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Resulting from Coherent Base Transport of Minority Carriers
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I ntroduction

The possibility of using transit-time phase shifts in a hipolar junction transistor to extend the active
transistor operation to higher frequencies has been discussed by a number of researchers. The discussion
has been centered on the negative dynamic output impedance that can be achieved due to the phase
delay in carrier drift across the collector space-charge region. This idea, proposed originaly by Wright
[1], is attractive for millimeter and submillimeter wave applications. It has gained a lot of attention in
the context of a conventional junction transistor implementation [2,3], heterostructure bipolar transistors
(HBT) [4-6], unipolar ballistic transistors [7], and field-effect transistors [8]. Unfortunately, in
transistors with diffusive base transport, the practical possibility of extending the active transistor
behavior beyond f; is severely limited [6] by parasitic effects. Utilization of transit-time resonances,
arising from carrier drift across the collector junction in a conventional GaAs/AlGaAs HBT, requires a
reduction of the base and collector resistances, as well as the collector capacitance, by factors of 10 from
estimates, based on the state-of-the-art technology.

This problem was recently analyzed by Grinberg and myself [9]. Like in transit-time diodes, the
negative dynamic output impedance in transistors arises from a combination of the injection phase delay
¢ =¢ + ¢y (the total transit angle of the emitter and the base) and the drift delay 6 in the base-
collector junction. Transit-time effects are swamped by the device parasitics because in diffusive
transistors the available phase ¢ is too small. Exponential decay of the magnitude of the base transport
factor ag with the phase ¢, acquired in a diffusive propagation across the base, implies that the overall
phase of the collector current (¢ + ¢ + 8) must be acquired almost entirely at the expense of the
collector phase delay 6. However, with increasing 6 the magnitude of the negative dynamic resistance
also decreases, and for 8 B 1t it becomes too small to overcome the influence of parasitic elements.

Transit time resonances can withstand the parasitics only if they can be achieved while keeping the
collector delay 6 g1, i.e. if a sufficient phase w1 = ¢ 1 is acquired in the base transport alone —
without a significant penalty in the magnitude of the base transport factor ag. In general, with
increasing frequency w, the base transport factor oy (w) = Oog O exp(—-wTtg) describes an inbound
spird Oag O - 0 in the complex plane [10]. We shall apply the term coherent, to any base transport
mechanism that provides a sufficiently slow spiraling in of ag (), such that ag 7 0.5 for ¢g .

One possibility to achieve coherence arises from ballistic transport at cryogenic temperatures [9]. In
the ballistic case the modulated signal injected at the base-emitter interface is washed out because of the
thermal spread in the normal velocities of injected carriers, leading to a variance &t in their base
propagation time. The latter process is analogous to the Landau damping of density waves in
collisionless plasmas and has an effect similar to diffusion. Collisionless base propagation by itself does
not imply coherence. Coherent regime in a ballistic transistor arises when ot < 15, i.e,, when the
injected electrons form a collimated and monoenergetic beam. A good approximation to such a beam
results from the passage of electrons across an abrupt heterointerface at low temperatures. For electrons
traveling with a velocity v perpendicular to the base layer, a periodic injection modulation at the emitter
interface with a frequency f sets up an electron density wave of wavelength A =v/f. For ot <« 15,
this wave does not appreciably decay over the entire base, resulting in a transport factor

O = g~ (@3)?*/2 e—iwrs ] (1)
As discussed in detail in Ref. [9], a coherent transistor can have both the common-emitter current gain

h,, and the unilateral power gain U exceeding unity at frequencies far above the usual f;. The
transistor speed is limited not by the base propagation time 1z but rather by its variance ot.
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Calculations carried out for exemplary heterostructures, implemented at the state-of-the-art rules of
technology, indicate that active transistor behavior can be extended to about 1 THz.

It is clear, however, that the ballistic coherent operation requires cryogenic temperatures. For a
collisionless transport to hold over the entire base width, the electron kinetic energy A (the injection
energy, corresponding to a conduction-band discontinuity in the base-emitter junction [11]) should not
exceed the optical phonon emission threshold, A & hwgy . On the other hand, to achieve coherence, the
injection energy A must substantially exceed the thermal spread, whence we need hwgy A > KT .
This means that the implementation of base transport coherence in a ballistic HBT requires at least
liquid N, temperatures. Moreover, the ballistic coherent operation is limited to ultra-high frequencies.
The concept cannot even be tested at lower frequencies, because the first resonance in U appears only at
f. Bmf; =1/215, which must evidently be higher than the collison rate 1/1y, governing the
momentum relaxation of ballistic electrons at energy A.

Another idea for achieving base transport coherence (which is not limited to ultra-high frequencies
and also works at room temperature) can be traced back to the famous paper by Shockley [12]. In that
paper he introduced the concept of transit-time diodes and suggested that the delay in minority-carrier
transit across a transistor base can lead to an active device at extended frequencies. A necessary
condition for this to occur is that the directed transport across the base be much faster than the diffusive
transport, that tends to wash out a modulated structure of the injected distribution. Shockley suggested
[12] that this condition can be met in a minority-carrier delay diode with a variable doping in the base.
However, because of a limited range of the potential variation available with an exponentially graded
doping, the feasihility of this approach is marginal and it has never been realized. Recently, Shockley’'s
argument was reconsidered [13] in the context of HBT with a graded alloy base composition. It was
shown that coherence of the base transport in such devices is feasible and may lead to useful
applications. In addition to transistors with a linearly graded base, we discussed a new a structure in
which the base bandgap narrows down toward the collector in N discontinuous steps of minimum height
larger than hwyy. In this structure the minority transport occurs by a strongly accelerated diffusive
process, adequate for achieving the transit time resonance both at ultra-high and conventional
frequencies. Our discussion below is based on Ref. [13].

Step Base Transistor

Consider a HBT whose base bandgap narrows down toward the collector in a stepwise fashion, Fig. 1.
Let the band edge for minority carriers in the base consist of N steps W; which are high enough,
Aj > KT, that carriers are effectively forbidden to return once they have fallen off a particular step.
Moreover, let us assume that al the memory of the previous journey is lost in each step. The latter
condition is reasonable if the steps are higher than the threshold for a rapid inelastic process, e.g., optical
phonon emission: Aj 7 hwqy . With this condition fulfilled, we can treat the transport in each step
individually and characterize it by a step transport factor o,
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where ¢; = wr; is the phase acquired on step j and T; :Wj2/2D is the step propagation time by
diffusion. We assume that the steps are narrow enough that ¢; < 1. In this case, to within quadratic
in¢; terms, Eq. (2a) reduces to the form

o () B et eien (2b)

We see that at small values of ¢;, the magnitude Ca; O deviates from unity quadratically in ¢;. This
observation enables us to construct a coherent a; with a large phase and little decay in magnitude.
Indeed, the total base transport factor is the product of a;’s:

g (9) = H a; Be ¢ N gio ®
=1

where ¢ = 3 ¢; is the overall phase acquired in the base transport; we have assumed for simplicity that
al stepsareequal and ¢ = N ¢; .
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The intrinsic current gain PBg = ag (1—ag) "t will have peaks OBz 0> 1 at ¢ = 2rm , provided
Oog (2rm) 0O > 05 . (4

The first peak (m=1) occurs at frequency f =2mf,;. According to Egq. (3), this requires
N > N, = (2m)?/3In2 B19.
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Figure 1. Schematic band diagram of a step- Figure 2. Common emitter current gain B for
base heterostructure bipolar transistor. different number N of steps in the base.

Physically, the described effect originates from an enhancement of the forward diffusion transport.
The essential condition is carrier thermalization at every step, which provides the independence of a’s
and restricts particles from returning to a preceding step. The resultant "stepped up" diffusion is a rather
peculiar, at first glance even counter-intuitive, process. Thus, in a static regime, the minority
concentration in the base is a periodic (rather than decreasing) function of the distance. Indeed, the
steady-state current in each step is

_ e[n(0) - n(wjl g Nen(

= , 5
DW, DW ®)

where W = NW; is the total base thickness and n (0;) is the concentration at the beginning of step j.
From the current continuity in the absence of recombination, we have n (0;) = n (0), independent of j.
Equation (5) shows that the diffusion flux is enhanced by a factor of N and so is the effective diffusion
velocity, which becomes 2D/W;. If we increase the number of steps keeping W constant, the
conventional cutoff frequency f; will increase in proportion to N, cf. Fig. 2. Clearly, the
recombination limited static current gain will also scale in proportion to N. This effect has in fact been
observed by Ohishi et al. [14] in a InGaAsP/InP HBT with a double-layer (N =2) base.

For high enough N, we would see a peaked structure in the current gain [h,, O and for N > Ny,
the peak value is greater than unity, cf. the curve in Fig. 2 for N =30. However, this situation is
difficult to realize in practice, because each step must be high enough (A; 3 hwyy ) to ensure the no-
return condition, while the overall potential drop is limited by the bandgap difference.

Power gain

Conditions for the transistor oscillation activity are more relaxed. Consider the intrinsic case first. An
extended-frequency peak in the unilateral power gain U appears when the rea part of the common-
emitter output impedance r,, = Re(z5,) changes sign [59]. In an intrinsic transistor we have
ro =Ry +Rg, where

_ cos(¢§) - cos(¢ + 6) o, 0 B Hog O sin(+86')

R
¢ wC.0 wC

: (6)
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R is the emitter resistance, and 6 = wt. = 20" is the collector transit angle. The phase ¢ includes the
(usually small) delay ¢ = wRCg, due to emitter capacitance C. The approximate relation in the
right-hand side of Eq. (6) corresponds to 6 5 1. In this case a power gain peak occurs a ¢ B,
provided Oag 0> wCRg.

The latter condition is relatively easy to accommodate. However, as pointed out by Tiwari [6],
considerations of the phaseshift effects on unilateral gain are rather meaningless without including
extrinsic resistances and capacitances. A careful analysis [9] shows that when these "parasitics' are
included, the condition for apeak in U near ¢ = 11 is

Oag (MO > 0wty , @)

where Ty is a paraditics-limited time constant. For example, in a model which includes extrinsic
emitter, base, and collector resistances (Rec, Ry, and Ry, respectively, cf. the equivalent circuit [9]
of an abrupt-junction HBT) but neglects an extrinsic collector capacitance C, , the expression for U is

Oogac [
U = 25 c 1 , ®)
4002Cc (Rg *+ Rex) Rtb + Ry
where Ry =R + R + Rey + Ry (Re +R)/(Rg +Rgy) and a¢ = (sin®'/8')e”'¢ s the collector
transport factor. The corresponding T4 in Eq. (7) is T4 = C.Ryx. Besides the "low" frequency
regime, where U > 1, the transistor will be active in the range of frequencies, where

Oog Osin(g +6') + wty <0. 9)

In this range U <0 and hence one can obtain U > 1 by adding a series resistance. Obvioudly,
inequality (9) can only be obtained if Oog 0> w1y ; from Eg. (3) this means that the number of steps
in the base must exceed the value N, = (1/3) OIn(wty)O™1. For a transistor not overdamped by the
parasitics, say wty /0.5, weneed N 5.

The solid line in Fig. 3 displays the gain U O, calculated for a model HBT with 5 steps in the
base. The two peaks correspond to a vanishing denominator in (8); between the peaks U is negative.

40

T=300K Figure 3. Common-emitter current gain

- Oh, O and the unilateral gain OU O of HBT's
with the same base width W = 0.25 pm, the
same diffusivity D =50cm?/s, the same
— collector transit time t1. =1ps, and different
number N of steps in the base.

Assumed parameters: R; = Rg, =50 Q-pum,
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It should be emphasized that we are not considering any "ballistic" boosts in the particle speed at the
step edges. Such effects may in fact be beneficial; they are not expected to qualitatively modify the
result (3). If we increase N at the expense of making the step height smaller, A; < hwyy , then the
necessary energy relaxation will not occur at each step and hot electrons will diffuse backward as well
as forward. In order to treat this regime quantitatively, a Boltzmann transport model for minority
carriers has been developed [15]. It includes the effects of a finite optical phonon scattering time T,
and finite exit velocity at each step. Preliminary results obtained in this model indicate that for
Aj > hwgy the present simplified approach is valid, provided that T, is shorter than the elastic collision
time of hot carriers exiting a step.
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Comparison with Linear Grading

In the limit of N - c0 and A;, W; - O the base structure becomes equivalent to that in a linear-
graded HBT [16-18] with OE =lim Aj/W;. In such a device, the phase of ag is acquired with the
drift velocity v = —uOEg/e, while the magnitude Uag O is attenuated due to spreading by diffusion.
An equation analogous to (3) can be derived by solving the continuity equation O-J = e (dn/dt) for the
minority current taken in the drift-diffusion form J = nuE + eD0n . Using the phasor notation

nx t)=mx) +nx)ee,
the continuity equation for the dynamic component n reduces to
iwn =-vn' +Dn" . (10)

Normalizing the coordinate x to the base width W, we find that the solution of Eg. (10), satisfying
n(1) =0, is of the form

n=Ae*snh[A(x-1)], (11)

drift time 13 = W/v, viz.

TD — WV E AEG
1, 2D 2kT
where AE is the total bandgap variation. The last equation in the right-hand side of (12) results form

Einstein’s relation eD = pkT (valid for not too high bandgap gradients).
From Eqg. (11) we find the base transport factor ag =J (1)/J (0) in the form

exp(r)
cosh(A) + (1+2i wtg/r)"7?sinh(A) (13

In the absence of a grading, v — 0, Eq. (13) reduces to o = cosh™* [ (2i wt,)Y?], which corresponds
to Eq. (28) extended to the entire base. For a large grading, r > 1, one has, asymptoticaly,
ANEr +iwtg + (wtg)?/2r and Eq. (13) reduces to

g (9) = e ¢ gie (14)

where ¢ = w1z (1 - 1/2r). The minority carrier drift effects are qualitatively similar to those resulting
from the enhanced forward diffusion. Parameter 2r in Eq. (14) plays the same role as 3N in Eq. (3).
[In the ballistic case, Eq. (1), the parameter equivalent to r is rg = (15/81)%] For our example of 5
steps (Fig. 3) we need AE = 5A; 3 5hwgy H180meV (in GaAS/AlGaAs). Precisely the same effect
will be achieved with a graded-gap base with r = 7.5, requiring AE; = 15kT H380meV at room
temperature. As means for achieving the extended frequency operation a ¢ 7, both approaches
appear equally feasible.

The step-base approach offers additional flexibility in the design of ultrahigh speed heterostructure
transistors. Perhaps its most obvious practical application is to relieve the stringent trade-off between
the requirements of low base resistance and short base propagation time. As discussed above, this can
be accomplished even with a small number of steps, eg., N =2. For higher number of steps, N > 5,
one can obtain an active behavior of the transistor at an extended frequency f B1if ., provided
(cf. Eqg. 7) the device at this frequency is not overdamped by extrinsic elements.

r = (12

g (W) =
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