A, ny = 5 - 10° cm™2 and 791 = 1 ps, ie., the
current density J = 800 A/cm?. (a) Gain spectra at different temperatures
assuming no overall inversion between the two subbands: n1 = na. (b)
Room temperature gain spectra for different values of the subband inversion
parameter { = n1/ng.

Fornp < 10 cm™2, the rate of ee collisions is low and the
shape of the distribution functions is far from Maxwellian. The
dominant scattering process is due to optical phonons causing
electronic transitions within the same subband. We assume
that electrons enter the upper subband “cold”? and their distri-
bution f,(e) corresponds to a quasi-equilibrium at the lattice
temperature 7'. Immediately after a nonradiative intersubband
transition (rate 7,;" ~ 1012 s~1), the lower subband electrons
are in a state of high kinetic energy €1 >> hwpn. Subsequently,
they cascade down emitting optical phonons fwpy, at the rate
Yo = (e > hwpn) ~ 103 s~ This process is illustrated
in Fig. 4. Neglecting thermal re-excitation of hot carriers up
the optical phonon ladder, the distribution function f;(s1) is
established by solving a simple kinetic equation

df1(e)

T =v0(fi{e + hwpn) — fi(e)) ~ Tﬂinfl(e)‘

2This implies a sufficiently fast energy relaxation in transport through the
reservoir.

(12)
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Fig. 4. Formation of the electron energy distribution in the bottom subband
at low carrier concentrations.

The escape rate Tl—(’it ~ 1 ps is assumed independent of the
kinetic energy. The resultant steady-state distribution is given
by a quasi-discrete ladder with the occupation probabilities
decreasing toward the subband bottom

F1(€1) = fmax - (14 p)¥/h9h 0 frn ei€/een

where £ < 0 is referenced to the entry level in the lower
subband, ¢ = &1 + fiwph — A0, fmax = f(AS — Awpn),
and 1 = 1/(YoT10ut). The approximate expression in (13)
results when p < 1 and describes a negative T, ensemble. The
distribution (13) has no hot-electron tail overlapping the upper
subband and hence there is no significant backflow into the
upper subband, even though the average energy (e1) > fwpn
may be very large. The detailed shape of the distribution (13)
and its quasi-discrete nature are of little importance, as all that
matters is the fact of negligible occupation of states at the
bottom of the lower subband and the absence of hot-electron
effects in the upper subband.

The calculated gain spectra are shown in Fig. 5(a) for sev-
eral temperatures. The peak gain is substantial even at T = 300
K, although we again assumed no overall population inversion
between the subbands, ny/ne = ¢ = 1. In the absence of
lasing, the ratio £ is determined by nonradiative kinetics, (2).
In the low-concentration regime, the peak wavelength does not
depend on the temperature. To our knowledge, this regime has
not yet been realized experimentally.

Room-temperature gain spectra calculated for several values
of & are presented in Fig. 5(b). In contrast to the high-
concentration regime, the existence of positive gain in the
low-concentration limit does not rely on nonparabolicity and
persists to concentrations far from the overall inversion.

(13)

V. CALCULATION OF THE LASER CHARACTERISTICS

Our general expression (5) for the intersubband gain allows
one to calculate the laser characteristics under both steady-
state and dynamic conditions, provided we possess an adequate
kinetic model for the variation of the distribution functions
f1 and f, under a variable input power Pi,(t) ~ J(t) - A2
In as much as the characteristic electron relaxation times are
typically faster than the recombination times in a bipolar
laser, the QCL can be expected to exhibit ultrafast modulation
characteristics. In the present work, however, we shall be
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Fig. 5. Gain spectra in the low-concentration limit (np < 10" em™?).
As in Fig. 3, we assume ng = 5 - 10° em™2 and 757 = 1 ps, ie., the
current density .J = 800 A/cm?. Other parameters are also as in Fig. 3. (a)
Gain spectra at different temperatures assuming no overall inversion between

the two subbands: ny = ny. (b) Room-temperature gain spectra for different
values of the subband inversion parameter { = ny/no.

concerned only with the steady state or quasi-stationary char-
acteristics, corresponding to the situation when frequencies of
the input current variation are much lower than inverse energy
relaxation times for electron ensembles in the QW subbands.
In this case, we can let the time derivatives in rate equations
(1) vanish and solve the resultant algebraic equations for any
input current.

As the first step, one must evaluate the spectral gain function
9(82) = g[f1(e1), f2(e2), T], where the functions f; and f> are
determined from a kinetic model for a given current J. In this
way, we find the lasing frequency {2z, which maximizes g(£2),
and the modal gain gy = I"g(§21), where I is the confinement
factor for the optical wave. The threshold is then found from
the usual generation condition

9gM = (Loss (14)

where ofoss = QMirr +Cav includes both mirror and intracav-
ity losses. If the modal gain gp; were a monotonically rising
function of the pump current, we would expect the existence
of a lasing threshold at a sufficiently high current. However,
in general, we find that gas(.f) is not a monotonic function
of the current and, depending on the ambient temperature, the
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Fig. 6. Graphical solution of (14) describing the steady-state generation
condition. Dashed and solid lines correspond, respectively, to 7' = 100 K
and T' = 300 K. Dotted horizontal line is the assumed oo = 7 cm™!
(ayirr = S em™! and acay = 2 em™1). Other assumed and calculated
parameters are as in Fig. 3; also, we take the energy relaxation time 7. = 1
ps, the cascade period D = 450 A, the number of periods 25, the confinement
factor I' = 0.1, and the cavity dimensions L x W = 2.4 mm x 14 pm.

threshold condition may or may not be achievable in a QCL of
a given design. Moreover, as we shall see below, there may be
a range of currents—with a second threshold—beyond which
no lasing is possible.

A. High-Concentration Model

Below threshold, both n, and 7, are linear functions of the
current [compare with (3) and (9)]. For each value of J in
the absence of generation, we can determine the gain spectra
by substituting the values of nq(J), &y, and T.(J) into our
theoretical expression (10) for ¢(€2), which in this model has
the structure

g(Q) = g(n27§>TevT)'

Graphical solution of (14) is illustrated in Fig. 6 for two
different lasers, characterized by the design parameter &,. It
turns out that the function g/(J) in general has a maximum,
whose value strongly depends on &;. If this maximum is below
O10ss (as is the case for £, = 2/3 at T' = 300 K), then the
generation threshold cannot be achieved. For a given laser
(fixed &), the threshold goes up with increasing temperature.
At the same time, the operating range of currents shrinks and
the output power decreases. Above a critical temperature Ty, ax,
the threshold no longer exists. Evidently, Ti,.x is higher for
lower . Calculated temperature dependence of the threshold
current is shown in Fig. 7.

To calculate the light-current characteristics above the
threshold, we substitute the values of ng, mi/ng, and T
obtained from (3) and (9) into (10)—(11) for g(f2), evaluated
at 2 = 27, Whence, setting § = Caress/I" in accordance with
(14), we find the light-current relationship S(J) in an explicit
form (which is somewhat too cumbersome to be displayed).
Fig. 8 shows the calculated output power characteristics of a
QCL with parameters same as in Figs. 6 and 7.

An interesting feature of the intersubband laser in the high-
concentration regime is the fact that the lasing wavelength

(15)
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Fig. 7. Temperature dependence of the calculated threshold current density

for two quantum cascade lasers, characterized by design parameters &q. Other
parameters are as in Fig. 6.
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Fig. 8. The calculated light-current characteristics of two cascade lasers with
different &y at different lattice temperatures.

may vary with the pump current. Fig. 9 shows this variation
in the instance of a QCL with & = 2/3. The peak frequency
(17, that maximizes the gain ¢(2) is displayed in Fig. 9(a)
together with the output power as functions of pumping current
eJ. The corresponding gain spectra are shown in Fig. 9(b) at
several representative values of eJ. In general, the value of
Qr is close to Qg = Qe = 0) at low T, and, as the current
(and hence 1) increases, Q1 shifts to Qpp = Qe = fwpp).
At high T., the spectral peak is pinned very tightly near
the frequency Qp, ~ Qo — (ma/mi — 1)wph, because those
transitions that correspond to & > hwpy, are sharply broadened
by optical phonon emission, so that the gain spectra are
depressed above (.. In the present example, virtually all of
the variation of €2y occurs below the threshold. This effect
may be advantageous for applications requiring a very stable
lasing frequency.

On the other hand, the QCL can be designed in such a
way that part or most of the variation in Q7 will occur
above threshold. An example of this situation is provided by
the ¢, = 1/3 laser, as illustrated in Fig. 10. Note the sharp
transition from €y and Qpp, in a narrow interval of currents.
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Fig. 9. Variation of the peak frequency of the intersubband gain as a function
of the current density for a laser with £o = 2/3 in the high-concentration
model. (a) The marked curve corresponds to 7§27 (J) and the other curve to
the output optical power. (b) Gain spectra at selected values of the current
density. Subthreshold spectra are marked by circles and above-threshold
spectra by squares. Maximum value of the gain above threshold is pinned
by the generation condition (14).

w
(=
o

> 3000
> -— =153
E 0 £
=295] S 5
2 A H 2000 E =
) o -
f= I} [
®e290 | A ... .. 2 K]
5:2 1000 e (¢}
Q —0a
£ 285 "
0 2 4 280 290 300 310
. 2 Photon energy, meV
Pumping current, kA/cm
(@) (b)

Fig. 10. Same as in Fig. 9 but for a laser with {; = 1/3. The gain above
threshold is pinned at the same maximum value, which is either at the peak
near {Jg or at {},,, depending on the current. Most of the variation of the
output optical frequency in this laser occurs when the highest value of the gain
spectral function jumps from one peak to the other. Carrier concentration in
the upper subband varies in the 109 cm™? range.

This means that the QCL has a unique capability of controlling
the output wavelength “digitally” between two stable values.
This is another unique property of the unipolar laser, which is
likely to find interesting applications.

B. Low-Concentration Model

Light-current characteristics at low concentrations are ob-
tained in a similar fashion. In our model, the upper subband
distribution function fo is thermal, while the lower subband
distribution function f; corresponds to the negative T, en-
semble (13). We stress that our results are very tolerant to
the crudeness of the approximation chosen for f;—all that
really matters is the relatively low probability density near
the subband bottom where most of the transitions occur. On
the other hand, the assumption of thermal distribution in
the upper subband does make a significant difference. High
performance of the QCL in the low-concentration limit relies
on the possibility for hot carriers to lose most of their excess
energy while transiting the reservoir. To ensure this possibility
is one of the important design considerations in this limit.

Fig. 11 shows the light-power characteristics calculated in
the low-concentration regime for a QCL with np < 1010
cm™ 2. Note the low values of n, indicated by the dashed lines.
Inasmuch as in the low-concentration regime the n; electrons
are smeared over the subband with very low occupation
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Fig. 11. Calculated light-current characteristics of a quantum cascade laser
with low built-in carrier concentration [model BJ. Dashed lines show the
variation of carrier concentration in the upper subband. The design parameter
© = 2/3, temperature 7' = 300 K (curves 1) and 7" = 500 K (curves 2).

probability at the bottom, low values of ¢ are not required
for high-temperature operation.

We believe that focusing on the low-concentration regime
represents the best strategy for the implementation of low-
threshold and high-output-power intersubband lasers. In this
regime, electron heating are beneficial: they do not affect
the distribution of electrons in the upper subband and at the
same time “improve” the distribution in the lower subband by
shifting most of the occupation probability to harmless states
of high kinetic energy.

Admittedly, our model of the low-concentration regime
corresponds to an ideal case, which neglects leakage from the
upper subband directly into the reservoir. As has been shown
by the Bell Labs group [3], ‘this problem can be solved by
designing a suitable Bragg reflector in the reservoir. Perhaps
one should also not underestimate the difficulty of maintaining
the identical conditions in different cascades at low np, in
view of doping fluctuations and possible violations of cascade
neutrality. Nevertheless, overcoming these difficulties appears
to be well within the capability of modern molecular beam
epitaxy—of which one of the most impressive triumphs was
the implementation of the QCL itself.

VI. CONCLUSION

We have developed a theory of the quantum cascade laser
that includes a rigorous description of the intersubband line-
shape and optical gain as well as the very important carrier
heating effects. The theory has been applied to two opposite
regimes of carrier heating, as controlled by the built-in doping
level. Both regimes allow for a high-temperature operation.
In the high-concentration regime, the laser wavelength can be
made a “digital” function of the current with two sharply de-
fined and switchable wavelength states. The low-concentration
regime offers possibility of higher performance, because the
carrier heating effects in this case actually improve the effec-
tive population inversion for states participating in the lasing
transition.

Given the tremendous applications potential of the QCL,
we believe the device deserves a major development effort.
The improvement strategies that have born most fruit so
far have dealt with the kinetics of subband population, ef-
fectively the reduction of parameter &, and with the laser
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engineering, such as improved heat sink, cavity design, etc.
Present work identifies three new strategies. First, one should
strive to reduce the effects of nonparabolicity by employing
new material systems and designs to engineer subbands with
approximately equal kinetic masses in the QW plane. Next,
one can attempt to reduce the carrier heating effects by
introducing new carrier cooling channels, e.g., via intervalley
phonon emission in the doped reservoir region. Third, one can
render hot-carrier effects harmless by implementing the low-
concentration regime of operation. Our work shows that the
QCL still has an enormous reserve for improvement.

APPENDIX
HOT-ELECTRON EFFECTS AND TRANSVERSE
RELAXATION IN A TwWO-LEVEL MODEL

If «v were independent of energy, y(¢) = 79, and the non-
parabolicity could be neglected, then for the peak frequency
© = Qg one could reduce (5) to the usual expression for a
two-level system, g = g/, (n2 — n1)/a, where (compare, e.g.,
with [16])
4me?|212)2Q

hey/fooYo
However, for the heterosystem used in the experimentally
realized intersubband lasers [1]-[4], neither of these approxi-
mations is adequate. Thus, in the entire range of temperatures
considered in this work, the peak value of the gain is sup-
pressed compared to the parabolic case by at least an order
of magnitude. This means that temperature dependence of the
gain cannot even be estimated from (Al).

It may be instructive, however, to discuss qualitatively
the threshold behavior in a model where (A1) is valid, as-
suming a QCL implemented in a parabolic material (say, a
wide-gap semiconductor heterostructure). Consider the high-
concentration limit. Using (A1) together with (14) and (9), we
find that the threshold condition is described by the following
equation for 7,:

In (AD)

h’YO(TE)
— =R A2
I -1T,) (A2
where R is a dimensionless constant
_ Awe?|z|*Tnp 701 — Tlout (A3)

hie /Koo Loss Te

Consider a graphical solution to (A2), Fig. 12, assuming that
the intersubband linewidth v is an increasing and concave
function of the effective carrier temperature.®> The threshold
carrier temperature is determined by the first intersection of
a line (T, — T) - 'R with the concave upward curve Ayo(T,).
Depending on the value of R and the ambient temperature,
(A2) may have no solutions at all or—if the value of R is
sufficiently large—two solutions. For a given R, the highest
lattice temperature 7' = T}, at which threshold is possible,
is determined by the condition that the line is tangent to
the curve. Finally, there is a minimum value of R such that

3Intersubband photoluminescence experiments indicate that vo(7") is an
increasing concave function of the lattice temperature [17].
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Fig. 12. Graphical solution of the threshold equation (A2) for a parabolic
model of the quantum subbands. For a concave upward curve hvo(7Te) and

T < Tiax, the lasing range is defined by Tt(}}) <Te(J) < Tt(f), In view

of (9), the two thresholds [Tt(hl) and Tt(; ) ] in the effective temperature 7.
determine both the Jower and the upper thresholds for the pump current.

Tmax > 0. If R is less than this minimum value, then there
can be no lasing at any temperature.

From this example, we conclude that both the transverse
relaxation of the intersubband resonance and the hot-carrier
effects are indispensable for the correct physical understanding
of the temperature behavior of quantum cascade lasers.
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