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The time-dependent Boltzmann equation is used to calculate the small-signal complex base 
transport factor a(o) for different ratios between the base width Wand the scattering mean-free 
path &. It is shown that the phase trajectory (Re a, Im a) has a universal character both in the 
diffusion limit ( W)Z,,) and the ballistic limit (I,,. IV). In the latter limit, the trajectory is 
completely determined by the distribution function of minority carriers injected into the base. 
The complex trajectories are plotted for several model distributions, including the usual thermal 
distribution and taking into account the injection energy appropriate for a heterojunction bipolar 
transistor with a wide-gap emitter. 

The purpose of this letter is to identify distinctive man- 
ifestations of the collisionless transport of minority carriers 
across the base of a bipolar transistor. We use the time- 
dependent Boltzmann transport equation (BTE) to calcu- 
late the small-signal complex parameter a (o ) =61,/M,. 
Minority carriers in the base are treated as neutral parti- 
cles, which is reasonable if the dielectric relaxation time of 
majority carriers is shorter than u) -I. For a quantitative 
comparison with experiment, both the capacitive and the 
transit-time corrections in the emitter-base (EB) and base- 
collector (BC) junctions must be included separately. 

We assume that the base layer is homogeneous in the 
scattering parameters and that the electron distribution is 
inhomogeneous only in the z direction. For a periodic per- 
turbation with an angular frequency w we seek a distribu- 
tion function in the form 

f(r,k,t) =f(z,k,u)e’“‘, (1) 

where u is the cosine of the angle between k and the z axis. 
Parameterizing the collision integrals with a scattering 
length Z,,(k), the BTE for f(z,k,u) can be written in the 
form’ 

Q-cGku) fkku) fokk) 
24 

dz +I*o=----- k,(k) ’ 
(2) 

where fe is the symmetric (angle-averaged) part of the 
distribution function, 

1 iwm 1 1 1 1 -=- - -=- - 
l*(k,w) - fik +Zt&) ’ I,,-Z,,W+Zc&) ’ (3) 

and Z,,(k) is a characteristic length associated with the 
capture processes. With a perfect sink condition f ( W,k, 
u ~0) =0 at the BC interface (z= W), the integro- 
differential equation (2) can be reduced to a simple inte- 
gral equation, 

f&k) =i Jo1 f(O,k,u)e-g’“du 

+& j-fkdE’,k)E, ( I C-6’ I MiZ’, (4) 

where <rz/Z* and ws W/Z*. Equation (4) determines 
fo(&k) in terms of the in-bound part f(O,k,u > 0) of the 

distribution function at the EB boundary. The current den- 
sity J(z) and the complex transport factor a(w) are then 
calculated from 

(O,k,u)e-hdu 

-+% ;foWWd I[-Cl 1 s 
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J(z) = 
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G(z,k)dEk; &=g, 

J( WI 
a(o)= J(o) . (7) 

Functions E,(x) in Eqs. (4) and (5) are exponential in- 
tegrals,2,3 E,(x) =.f~t”-2e-x’tdt. 

In the limit W>Z,,, Eq. (2) reduces to the usual diffu- 
sion equation, iwn = Da2nh%? - n/rc,, where rep = ( rrn/ 
8kT) “’ Z . For an energy-independent Z,,, the diffusivity D 
is of the %rm, D=(8kT/9rm)“2Zs,. The solution in the 
diffusion limit is well known: 

z ze-?‘d”+” 
, 

WTqJ, 1 

@WZ l/2 

I-l (8) 
3/d- w . 

At sufficiently high frequencies, wr$+ 1, the phase of ad is 
given by arg(ad) = -y& At the same time, yd describes an 
exponential decrease of the absolute transfer ratio I ad I. 
The origin of this effect is obvious: the fraction of minority 
carriers, injected into the base during a half-period r/w, 
that returns to the emitter in the subsequent half-period 
rather than reaches the BC junction, increases with in- 
creasing diffusion time W2/D. As yd is varied, ad traces a 
universal curve (the logarithmic spiral) in polar coordi- 
nates, cf. Fig. 1 (a). In the opposite (“ballistic”) limit 
Z& W, the second term in Eqs. (4) and (5) is negligible 
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FIG. 1. Phase trajectories for homojunction bipolar transistors. (a) The 
base transport factor cz is traced (e.g., by varying the frequency CO) in the 
complex plane for different scattering lengths and base thicknesses. Solid 
curves represent the universal spirals obtained in the diffusion (I,,< IV) 
and the ballistic ( W<l,,) limits. (b) Dependence of the scattering length 
IJWin a transistor base on the phase J of the intersection point between 
its a trajectory with the universal spiral corresponding-to diffusive trans- 
port. Dashed line indicates the corresponding dependence of the dimen- 
sionless base thickness W/Z,,. 

for all reasonable frequencies and a(o) =aJf(O,k,u)] be- 
comes a functional of the in-bound distribution function. It 
is evaluated below for several distributions of practical in- 
terest. 

For homojunction bipolar transistors, the appropriate 
in-bound distribution’ is a Maxwellian function f(O,k,u) 

LEk/kT. Equations (4)-(7) in this case yield (for 

ab(aj=2c E3[i$~+~]e-‘& Y~s$, 
(9) 

where vT=.( 3kT/m) “2 is the thermal velocity in a Max- 
wellian ensemble. For o~,,,)l one has W<y,Z,, and the 
second term in the argument of E3 can be neglected. There- 
fore ab, given by Eq. (9), traces another universal spiral. 
The curves given by Eqs. (8) and (9) are shown in Fig. 
1 (a) by the solid lines (assuming Z,, = CO ) . Here and below 
the spirals are displayed only up to 1 arg (a) 1 < 2~r. 

If the scattering length is comparable to the base 
width, then neither the diffusion nor the ballistic approxi- 
mations are valid. To determine a (0) in this case, we have 
to solve Eqs. (4)-( 7). Figure 1 (a) shows two exemplary 
solutions calculated for W/Z,,=2 (dotted line) and Z,J W 
=4 (stippled line). It is evident that as Z,,/W-+O, the ex- 
actly calculated phase trajectory approaches the universal 
diffusion curve. On the other hand, in the limit W/&-t0 
we recover the ballistic result (9). 

It should be noted that phase trajectories, calculated 
from the BTE, always intersect the diffusion spiral at one 
point [Fig. l(b)]. Inasmuch as the diffusion curve is uni- 
versal, we can use the intersection point for a reference. 
The value of the phase y’ 1 ydydl at the intersection varies 
with I,,, diverging for Z,J W-0 and tending to a finite limit 
dzO.56 [indicated in Fig. 1 (b) by a vertical asymptote, 
dotted line] for W/I,,-+O. Measuring r’, one can determine 
the scattering length in the base of a given transistor with 
the help of Fig. 1 (b) . 

It is worth emphasizing that the physical nature of the 
decay of I ab] at high frequencies is quite different from 
that of I ad[ . In the case of ballistic transport, the gain 
degradation results from the scatter in the velocities and 
the incident angles of the in-bound electrons. Members of 
a minority-carrier ensemble, injected into the base at a 
given time, that have different normal components of the 
velocity, arrive at the BC junction at different times. This 
has the effect of washing out any modulation of the injec- 
tion current. A meaningful analogy can be drawn with the 
Landau damping of density waves in collisionless plasmas.” 

Let us illustrate this damping process by evaluating ab 
for initial distributions that are sharply peaked in either the 
incident angle or the energy: 

f(O,k,u>O) --~(E~-E~), 

ab = 2E3 ( iyo + w/b, 1, 

f(O,k,u > 0) --S( 1 -u)eBEdkr, 

(10) 

s 

m 
ab=e- w/‘cp Ee- ce - kb m&, (11) 

0 

ab=e-‘YQe- w/lcp, (12) 

where yoyo= Ww/v, and m@2= E,. The behavior of ab for 
these idealized distributions is illustrated in Fig. 2. We see 
that any initial scatter in either u or Ek makes the phase 
trajectory of ab an inward-bound spiral. Only a truly col- 
limated monochromatic beam, Eq. ( 12), does not decay in 
collisionless transport; its phase trajectory is a circle I (rb I 
=e w’c~. As shown below, this situation is nearly ap- 
proached in hot-electron ballistic transistors.5 

In heterojunction bipolar transistors (HBT) the band 
structure can be engineered6 in such a way that the minor- 
ity carriers are injected into the base “over a cliff’ of en- 
ergy Qo. In this case, the appropriate in-bound distribution 
is of the form 
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FIG. 2. Phase trajectories for HBTs. (a) The base transport factor ab(~) 
evaluated from Eq. ( 14), is plotted for three different injection energies 
Cp. For convenience, on the same graph we present the ~b corresponding 
to a==0 (homojunction) and the universal diffusion spiral Q. These 
curves are labeled as in Fig. 1 (a). The stippled, dashed, and dotted lines 
represent the (xb calculated for artificial initial distributions, correspond- 
ing, respectively, to the sharp energy [Eq. (lo)], the sharp incident angle 
[Eq. (ll)], and the collimated monochromatic beam [Eq. (12)]. (b) 
Magnitude 1 (x 1 of the base transfer ratio plotted in each case against its 
“natural” phase parameter, which is yd for Eq. (8); yb for Eqs. (99, (ll), 
and (14), and ‘yo for Eqs. ( 10) and (12). The symbols [consistent with 
Figs. l(a) and 2(a)] mark the position where the phase value is arg(a) 
: -2Tr. 

where +,=G+,/kT. Phase trajectories, calculated from Eq. 
(14) for +o= 1, 2, and 3, are shown in Fig. 2(a). For 
comparison, the same graph also shows the other universal 
trajectories found in this work. The dependence of the 
magnitude Of 1 a 1 on the relevant phase parameter yd, yb, 
or y. is presented in Fig. 2(b). In this plot, the symbols 
[triangles, squares, etc.) are placed on each curve at the 
position where the phase value is arg(cr) = -2~. 

An important point to note in Fig. 2 is the strong tem- 
perature dependence of the absolute transfer ratio 1 a (w ) I. 
That this should be the case is physically clear once it is 
recognized that the gain degradation in ballistic transistors 
is analogous to the “Landau damping,” as discussed above. 
The main effect of temperature is to increase dispersion of 
the incident distribution. 

We remark that it would not be too hard to evaluate 
a!(w) for a HBT at a finite ratio W/l,,, as we have done in 
Fig. 1 for homojunction transistors. However, such a cal- 
culation, based on the concept of a scattering length l,,(k), 
would not do justice to the hot-electron device problem, 
where the energy dependence of the electron interaction 
with optical phonons (and plasmons) requires a more re- 
fined treatment. Such a treatment will be reported in a 
subsequent publication. Moreover, in the case of an HBT it 
may become necessary to include the quantum-mechanical 
effect of above-barrier reflection of hot electrons returning 
to the abrupt emitter interface upon scattering in the base. 
It is clear that such processes are unimportant for homo- 
junction transistors with or without scattering and that 
they need not be included in the above discussion of HBT 
in the ballistic limit. 

Recently, there have been several attempts”’ to exper- 
imentally distinguish the diffusive and the ballistic trans- 
port by studying the base thickness dependence of static 
gain fi. In a purely diffusive model the gain scales as p CT l/ 
W2, whereas in the ballistic limit fi cc l/W. In our earlier 
work,’ it was shown that homojunction transistors exhibit 
a similar behavior. The present analysis offers a possibility 
of distinguishing the dominant transport mechanism by 
studying high-frequency characteristics of a single transis- 
tor. Moreover, our method does not rely on any assump- 
tions about the recombination processes that control the 
static gain. 

Ek-@o 
f(O,k,u>O)=e-7, if Ek>% and u>:, (133) 
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ko 
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f(O,k,u > 0) =O, if Ek<@o Or U<k, Products, corrected and enlarged edition prepared by A. Jeffrey (Aca- 
demic, New York, 1980). 

where kk,= da. Substituting Eqs. (13) in Eqs. (5)- 
(7) for the case &;‘=O, we find 

“Convenient integration formulas involving &(x)-along with the re- 
currence relations, asymptotic expansions, and plots of these 
functions-are listed in an Appendix to Ref. 1. 
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