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A theory of the quantized Hall resistance R,y in a two-dimensional electron gas is
presented. The exactness of the quantization is explained as a purely topological effect.
It is shown that lines of constant electrostatic potential represent an effective wave guide
for electron waves. In the Corbino ring geometry the condition for quantization of R, is
the existence of equipotentials encircling the central electrode. The quantum of
Ry =h /e? is shown to be unaffected by a random scattering potential. Collapse of the
Hall current on increasing disorder is interpreted as a percolation transition.

Recent experiments’? with Hall resistance in
semiconductor inversion layers in strong transverse
magnetic fields established to the accuracy of
better than 10~ that Hall conductivity is quan-
tized in multiples of e?/h. The exactness of this
result has led to the proposal’ of using the quan-
tum k /e as a standard of resistance. The most
fundamental consequence of these experiments is
the existence of a long-range order in a fermionic
system® which consists here in a self-interference
of electrons over macroscopic distances of the sam-
ple. A good analogy would be to the Bohm-
Aharonov experiment,* or to the double-slit in-
terference of electrons propagating in vacuum a
macroscopic distance from the slits to a screen.
Laughlin® elegantly related the exactness of Hall
quantization to gauge symmetry by considering the
response of electrons on a two-dimensional metallic
ribbon to varying magnetic flux through the rib-
bon. Still, his argument contains an intuitive as-
sumption that the only consequence of adding an
integral number of flux quanta hc /e is repopula-
tion of current-carrying states. Although this is
undoubtedly true for an ideal system it is not so
obvious in the presence of disorder. Consider
Laughlin’s argument for a disordered system, say,
with holes punched in the ribbon. Continuous
variation of the vector potential leads to a mixing
between the local and current-carrying states
without which a state cannot be continuously
dragged through a nonuniformity. Special con-
sideration must be given to this situation because
gauge symmetry by itself does not prevent the
charge exchange between the local and the extend-
ed subsystems. The number of local states in
quantum Hall experiments is by no means small:
As follows from the data presented in Ref. 1 local-
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ized electrons constitute about 3% of the inversion
layer charge (10—20 % for Ref. 2).

In this paper we develop a physical picture of
the Hall current in the presense of a random po-
tential using a simple model which adequately de-
scribes localized states for the experimental situa-
tions of Refs. 1 and 2. In our picture the density
J of the Hall current is proportional to the local
electric field perpendicular to J in the plane of the
inversion layer. Exactness of the quantization is a
topological property of equipotentials in this plane.
We describe the quantum Hall current as a surface
effect in which edge states play no important role.
This approach differs from that taken in Ref. 5
where the Hall current was interpreted as a net
difference between two oppositely directed edge
currents which were assumed to flow (exactly can-
celing each other) even in the absence of an applied
voltage. It is an open question whether or not edge
currents exist in a particular experimental arrange-
ment. We would like to point out, however, that
when they do exist they should not only contribute
to the Hall current but also give rise to a novel
type of diamagnetism, experimentally distinguish-
able from the conventional Landau effect.®

Consider a two-dimensional electron gas (2D
EG) of the Corbino ring geometry in a strong
transverse magnetic field H. First, let us discuss
an ideal situation with no lateral fluctuation of the
electrostatic potential. In the absence of an applied
electric field the electron energy is characterized by
quantum numbers i and n, viz.,

Ep=(n+7)ho, +E; , (1

where the cyclotron frequency w,=eH /m*c.
Equation (1) differs from the usual expression’ for
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a three-dimensional electron gas in that the con-
tinuous energy spectrum j 2 2 /2m* characterizing
the free motion in the direction of H is replaced by
discrete energies E; appropriate for a finite motion
in the quantum well confining electrons in the in-
version layer. The level splitting in this quantum
well is assumed to be so large ( >>#iw,) that all
electrons remain frozen in states with i=0 for all
H considered. For the sake of clarity we shall
neglect spin effects. The levels E;, are degenerate
with the number of states in each level given by

N =eHS /hc where S is the area of the 2D EG
sample. Thus each filled level contributes

o=e*H /hc to the surface charge density in the in-
version layer (0/e=1.3%x10!! cm~? for H=5 T).
We shall consider only the case when #iw, >>kT so
that all states below the Fermi level Er are com-
pletely filled and those above Er empty. States be-
longing to the same degenerate level can be labeled
by an additional quantum number x, which corre-
sponds to one of the coordinates of a classical cy-
clotron orbit. Along the x axis the electron wave
function varies like the nth eigenfunction of a
linear oscillator centered at x, and is localized
with a dispersion

al=(n|(x —xq)?|n)=( n+5 )aL,

where the Landau length a; =(fic /eH )12 (for
H=5T,a;~100 A). In the perpendicular direc-
tion the wave function is exp(ip,y) where
py=eHxy/c. These results of Landau are strictly
valid in a Cartesian system while our coordinates
are only locally Cartesian which produces a negli-
gible error of order a? /R? (where R is the radius
of the Corbino ring) compared to the exact solu-
tion in the cylindrical coordinate system (cf. Ref.

7). The choice of direction in which orbits are lo-
calized is determined by the gauge for the vector
potential A of the magnetic field and is quite arbi-
trary.

When there is a radial electric field F, i.e., when

a voltage ¥V, is applied, then it is convenient to use
a gauge in which A =4, =Hx, with the local x
axis directed along F. It is easily seen than in this
case the Schroedinger equation is satisfied by wave
functions of the form similar to those obtained in
the absence of the electric field but with a different
relation between x, and the momentum p, of the
electron wave, viz.,

py=(eH /c)xo+m*cF/H (2)

and a different energy spectrum,

Ejnxy=Ej +eFxg+5m*(cF/H)? . (3)

As seen from Eq. (3) the Landau levels are split by
electric field. Each quantum number x, deter-
mines an equipotential. The electronic waves are
localized in z direction by the quantum well and in
x direction by the length a,, while in the y direc-
tion they propagate along the equipotential lines
like light in an optical fiber. Each closed equipo-
tential represents a ring resonator which imposes a
cyclic boundary condition on the electronic wave.
This results in a discrete spectrum of values for x,
with a step 8xo=2ma} /L, where L >>a; is the
length of the fiber. Two successive orbits separat-
ed by the infinitesimal distance 6x also differ in
the total variation of the phase of the correspond-
ing wave functions on going around the loop. For
the wave function to be single-valued this phase
variation must equal 27/ (with / integer) for any
state. The absolute value of / is gauge dependent
but for two successive orbits the difference 6/ =1,
which makes the two states orthogonal. It can be
easily shown that the magnetic flux through the
area bounded by two corresponding equipotentials
equals c/e. The first term in Eq. (2) gives no
contribution to the total current due to a single
electron, because it is exactly compensated by the
diamagnetic term in the expression for the current
density in a magnetic field.” Each electron contri-
butes to the Hall current only in virtue of the addi-
tional velocity vy =cF /H it acquires in the electric
field. This velocity also gives rise to the kinetic
energy term in Eq. (3). Each filled Landau level
contributes a linear current density J =ovy and
the total current in y direction is thus

Io=F(e2/MVo=GyV, @)

where # is the number of filled Landau levels and
G,, the transverse conductivity. We see that for a
given V|, the Hall current does not depend on the
width of the ring. Although the number of quan-
tized equipotentials (single electron fibers) is small-
er for a narrower ring, the field F and therefore the
Hall velocity vy of each electron are proportionally
increased so that the total current remains the
same.

Even more remarkable is the fact that the Hall
current is unaffected by a random electrostatic po-
tential in the inversion layer. This is a purely to-
pological effect as is demonstrated below. To be
specific we consider the experimental situation of
Ref. 9 in which the vanishing longitudinal resis-
tance effect was first discovered. In this work the
inversion layer was formed on the p-GaAs—
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n-GaAlAs interface due to a work-function differ-
ence. Owing to random variations in the surface
density of the fixed charge the shape and the depth
of the potential well confining the inversion layer
also fluctuate and the energies E; become ill-
defined. However, an important feature of this
structure is an undoped GaAlAs layer of thickness
d separating the fixed donor charge from the inver-
sion layer which is formed on the lightly doped p-
GaAs side of the heterojunction. If d >>a; then
the energies E; become smooth functions of the la-
teral position in the inversion layer and the quanti-
ty Eq/e becomes equivalent to a random electro-
static potential for the 2D electrons. In this case
the quantum mechanics of the problem can still be
described in local Cartesian coordinates formed by
the orthogonal grid of equipotential and field lines
but the equipotentials are no longer concentric cir-
cles, cf. Fig. 1. Each equipotential represents an
effective wave guide where an electron is localized
to within the Landau length a;. As before,
periodic boundary conditions determine the quanti-
zation of equipotentials and turn the latter into
fiber ring resonators. Topologically, there are two
distinct classes of fibers in the geometry of a Cor-
bino ring: global fibers which encircle the central
electrode, and local fibers, which can be contracted
to a point by a continuous deformation. It is the
existence of global fibers which embodies the
long-range order in the 2D EG. Because of the
potential fluctuation the total number of electrons
contributing to the Hall current is reduced, since
local fibers obviously do not contribute. Moreover,
in the region bounded by a local equipotential non-

FIG. 1. Global and local fiber states in a Corbino
sample.

fiber states can also exist but their presence does
not affect the following argument.

In the presence of localized states the current
remains the same as in the ideal situation. Indeed,
consider a radial section of the sample which
crosses one or more isolated closed loops, e.g., sec-
tion S'1 in Fig. 1. Because points 2 and 3 lie on an
equipotential the sum of voltages dropping in re-
gions 1—2 and 3—4 equals the applied voltage
V,. The effective width of the Corbino ring in
section S'1 is therefore reduced by the distance
2—3. However, the Hall current for a given ¥,
does not depend on the width of the ring, cf. Eq.
(4). It may appear that the accuracy of this argu-
ment is influenced by the curvature of a fiber
which limits the applicability of local Cartesian
coordinates. Indeed, the state of the motion tran-
verse to the fiber (local x direction) is represented
by a linear oscillator wave function only to the ac-
curacy of a} /r? where r is a local curvature ra-
dius. Nevertheless, as will be now rigorously prov-
en, the accuracy of the Hall resistance quantization
is far greater.

Consider a strip of thickness a; along a global
fiber of length L. To the accuracy a; /L this strip
can be regarded as a linear conductor, for which
the current I, and the associated flux & of mag-
netic field through the contour I, are complemen-
tary thermodynamic variables. Therefore,

9G;
00, ’
where G, is the free energy of electrons in the

given strip. The single-electron contribution to the
total current is given by

I,=c (5)

I

oN, ’
with N, being the number of electrons in the strip.
On the other hand, dG; /0N, =u(x,) where u is
the chemical potential of electrons in the strip.
This is a thermodynamic relation valid to within
1/N; which is again a quantity of order a; /L.
Differentiating Eq. (5) we have 8I(x,)=cdu /0®;.

It should be emphasized that the flux of the
magnetic field through any fixed area of the ring is
not quantized and in contrast to the situation fami-
liar in superconducitivy it can vary continuously.
The fundamental difference is in the nature of the
diamagnetism which in the present case is the Lan-
dau diamagnetism of the electron gas. The mag-
netic flux through a hole in a superconducting ring
can vary only discontinuously because of its
screening by a macroscopic diamagnetic current on
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the inner surface of the ring. Such a coherent
macroscopic current can exist in a superconductor
only in virtue of the bosonic nature of the carriers
(Cooper pairs) which can multiply occupy the same
quantum state. The Landau diamagnetism, on the
other hand, is not due to any macroscopic currents
but to the spatial correlations of current densities.
What is quantized in the present case is the mag-
netic flux through a variable area bounded by two
global orbits on the chosen strip. The minimum
flux variation 8®; corresponds to adding one extra
electron to the strip and equals 8@, =hc /e. This
magnitude of the flux “quantum” follows from the
periodic boundary conditions on the wave func-
tions of current-carrying states (which implies that
the flux increment must be Ac /e times an integral
number 8/) and the principle of least action
(whence 8/=1). The corresponding quantum of
the chemical potential at zero temperature
represents the variation of the Fermi energy on fil-
ling one successive quantized orbit, du =eFéx,.
We thus find

8I(xo)=(e/h)du=(e?/h)Fbx, . (6)

Summing over all filled global fibers, e.g., between
points 1—2 and 3—4, we again arrive at Eq. (4).
This proves the exactness of Hall quantization at
least to the accuracy of a; /L, with L being a mac-
roscopic distance of the order of the length of the
Corbino ring.

At a finite temperature T in addition to the Hall
current I, =1 there is a longitudinal current I,
due to generation of mobile carriers, i.e., thermal
excitation of “electrons and holes” across the Lan-
dau gap fiw,. With decreasing temperature this
current goes to zero as exp(—#iw,/kT) and so does
all dissipation. The vanishing longitudinal conduc-
tivity G,, implies that the longitudinal resistance

Ry =Gy /(GE+G2)

also vanishes. However, this phenomenon is dif-
ferent in principle from superconductivity and not
only in that the latter occurs discontinuously at a
finite temperature. An important difference is in
the nature of the long-range coherence which in
the case of superconductivity consists in the rigidi-
ty of the phase of the Cooper-pair system wave
function. In the present case, because of the ener-
gy splitting, the electron waves oscillate at dif-
ferent frequencies and one cannot speak of a com-
mon phase of oscillation. On the other hand, for a
single fermion the phase is never a quantum num-

ber because of the Pauli principle and the uncer-
tainty relation between the phase and the particle

number.

Variable-range hopping between localized states
(in our case, the local fibers) also contributes to a
dissipative current along the electric field. Indeed,
if the area bounded by a local fiber represents a
potential hill or a potential “volcano” with its top
above the Fermi level, then certain local fiber
states will not be occupied. Some of these states
with energies close to the Fermi level take part in
the hopping current. Temperature dependence of
this current is described by Mott’s law
Gy < exp[ —(T,/T)'”*] for a two-dimensional sys-
tem.” At a sufficiently low temperature or high
degree of disorder this path of current dominates
over the generation current. Thus, the temperature
dependence of R,, obtained in Ref. 8 can be ex-
plained by the Mott conductivity between local
fibers.

An interesting phenomenon will occur if we fur-
ther increase the disorder. When the effective
width of the Corbino ring goes to zero (beccmes
less than a; ) at least in one cross section then all
global fibers are squeezed out and the macroscopic
Hall current ceases. This phenomenon can be in-
terpreted as a first-order phase transiton of per-
colation type with the Hall current playing the role
of an order parameter. It should be noted, howev-
er, that no real percolation of particles is involved
and the term “percolation” is used in a new, quan-
tum, sense to describe the penetration of extended
electronic orbits over the entire sample.

The above theory has one important limitation.
We have considered the situation in which the only
statistically important states are the global and the
local fibers as well as any nonfiber states surround-
ed by a local equipotential. We recall that by fiber
states we mean those associated with equipotentials
smooth on the scale of a;. All quantum Hall ex-
periments known to us conform to this situation
(Refs. 1, 2, and 8). However, it is conceivable that
global equipotentials rugged on the scale of order
a; may exist and be statistically important in some
experimental arrangements. It is not clear whether
the quantized Hall effect will be observed in this
case. In this respect of particular interest are the
works of Ando'® and Prange!! which considered
the electron scattering by short-range potential
fluctuations.
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