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We reconsider the classical problem of the quantum-mechanical resistance due to a quantum-

mechanical reflection off a heterostructure interface.

In the presence of a current, the electron

distribution in the vicinity of the interface is different from that in the bulk due to the angular

dependence of the reflection coefficient.

The interface also modifies the electron concentration,

leading to a violation of the local neutrality. This creates a self-consistent electric field and affects the
angular distribution. The interface resistance depends on the actual form of the electron distribution.
Incorporating all these factors in a kinetic transport model, we have reduced evaluation of the
resistance to an integral equation. The equation is solved analytically in the limits of either strong
or weak reflection. A simple model shows an appreciable difference between our results and the

conventional Landauer approach.

I. INTRODUCTION

The Landauer resistance formula has been very helpful
in describing mesoscopic devices where only a few scatter-
ers are active and the resulting resistance is conveniently
described by a scattering matrix. This approach is very
different from that employed in calculations of the re-
sistivity of a medium with many random scatterers (e.g.,
impurities or phonons). That approach, usually involving
an average with respect to various possible arrangements
of the scatterers, cannot be applied to the case of a small
number of scatterers.

It is also attractive to use the Landauer formula in
heterostructure-interface-transmission problems. Indeed,
a planar interface can be characterized by the trans-
mission and reflection coefficients and one is naturally
tempted to express the interface resistance in terms of
these coeflicients. Such an expression was originally ob-
tained by Landauer.! Assuming the zero-temperature
Fermi distribution for electrons, he derived the follow-
ing formula for the conductance per unit area of a planar
scatterer:

e2k?
~ 873k

1 — R(cos#)
R(cos9)

G | cos 6]dS2 , (1)

where R(cosf) is the reflection coefficient depending on
the electron incident angle § and k is the Fermi wave
vector.

In the subsequent discussion Landauer considered the
possibility that the electron distribution function was
modified due to an interference between the scattering
plane and the thermal scattering, leading to a deviation
from Eq. (1). Landauer stated! that such a deviation
would imply a violation of Matthiessen’s rule for resis-
tivities.
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Precisely this situation takes place in heterostructure
devices. The distance between the interface and the leads
is often much larger than the electron mean free path.
The distribution of electrons incident to the interface is
formed by elastic scattering far from it. Near the inter-
face this distribution is changed for two reasons. First,
the distribution is affected by the angular dependence of
the reflection and transmission coefficients. Second, an
electric current across the interface leads to a violation
of local neutrality. Due to reflections, the electron con-
centration is higher on the side of the incoming flux and
lower on the other side. The resulting self-consistent field
affects the electron distribution function. The latter ef-
fect is linear in the electric field and contributes to the
Ohmic resistance.!*? Therefore the Landauer formula, in
which the reflection and transmission coefficients of an
interface are independent of any scattering in its vicin-
ity, cannot be used in devices of the length larger than
the electron mean free path. It needs some modification.
Such a modification can be considered as the calculation
of effective reflection and transmission coefficients taking
into account scattering in the vicinity of the interface.

The purpose of the present paper is to discuss the nec-
essary modification of Landauer’s formula. As an ex-
ample, we calculate the resistance of a planar potential
barrier, similar to that in a GaAs/Al,Ga;_,As/GaAs
heterostructure. In this case calculations are a bit sim-
pler because the effective masses and electron affinities
on both sides of the interface are equal. For the one-
dimensional case, such a problem has been studied by
Erdnen and Sinkkonen.3

The interface resistance problem has some similarity to
a multichannel mesoscopic device. There are several def-
initions of the multichannel device resistance which lead
to different results (see Refs. 4-6 and references therein).
In a degenerate electron gas only the angular distribution
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of incident electrons is of importance and a small solid an-
gle can be regarded as one channel. It is impossible, how-
ever, to make a direct use of the multichannel Landauer
formulas for the calculation of the interface resistance,
because of rather strong limitations under which these
formulas are derived. The most important limitation is
the assumption of no exchange of electrons between dif-
ferent channels. Also, the electron concentrations in both
incoming and outgoing channels are determined by the
corresponding reservoirs and the coefficients of reflection
and transmission (see Refs. 4-6 and references therein).
Neither of these conditions is satisfied for a heterostruc-
ture interface. Far away from the interface, the nonequi-
librium part of the distribution function is determined by
an interplay between the electric field and the scattering.
Within a mean free path from the interface, the distribu-
tion is modified by the transmission and reflection. The
angular distribution near the interface is influenced by
all these factors.

The same problem can be viewed from another point.
All previous derivations of the Landauer formula have
used balance equations and described deviations from
equilibrium by a shift in the chemical potential. Such
an approach is justified for the degenerate gas in a one-
dimensional (1D) channel, where electronic states par-
ticipating in the transport are characterized only by the
sign of the velocity. In this language, channels corre-
sponding to different incoming and outgoing angles in
the interface problem must be characterized by different
chemical potentials, whose angular dependence remains
to be determined.

In the context of ballistic devices, the Landauer for-
mula describes the resistance of an interface or a con-
striction separating two thermal baths with different elec-
trochemical potentials. The resistance is defined as the
ratio of the electrochemical potential difference to the
current. There is, however, a problem of the definition of
the potential difference in a ballistic device.”*%5 Such a
problem does not exist in our case where the dimensions
of both the device and the contacts are much larger than
the electron mean free path.

In the next section, we specify our definition of the bar-
rier resistance. This definition, in principle, can be used
also for ballistic devices; in order to illustrate its physi-
cal meaning, we apply it to a well-studied example of the
multichannel Landauer formula for a ballistic device.

The structure which is of main interest for us is an
interface separating two semiconductors with the size
larger than the electron mean free path. Such a structure
is nonuniform and the resistance of its different parts is
usually calculated with different approaches. For the cal-
culation of the interface resistance in a ballistic device a
quantum-mechanical calculation of the transmission and
reflection coefficients is necessary. The resistivity of a
uniform medium, in the case of a weak scattering, is cal-
culated with the help of the Boltzmann equation. For a
structure consisting of an interface imbedded in a resis-
tive medium, it is necessary to combine both of these ap-
proaches. The interface can be characterized by reflection
and transmission coefficients obtained from a quantum-
mechanical calculation. In such a calculation the asymp-
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totes of the electron wave function far from the interface
are plane waves. We assume that the electron mean free
path [ is much larger than the de Broglie wavelength A. In
this case the transmission and reflection coefficients can
be used to write down the boundary conditions connect-
ing the electron distribution function at opposite sides of
the interface. In principle, these coefficients can incorpo-
rate also interface roughness and underbarrier impurity
scattering. The condition A < ! also justifies the classical
Boltzmann equation.

Being transmitted through (or reflected by) the inter-
face, an electron is scattered by impurities. The size of
the structure L is assumed to be much larger than the
mean free path, so that the number of impurities which
have a chance to scatter an electron before it reaches a
lead or comes back to the interface is very large. That
means that there are regions far from the interface which
are characterized by a uniform electric field controlled
by a total current. In the regions of the semiconductors
close to the interface the electric field deviates from its
constant value far from the interface and the electron
distribution function is formed under the effect of both
interface transmission-reflection and collisions. The re-
distribution of the electric field near a small constriction
has been studied for mesoscopic devices where both clas-
sical and quantum approaches have been used.? !! Such
a redistribution is important in the analysis of resonant-
tunneling diodes.!? Technically our approach is differ-
ent from the previous ones because we consider the case
of elastic scattering and neglect any energy relaxation,
which is possible for the calculation of the resistance in
the Ohmic region. In earlier works (see, e.g., Ref. 9)
a form of the collision operator was used which does
not distinguish between the energy and momentum re-
laxation.

A problem very similar to ours was studied by Zaitseva
and Levinson.'® They looked for boundary conditions for
the thermoconductivity equation at the interface between
two materials. For this purpose they solved the Boltz-
mann equation for phonons at the presence of a tem-
perature gradient in the region about the phonon mean
free path near the interface. Zaitseva and Levinson used
reflection and transmission coefficients to connect the
phonon distribution function at different sides of the in-
terface. Far from the interface, the angle-averaged distri-
bution function satisfied the diffusion equation and in the
vicinity of the interface it is distorted by the angular de-
pendence of the reflection and transmission coefficients.

In Sec. III we solve the Boltzmann equation for a sim-
ple model of a resistive medium separated into two parts
by a flat potential barrier. Our approach can be gener-
alized to the case when the effective masses or electron
affinities on opposite sides of the interface are different,
but this case is not discussed here. We consider only
the case of a degenerate electron gas; this simplifies the
problem by removing from consideration any particular
energy dependence of the relaxation time. The problem
is reduced to an integral equation for a local electrochem-
ical potential. An analytic solution to this equation and
an explicit formula for the resistance of the barrier are
obtained for a strong and a weak reflection in Secs. IV
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and V, respectively. In Sec. VI we make a simple model
calculation and compare our result with Eq. (1).

II. DEFINITION OF THE INTERFACE
RESISTANCE

This definition is nontrivial because an interface not
only contributes a resistance due to its reflectivity but
also changes the resistance of nearby regions of the sam-
ple. Physically, these effects cannot be separated. As
shown in the next section, the presence of a barrier
changes the electron distribution and the electric field
within a region of about one electronic mean free path
from the barrier. It makes sense to include this region
with the barrier in one unit, whose resistance (hence-
forth referred to as the barrier resistance) is then opera-
tionally defined as the difference between the resistance
of two heterostructures identical in every respect, except
for the barrier present in one structure and absent in
the other. This contribution to the resistivity satisfies
Matthiessen’s rule in the sense that it does not interfere
with contributions resulting from scattering outside the
barrier region.

Such a definition can be generalized for an interface
between different materials. One can assume that a het-
erostructure with an nonresistive interface consists of two
materials with a uniform electric field in each of them and
a continuous electric potential at the interface. The re-
sistance of such a structure is the sum of the resistances
of each of the materials. In a real structure the electric
field near the interface is nonuniform. The extrapolation
of the uniform potential distribution from the regions far
from the interface shows that the nonuniform distribu-
tion of the potential is equivalent to a discontinuity of
the electric potential at the interface. The resistance of
the interface can be defined as the ratio of this potential
discontinuity to the electric current.

Our definition of the resistance is convenient practi-
cally for the case of vertical transport in heterostruc-
tures because it allows us to add other resistances in
series. For other measurement arrangements, e.g., for
four-probe measurements, the definition of the resistance
may be different.

To illustrate the above definition we apply it to a well-
studied case of a mesoscopic device consisting of two
reservoirs connected by N identical 1D channels (Fig. 1).
The device in Fig. 1(b) is different from that in Fig. 1(a)
by the presence of a scatterer, which induces interchannel
transitions described with the coefficients of transmission
Tap and reflection R,p. For simplicity, we assume that
these coefficients are symmetric with respect to the di-
rection of propagation. We consider zero temperature
and assume that the difference between chemical poten-
tials of the reservoirs is small, Ay = pur — pr, where
pr and pp refer, respectively, to the left and the right
reservoirs.

For the device in Fig. 1(a), it is evident that electrons
below pgr do not contribute to the electric current be-
cause their oppositely directed fluxes cancel each other
in each channel at any energy below pugr. Due to the
unitarity relation!4
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FIG. 1. Two devices consisting of two thermal baths with
electrochemical potentials p1 and g, respectively, connected
by conducting channels. The devices are identical in all re-
spects except that in device (a) there is no scattering between
the channels and device (b) contains a scatterer. The resis-
tance of the scatterer is defined as a difference between the
resistance of the device with the scatterer (a) and that of the
device without the scatterer (b).

> (Rap+Twp) =1, (2)
b

the same situation takes place in the device in Fig. 1(b).

This means that the conductance is entirely deter-
mined by the current of electrons in the energy inter-
val between pup and pr. An electron emerging from any
channel on either side is scattered many times in the
corresponding reservoir before returning to the same or
a different channel. Therefore, electrons entering each
channel are in equilibrium with the reservoir and the net
flux is from left to right in each channel between ugr and
pr. The current in the ath channel is given by

. € e
Ja = EXI,:(I —Rab) = ‘7}77: zb:Tab ) (3)

where the total conductance is

e?

Go = ﬁ N ) (4)
for the device in Fig. 1(a) and
=
=—=T, T—%:Tab, (5)
for the device in Fig. 1(b). Our definition of the resis-

tance R associated with the scatterer, corresponds to

wh N—-T
=@ N7 ©

This expression with some assumptions was first obtained
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by Langreth and Abrahams.!* Equation (4) corresponds
to the resistance of N channels without any scattering,
usually referred to as the contact resistance. The total
resistance of the device in Fig. 1(b) is the sum of the
contact resistance and the resistance of the inserted scat-
terer.

III. GENERAL EXPRESSION FOR THE
RESISTANCE OF A BARRIER

Our calculation of the resistance of a heterostructure
containing a barrier will be based on the Boltzmann
equation, commonly used in the description of trans-
port in a continuous medium. We consider the 3D case
with a single planar symmetric barrier similar to that in
GaAs/Al,Ga;_,As/GaAs heterostructures, and neglect
any scattering by surface roughness or by impurities un-
der the barrier.

We assume that the elastic relaxation time 7 resulting
from electron-impurity scattering is much shorter than
the inelastic relaxation time. On each side of the barrier,
the Boltzmann equation is of the form

of of _f—f
Uzb—z_ +€F8pz -7

) (7)

where v, and p, are the z components of the electron
velocity and momentum, F(z) is the electric field, and f
is the angular average value of the electron distribution
function f(p), viz.,

f(z):%/o fsinf dé , (8)

where @ is the angle between the electron momentum p
and the z axis.

The symmetric barrier is characterized by reflection
and transmission coefficients, R(cos®#) and T(cosf) re-
spectively, identical for electrons incident from the left
and from the right. These coefficients satisfy the relation

R(cos@) + T'(cosf) =1 . (9)

The reflection and transmission coefficients connect the
distribution function at different sides of the barrier.
Without a loss of generality, we can assume that the
semiconductors at the left and right sides of the barrier
occupy regions z < 0 and z > 0, respectively, in spite of
the finite width of the barrier in reality. The momentum
component parallel to the barrier is conserved both in
reflection and transmission. This leads to the following
boundary condition for the distribution function:

f(vz)lz=+0 = R(COS 9)f(—v,)|z=+0+T(cos a)f(vz)lzz—D )

v, >0,
(10)

f(vz)lz=—0 = R(COS G)f(—vz)|z=_o+T(COS 9)f('”z)'z=+0 ’

v, < 0.
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Before presenting a mathematical solution to Eq. (7)
we discuss qualitatively its structure. To calculate the
resistance we solve the Boltzmann equation in linear ap-
proximation, i.e., assume that the distribution function
has the form f = fo + f; where fo is the Fermi func-
tion and f; is a linear in electric field small correction
describing a deviation from the equilibrium. Without
a barrier the electric field is uniform across the whole
structure and f; is an odd function of the electron mo-
mentum. This correction describes the current but does
not change the energy distribution or the electron con-
centration. The barrier induces a nonuniformity of the
electric field which, in a large scale, is equivalent to a dis-
continuity of the electric potential. More specifically, the
potential distributions at both sides far from the barrier
are linear in z but being extrapolated across the bar-
rier these two linear functions are different by a constant
value, 26(e¢). This potential drop is proportional to the
electric field and equals zero in equilibrium.

We assume that an inelastic relaxation time is much
larger than the elastic one and the Boltzmann equation
[Eq. (7)] as well as the boundary conditions [Egs. (10)]
do not contain any energy relaxation mechanism. That
is, Egs. (7) and (10) describe an evolution of the electron
distribution function along the z direction at a constant
total energy. Electrons crossing the region of nonuni-
form field near the barrier change their kinetic energy
to keep the total energy constant. At the other side of
this region, where the electric field is uniform, the dis-
tribution function again is the equilibrium one plus the
odd in the momentum correction. However, when we
solve the Boltzmann equation we follow the distribution
function along the z axis and express it in terms of the
kinetic energy on one side of the barrier. After crossing
the nonuniform field region, the distribution function at
one side becomes expressed in terms of the kinetic en-
ergy on the other side. So far as the kinetic energies at
different sides are different by 28(e¢) the new equilib-
rium distribution of the kinetic energy is different from
that which electrons had before they crossed the bar-
rier by 26(e¢)(dfo/dE,). That is, for |z| = co we have
F(z) = F5 = const, and

f1 = —eFu,7 %fEE + é(ed

| do

11
’ dE ’ ( )

where FE is the electron kinetic energy. The whole prob-
lem has a reflection symmetry with respect to the plane
z = 0 and it is convenient to work with a symmetric
solution. For this reason we choose a symmetric asymp-
totic solution taking the potential shift §(e¢) of different
sign on opposite sides of the barrier. In other words, we
express the distribution function in terms of the kinetic
energy without the electric field; the latter shifts the en-
ergy on either side of the barrier so that far from the
barrier the shift is +6(e¢). We remark that the asymp-
totic solution Eq. (11) exists only for E > |§(e¢)| because
for a smaller kinetic energy there are no electron states on
one side of the barrier. This remark must be taken into
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account if one wishes to check that Eq. (11) gives the  Eq. (11) naturally follows from the solution.

same electron concentrations on both sides of the bar- Equation (7) can be solved with respect to f; on each
rier. Another remark is that Eq. (11) is not a boundary  side of the barrier separately. The solution that is finite
condition for the Boltzmann equation; on the contrary, as |z| = oo is of the form

z ' 1 =
A+e—z/v,-r _ e~ (z=2")/var ( % - — fl(zl)] dz' v, >0,

fi= ® iy 0 - dfo o (12)
‘/z‘ e [eF(z)E—Efl(z)] z', v, <0,
for z > 0, and
- 1.
_(z z')jv.T eF i_ = 2 ] dz' , v, >0,
fi= / [ =) 3p VT i) (13)
A_e—#/veT _ j‘O‘ e—(z=2")/vaT [eF(zI) g% _ ,1r 3 (zl)] dz' |, v, <0,
for z < 0. Functions A, (v,;) and A_(v,) are determined from the boundary conditions, expressed by Eq. (10):
* 1 d 1
Ay = R(cosﬂ)/ e 2/vsT [ F(z ) 4o + — fl(z)} dz+T(cos0)/ e*/vsT [eF( ) do _ 1 l(z)} dz
o dE v,T
v, >0, (14)
_ - —z/v,'r dfo z/v,-r 1 £
A_ = R(cos0) eF(z ) z o fl(z) dz + T( cosO) eF(z ) o fi(2)] d=z,
0 z
v, < 0. (15)

Substituting Eqgs. (12)—(15) into Eq. (8) leads to an integral equation for the averaged function f;(z). This equation
is simplified by the symmetry relations

fl("'vza —Z) = —fl(vzaz) ) A—(—Uz) = —A+(Uz) ) fl(_z) = —f_l(z) . (16)

In the degenerate electron gas, the averaged distribution function is factored into a product of functions, one depending
on the energy, the other on the coordinate: f; = eFuol[x(£) £ A](dfo/dE), where §(e¢) = eFoolA. It is convenient to
introduce a dimensionless deviation of the electric field from its asymptotic value, F(z) = Foo[1 + F(£)]. Here ¢ = z/1
is the dimensionless distance from the barrier and ! = v is the mean free path of electrons moving with the Fermi
velocity v. For £ > 0, the resultant integral equation is of the form

2x(€) = 2 /:o r(¢') d¢' —2At(¢) + /ooo [r(€+€) —t(E + &) —sgn(€ — €)@(I€ ~ €' F(€')de’

- [T+ e) - e+ eNxe) de (17
0
[
The kernel is expressed in terms of the reflection and Deviation of the electric field from its asymptotic value
transmission coefficients as follows: is determined by the Poisson equation

/2 I 2
r(€) = / R(cosf)e¢/<*%sing do dF _ = l X (19)

0 d¢ )

/2 —&€/cosO _:

t€) = /; T(cosf)e sinf df , (18)  where rp = (wh%k/4me®k)'/? is the screening length, &

x/2 is the dielectric constant, and k is the Fermi wave vector.
O =r()+t(¢) = / e—€/c030 4110 do . Equations (17) and (19) determine the electron distri-
o bution and the electric field near the barrier. The value of
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A is also determined from the integral equation and the
conditions that x(¢) — 0 and F(§) — 0 for £ — co. The
current density is determined from the electron distribu-
tion far from the barrier, j = 0F.,, where 0 = e?rn/m
is the conductivity and n is the electron concentration
in the bulk. The resistance of the structure with the
barrier is determined by the potential difference between
two points that are far from the barrier on opposite sides.
Then, according to our definition, the barrier resistance
per unit area is given by

-3  lim { / F(z) d (—)- 2LF°°}
- %’% {/0 ﬁ‘({)d§+A} . (20)

For simplicity we neglect the potential drop across the
barrier. This is justified if it is much smaller than the po-
tential drop at the mean free path. This condition means
that the width of the barrier has to be much smaller than
the electron mean free path outside the barrier. Typi-
cally the mean free path in heterostructure devices is a
few hundred angstroms or longer. That is, Eq. (20) is
justified for a barrier of a few tens of angstroms. For a
wider barrier the term [1 + F(0)]d/l has to be added in
brackets on the right-hand side, where d is the width of
the barrier.

Equations (17) and (19) cannot be solved analytically
for an arbitrary form of the reflection coefficient. An
analytic solution, however, can be obtained in the limits
of either strong or weak reflection.

IV. STRONG REFLECTION

In the limit R = 1 (impenetrable barrier), the distri-
bution functions on either side correspond to equilibrium
and the electric field is zero. Because of the lack of elec-
tron exchange across the barrier the potential discontinu-
ity between electron distributions at different sides of the
barrier can be arbitrary. For a finite but strong reflec-
tion, the deviation from equilibrium is small, i.e., both
x(&) and F(€) are small. Products of these functions and
t are small to second order. It is convenient to eliminate
r(€) in the kernels of the integrals in Eq. (17) with the
help of Eq. (18) and extend Eq. (17) to negative values
of £, using the continuation

x(—€) = x(8) , F(-¢) =-F(¢) . (21)

Neglecting terms of the second order, we then have

X(€) = /;r(&') de’ — Ab(l€])

1 /_ ~ sgn(é - €)8 (1€ — €D F(¢)de’

2
5 | #ie-enxe) ae (22)

Eliminating F with the help of Eq. (19) and taking the
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Fourier transform of Eq. (22), we find

arctan q 12
1-— 1
(1550 () e

1 2
:2/0 R()1+qd3;2 2A/ 1::::2’ (23)
where
xo= [ x(eetds. (24
The inverse transformation gives
2 oo .
Fo) = [ x %
S 7 sn(6) /0 Txee R ()

F (&) goes to zero at infinity only if x4 = 0 for ¢ = 0. This
means that the right-hand side of Eq. (23) must vanish
at ¢ = 0. This condition determines the value of A,

A= (/OlT(:r)z d:c) [% - /OlT(:c)mz d:c] . (26)

To first approximation, Eq. (23), then gives

~1

2 q?

Xqg = 2
__ arctang 2 l
1 p s

D
9 [_15 (1 3 arctanq)
q q
1 ([ -
—= (/ T(z)z dx)
3 \Jo

The integral in Eq. (20) is calculated with the help of

Eq. (25) with the result
1 1
[— —/ T(z)z? d:c]
3 Jo

- %{(/;T(m)m dz)

12 [ dq
—— Xa 5 ¢ - 28
,r%) o q qz } ( )

(o555

(27)

-1

The lowest-order approximation to Eq. (28) can be ob-
tained by neglecting deviations from equilibrium.! In this
case the current density across the barrier is

dfo 2d°p

= eb(ed) v, T(cos ) iE (2,"’.2)3 )

cos >0

(29)

which gives

-1

= % ([T(z)x d:c) . (30)
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V. WEAK REFLECTION

In the case of zero reflection, Eq. (17) becomes homo-
geneous and x, A, and F all vanish. For a finite but small
reflection, the quantities x, A, and F are small and prod-
ucts of these functions and r are small to second order.
Neglecting these terms and extending Egs. (17) and (19)
to negative values of £ through the continuation

x(-8) =—-x(€), F(-§=F(), (31)

we bring Egs. (17) into the form:
X(€) = sgn(¢) /|€| r(€')de’ — AB(1€])sgn(é)

—3 | snle - €)a(e - €DF(ag

1 * / ! ! !
-3 | #te-enxerae (32)

The Fourier transformation of this equation and Eq. (19)
gives

arctangq 12
_aretangn o
(1-252) (o )

z3 dz A arctang
= - = (- E2RE)
qu[/ Rotrga— p ( q )]
(33)
When g goes to zero, Egs. (19) and (33) lead to
oo 1
/ F(e)de = 6 / R(z)a® dz — 24 | (34)
—oo 0
where
187%h ! 3

VI. SIMPLE MODEL

To estimate the effect of a deviation from equilibrium
near the barrier, consider the model transmission coeffi-
cient

cos2 @
a2 + cos28 ’

T(cosf) = (36)

which is a good approximation for a high rectangular

barrier.
If a > 1, then the reflection is strong and we have

2 2 In(1+¢%)]7"
Xe= a3 1—”(—#
@?+12/ry 3 q

x (1 - %‘!)} (37)

and
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FIG. 2. Ratio X of the barrier resistance calculated exactly
to that calculated with the Landauer formula, as a function
of the barrier opaqueness parameter a.

2n%h . 4 3% [® dg
R=p (4"' +ﬁ__2/0 Xe @2 ) - (38)
In the opposite case, a < 1, we have

2 2
=2Lﬁ'gi(l—azlni) . (39)

ek 2 a?

For the transmission coefficient of the form (36) the
Landauer formula (1) gives

27m2h

e2k?

R = 4a® . (40)
Figure 2 shows a comparison between the exact expres-
sion and the usual Landauer formula, Eq. (40). For a
very strong reflection only the first term can be kept in
the parentheses in Eq. (38), and the latter reduces to
Eq. (40). For a weak reflection, Landauer’s expression
is off by a numerical factor. The discrepancy would be
much stronger for a nondegenerate electron gas, where
the dependence of the relaxation time on energy is im-
portant.

VII. CONCLUSION

We have suggested a method for the calculation of the
interface resistance in heterostructures which is a modi-
fication of the Landauer approach. Due to the effect of
the interface on the electron scattering in its vicinity, it
is impossible to make use of the Landauer formula with
reflection and transmission coefficients of the interface.
The calculation is reduced to an integral equation. We
solved this equation for a simple model and found an ap-
preciable difference compared to the classical Landauer
formula.!
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