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Abstract. This paper introduces a stereo vision system to au-
tomatically generate 3D models of real objects. 3D model
generation is based on the merging of multiview range images
obtained from a digital stereo camera. Stereo images obtained
from the camera are rectified, and a correlation-based stereo
matching technique reconstructs range images from them. A
turntable stage is also employed to obtain multiple range im-
ages of the objects. To register range images into a common
coordinate system automatically, we introduce and calibrate a
turntable coordinate system with respect to the camera coordi-
nate system.After the registration of multiview range images, a
3D model is reconstructed using a volumetric integration tech-
nique. Error analysis on turntable calibration and 3D model
reconstruction shows the accuracy of our 3D modeling system.

Keywords: Stereo vision – Multiview – 3D modeling – Turn-
table calibration

1 Introduction

Generating a complete 3D model of an object has been a
topic of much interest in recent computer vision and com-
puter graphics research. Many computer vision techniques
have been investigated to generate complete 3D models. There
are two major approaches in this research.The first one is based
on merging multiview range images into a complete 3D model
[4,7,23]. The second one is based on processing photographic
images using a volumetric reconstruction technique, such as
voxel coloring and shape-from-silhouettes [5,21]. This paper
presents a computer vision system to automatically generate
3D computer models by merging multiview range images of
real objects. We employ a stereo vision camera and a turntable
stage to develop an automatic and inexpensive vision system.

Multiview 3D modeling has been done by many active
or passive ranging techniques. Laser range imaging and struc-
tured light techniques are the most common active techniques.
These techniques project special light patterns onto the surface
of a real object to measure the depth to the surface by a sim-
ple triangulation technique [4,7]. Some common approaches
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of the structured light technique employ a single line pattern
[9], a multiline pattern [17], a color-coded pattern [24], and a
space-time coded pattern [19]. Advantages of using the active
techniques are accuracy and speed of depth acquisition [24,
19]. However, active techniques are still more expensive than
passive techniques.

In contrast, however, relatively less research has been done
using passive techniques, such as stereo image analysis. This
is mainly due to the inherent problems (e.g., mismatching and
occlusion) of stereo matching. Several stereo matching tech-
niques have been introduced; however, only a few of them are
empolyed for multiview 3D modeling [20]. Okutomi et al. [13]
presented a multibaseline stereo matching technique to reduce
matching ambiguity, and their approach is empolyed in many
multiview 3D modeling techniques [18]. Chen and Medioni
[3] used a stereo camera to obtain range images and integrated
them using a volumetric method. In each viewpoint, they used
a 3D voxel grid to find a disparity surface using a dynamic
programming technique. Rander et al. [18] and Vedular et al.
[22] also used stereo vision techniques to create 3D models of
a dynamic scene for virtual reality applications. They used a
considerable number of video cameras and a multiple-baseline
stereo matching technique proposed by [13].

In order to generate complete 3D models, we obtain multi-
view range images using stereo vision techniques. We use two
inexpensive digital still cameras to capture stereo images of an
object. The cameras are calibrated by a projective calibration
technique, and stereo images from them are rectified accord-
ingly. A range image is then obtained from a pair of rectified
stereo images. Multiview range images are obtained by chang-
ing the viewing direction to the object. Different approaches
to changing viewing direction exist. Among them are a mov-
ing object on a turntable with a fixed sensor [4,5], a moving
sensor with a fixed object [1,12], and other variations [7,8].
One advantage of using a turntable is the ease of calibration
between different views. We also employ a turntable stage to
rotate the object and to obtain multiple range images. Multiple
range images are then registered and integrated into a single
3D model. In order to register range images automatically, we
define and calibrate a turntable coordinate system (TCS) with
respect to the camera’s coordinate system (CCS). To integrate
multiple range images into a single mesh model, we use a vol-
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umetric integration technique [10,14]. Error analysis on real
objects shows the accuracy of our 3D model reconstruction.

Section 2 presents the calibration and rectification of stereo
images and a comparison of 3D range reconstruction tech-
niques. Section 3 presents the definition and calibration of the
TCS with respect to the CCS. In Sect. 4, we present a 3D mod-
eling technique of merging multiview range images and error
analysis of our 3D modeling system. Finally, we conclude the
paper in Sect. 5.

2 Range image acquisition

2.1 Stereo calibration and rectification

In this paper, we employ a projective camera model to cali-
brate our stereo camera. Calibration of the projective camera
model can be considered as an estimation of a projective trans-
formation matrix from the world coordinate system (WCS) to
the camera’s coordinate system (CCS).

Let w = [x y z]T be the coordinates of a 3D point W
with respect to the WCS, p = [u v]T the coordinates of the
projection of w to the retinal (CCD) plane of a camera, and
p′ = [u′ v′]T the coordinates of p in the picture plane (pixels).
The mapping from 3D coordinates to 2D coordinates is the
perspective projection, which is represented by a linear trans-
formation in homogeneous coordinates. Let p̃ = [u v 1]T ,
p̃′ = [u′ v′ 1]T , and w̃ = [x y z 1]T be the homogeneous
coordinates of p, p′, and w, respectively. Then a 3 × 4 per-
spective transformation is given by matrix M̃:

p̃′ = Kp̃ ∼= KM̃w̃ , (1)

where ∼= means equal up to a scale factor. The camera is there-
fore modeled by a transformation matrix K and its perspective
projection matrix (PPM) M̃, which can be decomposed into
the product

M̃ = A[R|t] . (2)

The matrices K and A depend on the intrinsic parameters only
and have the following forms:

K =




ku 0 0
0 kv 0
0 0 1


 ,A =




fu γ u0
0 fv v0
0 0 1


 , (3)

where, fu, fv are the focal lengths in the horizontal and the ver-
tical directions, ku, kv are the scaling factors from the retinal
plane to the picture plane, (u0, v0) are the coordinates of the
principal point in the retinal plane, and γ is a skew factor.

Stereo rectification determines a transformation of each
image plane such that pairs of conjugate epipolar lines be-
come parallel to the horizontal image axes. Using projection
matrices of the left and the right cameras of the stereo vision
system, we rectify stereo images by using the rectification
technique investigated by Fusiello et al. [6].

A transformation matrix Ti that rectifies a homogeneous
pixel p̃o in an original image plane to a new pixel position p̃n
is estimated as

p̃n = Tip̃o . (4)

The picture coordinates p′
n = [u′, v′, 1]T of the image point

pn are then obtained by multiplying the transformation matrix
K to the image coordinates:

p̃′
n = Kp̃n . (5)

However, when we save a rectified image to a 2D array
of a picture frame, we need to consider the translation of the
principal point. Otherwise, we may lose some portion of the
image outside of the original picture frame. This is because
of an offset between the original principal point (uo0, vo0)
and the new principal point (un0, vn0), which is due to the
rotation of the optical axis of the camera. In order to translate
the rectified image back into the picture frame, we compute
the new principal point (un0, vn0) by adding the offset to the
old principal point. The offset of the principal points can be
computed by mapping the origin of the retinal plane onto the
new retinal plane:

õn = Ti




uo0
vo0
1


 , (6)

and the new retinal coordinates are

p̃′
n = K(p̃n − õn) . (7)

We consider the offset only in the x direction because recti-
fying the transformation rotates the image plane around the
y axis.

2.2 Stereo system configuration

Our stereo camera consists of two identical digital still cam-
eras, which are Olympus C-3020 Zoom. The two cameras are
installed on a vertical stereo mount. We fix the cameras on the
mount with an arbitrary toed-in angle so that the optical axes
of the cameras converge to about 600 mm from the camera.
Two digital cameras are connected to a personal computer,
running on a 1.8-GHz Intel Pentium, through two USB ports.
Figure 1 shows a picture of the stereo camera and a turntable
stage.

Fig. 1. Stereo camera system



150 S.-Y. Park, M. Subbarao: A multiview 3D modeling system based on stereo vision techniques

Xw

Yw

Zw
Ow

xd

yd

zf

xf

XY planeYZ plane

Fig. 2. Checkerboard pattern

We use a checkerboard pattern to calibrate the stereo cam-
era. The pattern has two planes that are parallel to the xy and
the yz planes of the WCS. On each plane are 48 control points
that compose a set of 3D world coordinate points. Figure 2
shows a diagram of the calibration pattern. The specifications
of the pattern are as follows:

• Size of a black square in x direction: xd = 17.2 mm.
• Size of a black square in y direction: yd = 17.18 mm.
• Offset to yz plane in x direction from origin: xf = 6 mm,

which means x = −6 mm on the yz plane.
• Offset to edge of rightmost square on xy plane in z direc-

tion: zf = 11.5 mm.

2.3 Stereo matching

From a rectified stereo image pair we acquire a range image by
employing a multiresolution stereo matching technique using
a Gaussian pyramid [2]. A Gaussian pyramid for an image I
is a sequence of copies of I , where each successive copy has
half the resolution and sample rate. The levels of a Gaussian
pyramid for a given image I are calculated as

gk(i, j) =
2∑

m=−2

2∑
n=−2

w(m, n)gk−1(2i + m, 2j + n) , (8)

g0(i, j) = I(i, j) ,

where w(m, n) is a 5×5 Gaussian kernel. Because this kernel
is separable, we use a 1D Gaussian kernel w(m) whose length
is 5. The weights of the Gaussian kernel are

w(0) = 0.4 ,

w(1) = w(−1) = 0.25 ,

w(2) = w(−2) = 0.05 .

Three levels of a Gaussian pyramid are used from level 0
to level 2. The level 0 image corresponds to the original image,
and the level 2 image corresponds to the smallest image. The

original image size is 1280×960, and the image size at level 2
is 320 × 240. We use a variable size of matching block for
stereo matching – (15-2k)×(15-2k) for the kth pyramid level.

An object’s silhouettes in the stereo images are segmented
by a blue screen technique. A binary morphological closing
and opening operation is used to remove noise in the image
segmentation. The matching algorithm finds stereo correspon-
dence only on the object areas in the left and right images. The
object’s silhouettes are also used later for volume intersections
in a multiview integration process.

SSD (sum of squared difference)-based stereo matching is
done at each level of the Gaussian pyramid from low resolution
to high resolution. At the first level of the stereo matching, the
initial search range of stereo disparity SR0 at level 0 is set to
[0,sr0]. Then, at the lowest level of the pyramid, where k = 2,
initial stereo disparity SR2 becomes [0,sr0/(2k)]. At succes-
sive levels of the pyramid, the result of the stereo disparity at
the lower levels decides the search range of the correspond-
ing level. If the disparity at the lower level is Di, then the
search range of the current level SRi is restricted to within
[2 ∗ Di − 2, 2 ∗ Di + 2] so that the stereo matching algorithm
can correct possible mismatches in the previous level. When
there is a pair of stereo images, gk

(l) and gk
(r) for left and

right images, which are at level k of the pyramid, SSD(i,j) at
image coordinate (i, j) is

SSD(i, j) =
m∑

k=−m

m∑
l=−m

{
gk

(l)(i, j) − gk
(r)(i + k, j + l)

}
,

(9)
where 2m + 1 is the size of a matching block.

Figure 3a shows a pair of rectified stereo images of a hu-
man face, and Fig. 3b shows the result of 3D reconstruction.
The depth to a 3D point is measured using the disparity be-
tween projected points in stereo images. The horizontal im-
age offsets õn of the principal points are taken into account
for depth measure. In the left and right retinal planes, they
are about (0.0742, 0) and (−1.299, 0)mm, respectively. In the
next section, we compare two methods of depth computation
from stereo disparity.

2.4 Depth from triangulation

After stereo rectification, we consider the new stereo configu-
ration as a parallel stereo camera. Therefore, we use a simple

a b

Fig. 3. Stereo matching results. a Rectified left and right stereo images
of a human face. b Texture-mapped range image
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equation for depth computation. Let pl and pr be the projec-
tions of a 3D point w to the left and right retinal planes. If
the disparity between two image points is d′

u in the x direc-
tion, the depth wz to a 3D point from the origin of the camera
coordinate system (CCS) is

wz =
f · B

d′
u/ku + (un1 − un2)

, (10)

where B = ‖c1 − c2‖ is the length of the baseline of the
stereo camera; in our system it is 74.25 mm. un1 and un2 are
x coordinates of the new principal points in the left and right
images, respectively. For the focal length f of the camera we
average the calibration results for both left and right focal
lengths fu, fv , and it turns out to be 11.65mm.

2.5 Depth of a linear equation

The depth from two conjugate image points is also recon-
structed by using Eq. 1. Given two conjugate points p̃1 =
[u1, v1, 1]T and p̃2 = [u2, v2, 1]T and the two projection ma-
trices M̃n1 and M̃n2, we can write an overconstrained linear
system:

Aw = y , (11)

where

A =




(a1 − u1a3)T

(a2 − v1a3)T

(b1 − u2b3)T

(b2 − v2b3)T


y =




−a14 + u1a34
−a24 + v1a34
−b14 + u2b34
−b24 + v2b34


 . (12)

Then w gives the position of the 3D point projected to the
conjugate points. Column vectors ai and bi are entry vectors
of M̃n1 and M̃n2, respectively.

The 3D point w is represented with respect to the WCS. In
this paper, however, we transform the world point to reference
coordinates in order to represent it with respect to the CCS.
Suppose we let the right camera’s coordinate system (RCCS)
be the reference. Then we can transform the point by simply
using the external calibration parameters [R|t] of the right
cameras.

However, two transformations can be considered. One is
to the old RCCS before rectification, and the other is to the new
RCCS after rectification. By taking into account a multiview
registration, which will be presented in the next section, we
transform the point to the old RCCS by

pr = [Ro2|t]w , (13)

where [Ro2|t] is the old external calibration parameters of the
RCCS. Because the camera needs to calibrate the turntable for
registration of multiview range images, we represent all range
images with respect to the old RCCS.

2.6 Comparison of reconstruction methods

We compare the accuracy of the two 3D reconstruction meth-
ods. To compare the results with the ground truth, we use
another checkerboard pattern to compute the 3D positions of

a b

Fig. 4. A test checkerboard pattern at a 0◦ and b 45◦

Table 1. Results of the width of the test pattern (ground truth is
100 mm)

Method w0 w45

Linear eq. (mm) 99.6 99.2

Triangulation (mm) 104.1 99.7

all control points. The pattern is placed on the table and ro-
tated by 0◦ and by 45◦. We take a pair of stereo images at each
angle, detect all corners, and compute the depth of the corners
using the disparity between their conjugates.

As shown in Fig. 4, we measure the horizontal length be-
tween two control points at the upper-left and upper-right cor-
ners on the pattern. In order to minimize noise effects in the
measurement, we also average all eight horizontal lengths be-
tween the leftmost and rightmost corners. The triangulation
method using Eq. 10 shows a small reconstruction error. As
shown in Table 1, there is also a difference between the two
lengths measured at 0◦ and at 45◦. This difference can cause
serious problems if some multiview models are registered and
integrated into a single 3D model. In fact, when we use this
method to integrate multiple range images, a geometric dis-
tortion occurs on the 3D model. In contrast, using Eq. 11, we
can reconstruct more accurately the 3D model. Table 1 shows
that the linear equation method is more accurate than the tri-
angulation method.

3 Turntable calibration

3.1 Rotation axis calibration

As presented in an earlier section, we employ a turntable to
change the stereo camera’s viewing direction to an object. To
merge multiple range images, we need to know the rigid trans-
formation of each image with respect to a common coordinate
system. Because we calibrate the stereo camera only once be-
fore taking multiple range images, each range image obtained
at different angles has an independent coordinate system. To
register all multiview range images, we have to know the rigid
motions between all viewpoints.

Suppose there are N viewing directions from V0 to VN−1
and the V0 is the reference viewpoint. When there is a 3D
point pi

i that is obtained and represented by the ith view point,
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we can register it to a new point p0
i in the reference view as

follows:
p0

i = TcsRiTcs
−1pi

i , (14)

where Ri is the rotational transformation from Vi to V0, and
Tcs is the transformation from the TCS to the CCS as shown
in Fig. 5, which is represented by

Tcs = [Rcs|tcs] . (15)

Let us define two independent coordinate systems in 3D
space, the WCS and the TCS, whose origins are Ow and Os,
respectively. Suppose we know the transformationTcw, which
is from the origin of the WCS Ow to that of the CCS Oc. If
we know another transformation Tws that is from the origin
of the TCS Os to that of the WCS Ow, then we can derive the
transformation

Tcs = TcwTws (16)

= [Rcw|tcw] [Rws|tws] . (17)

Suppose there is the WCS in 3D space with its origin at
Ow as shown in Fig. 6. In the figure, p0 is the origin of the
WCS (but it is not necessary) and p′

0 is the same point after
being rotated by angle θ along the Ys axis of the turntable.
Given two 3D points and the rotation axis Ys, we can define
a plane Π as shown in the figure. Then we know the vector
product

(p′
0 − p0) · Ys = 0 . (18)

In other words,




p′
0x − p0x

p′
0y − p0y

p′
0z − p0z




T 


Ysx

Ysy

Ysz


 = 0 . (19)

When we have at least three points in world coordinates, we
can solve an overdetermined linear equation

AY =




p′
0x − p0x p′

0y − p0y p′
0z − p0z

p′
1x − p1x p′

1y − p1y p′
1z − p1z

. . .

p′
Nx − pNx p′

Ny − pNy p′
Nz − pNz







Ysx

Ysy

Ysz


 = 0

(20)
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Fig. 5. Geometry of the vision system
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Fig. 6. Rotation axis calibration with respect to the WCS

using the SVD technique. When matrix A is decomposed such
that A = (UDV T ), the solution of the equation is a column
vector of V that corresponds to the column of the least eigen-
value in the D matrix. We then normalize vector Ys to Ŷs.
If the computed Ysy is negative, then we change the direction
of the axis so that the axis is in the same direction as the Yw

axis of the WCS.
To compute the Xs and Zs axes of the TCS, we apply

the following computations. Let us initialize the Xs axis to
(1.0, Xsy, 1.0). Then

Xs · Ys = 0 ,

Xsy = (−XsxYsx − XszYsz)/Ysy ,

X̂s = Xs/‖Xs‖ ,

and Ẑs = X̂s × Ŷs .

Finally, the rotation matrix from the turntable to the WCS is
defined as

Rws =




(X̂s)T

(Ŷs)T

(Ẑs)T




T

. (21)

Let us now consider a translation from the origin of the
TCS to the origin of the WCS. The origin of the TCS is defined
as the intersection of the axis Ys and the Π plane. If we
transform two 3D pointsp0 andp′

0 using the rotation in Eq. 21,
the transformed points are on the xz plane of the TCS.

Suppose the two points p0 and p′
0 are transformed, with

respect to the TCS, to new points ps0 and p′
s0, respectively.

Then the three points Os,ps0, and p′
s0 are on the Π plane and

form an isosceles triangle. Therefore, using a vector

b = p′
s0 − ps0 ,

where (ps0,p′
s0) = RT

ws(p0,p′
0)

and the rotation angle θ, we can compute a translation vector
tws from ps0 to the origin Os.

Let us consider the Π plane on which the origin is moved
to ps0 and the y component is zero. Then the center of ro-
tation intersects with Π a 3D point ti = [x, 0.0, z]T . Be-
cause the isosceles triangle is also on the plane, the origin
ti is one of the intersection points of the two circles c1 and
c2, as shown in Fig. 7. On the Π plane, the center of c1 is
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Xs
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c2

b

r

θti

Fig. 7. The rotation center is one of the intersections of two circles
c1 and c2

at [0.0, 0.0, 0.0]T and its diameter is ‖ti‖. Similarly, the cen-
ter of c2 is at [bx, 0.0, bz]T and its diameter is also ‖ti‖. Let
r = ‖ti‖ and b = ‖b‖; then we derive two circles’ equations

x2 + z2 = r2 , (22)

(x − bx)2 + (z − bz)2 = r2 .

Using the equations we get

z =
b2
x + b2

z − 2bxx

2bz
. (23)

From Eq. 22 we also get

r2 = x2 +
(b2 − 2bxx)2

4b2
z

,

0 = 4b2x2 − 4bxb2x + (b4 − 4r2b2
z) , (24)

where r =
b/2

sin(θ/2)
.

Therefore, the x coordinate of the two intersection points
is the solution to the second-order binomial equation as in
Eq. 24. And the z coordinate is computed by Eq. 23. Given
two intersection points, only one of them is the real intersection
point. If the intersection point is computed as ti = [x, 0.0, z]T
on the Π plane, it should have a property such that

a = b × ti,

and ay > 0 ,

because we rotate point p0 by a positive angle θ along the Ys

axis of the turntable coordinates.
Let us now derive the transformation matrix from the TCS

to the CCS. Because we shift the origin Os to point ps0 to find
point ti, the translation from Ow to Os becomes −(ti + ps0)
with respect to the TCS and −Rws(ti + ps0) with respect to
the WCS. Finally, the transformation from the turntable to the
CCS is computed as

Tcs = TwsTcw

where Tws = [Rws|tws] = [Rws| − Rws(ti + ps0)] . (25)

To reduce the noise effect on computing ti, we average the
results of the vectors for some world points.

3.2 Turntable calibration experiments

To estimate the TCS, we use a checkerboard calibration pattern
as shown in Fig. 8. We place the pattern on the turntable in

a b

Fig. 8. Checkerboard patterns for turntable calibration (a) 0◦; (b) 45◦

such a way that the xy plane of the pattern faces the camera,
leaving the rotation axis behind. Using the stereo camera, we
take two pairs of stereo pictures at 0◦ and at θ◦. Then we detect
all 48 corner points in each picture. Using conjugate points in
a pair of stereo pictures, we compute the 3D position of the
corner points with respect to the RCCS.

Computing the transformation from the WCS to the CCS
is done as follows. As shown in Fig. 8, the translation tcw is
the vector from the camera to the upper-left corner point pul.
The three axes of the WCS with respect to the camera system
are computed as

r̂wx = pur − pul/‖pur − pul‖ , (26)

r̂wz = pll − pul/‖pll − pul‖ , (27)

r̂wz = r̂wz × r̂wz , (28)

and Rcw =




r̂T
wx

r̂T
wy

r̂T
wz




T

. (29)

An example of the transformation matrix from the TCS to
the CCS is computed as

Tcs =




0.504629 0.013110 −0.863265 −11.003747
−0.123068 0.990635 −0.058155 −72.315765

0.854513 0.135868 0.501416 487.191485
0.000000 0.000000 0.000000 1.000000




(30)

We test our calibration algorithm at several positions of the
stereo camera. Table 2 shows the registration error between
two 3D control point sets, at 0◦ and at 45◦, on the checkerboard
pattern. The translation vector tcs shows the distance from the
CCS to the TCS.

4 3D model generation and error analysis

4.1 Multiview registration and integration

Using the range image acquisition and calibration techniques
presented in earlier sections, we reconstruct 3D models of
several real objects. We obtain multiple range images of an
object from eight views of the object. After obtaining range
images, we bring all of them to a common coordinate system
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Table 2. Registration error of turntable calibration in mm

tcs Mean error Max. error

x y z

−41.9 −64.6 393.7 0.21 0.53

−41.0 −69.3 420.6 0.21 0.53

−18.2 −80.8 488.9 0.15 0.39

−15.4 −93.3 569.4 0.11 0.20

4.93 −105.3 638.1 0.11 0.25

14.2 −120.4 727.1 0.18 0.35

21.9 −140.1 825.5 0.27 0.50

using the turntable calibration parameters. Registered range
images are then refined again by using the point-to-plane reg-
istration technique we introduced in [16]. After registration,
range images are integrated to obtain a 3D mesh model using
a volumetric modeling technique [10,14,15]. From multiview
range images of an object we find the implicit surface of the
object by computing the signed distance of a voxel to the sur-
face of the object. The implicit surface is then converted to a
3D mesh model by the Marching Cubes algorithm [10]. More
details of our multiview modeling techniques can be found in
[14,15].

4.2 3D model results

Figure 9 shows 3D models of three real objects. The first col-
umn shows pictures of the objects, the second column shows
surface representations of the reconstructed models, and the
third column shows texture-mapped 3D models. If an object
has little contrast on its surface, we use a slide projector to
introduce a random dot pattern to enhance the performance
of stereo matching. The object in Fig. 9c is very complex and
difficult to reconstruct. It has non-Lambert surfaces and some
concavities. We merge 16 multiview range images in this case.
Texture-mapped 3D models show photorealistic reconstruc-
tion of the objects.

Table 3 shows the processing time to generate 3D models
of the objects. The modeling time actually depends on the
resolution of the 3D grid of voxels in the Marching Cubes
algorithm is set. This table shows only some examples, where
the voxel size of the objects is 3 or 4 mm. Total processing time
is about 5 to 8 min depending on the complexity and size of the
objects and on the number of views. In the “duck” object, we
use the slide projector to take stereo pictures with a random
dot pattern.After taking multiview stereo pictures with normal
illumination, we take another set of stereo pictures again with
the random dot pattern. Image acquisition for this object takes
twice that of the “Mr. Potatohead” object.

4.3 Reconstruction error analysis

To analyze the accuracy of our modeling system, we recon-
struct 3D models of two ground truth objects. Two test ob-
jects are shown in Figs. 10 and 11. One is a rectangular paral-
lelepiped, and the other is a cylinder. We reconstruct 3D mod-
els of them and measure dimensions of the models to compare

a

b

c

Fig. 9. Reconstruction results of real objects. Left to right: Picture of
objects, surface models, texture-mapped models. a Mr. Potatohead.
b Duck. c Indian couple

Table 3. 3D model generation time (s)

Object Mr. Potatohead Duck Indian couple

Voxel size (mm) 4 4 3

No. of triangles 8284 6760 18660

No. of views 8 8 16

Image acquisition 90 180 180

Rectification 32 45 45

Stereo matching 150 130 160

Registration 12 10 6

Integration 15 6 23

Total 299 369 414

with those of the ground truth models. We choose these two
objects because their dimensions are easily measured.

We use an ICP-based registration technique to first regis-
ter point clouds of the reconstructed 3D model to that of the
ground truth model. Then dimensional errors are measured be-
tween all points on the model and their closest conjugates on
the ground truth. We iteratively register the reconstructed 3D
model to its ground truth until the registration error between
the 3D model and the ground truth converge to a constant
value. As an error metric, we measure the average distance of
the closest points between the two models. Figure 12 shows the
results of registering two objects. We use 392 control points
in the “cubes” object and 104 points in “cylinder.”

After the two 3D models – the reconstructed model and
the ground truth model – are registered, we measure dimen-
sional errors on the reconstructed model with respect to the
ground truth model. For the “cubes” object, the RMS errors
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a

H = 90

D = 60

W = 60

b c

Fig. 10. “Cubes” object for error analysis. (a) Picture. (b) Dimension
(mm). c Point clouds model

a

H = 138.2 mm

R = 52.04 mm

b c

Fig. 11. “Cylinder” object for error analysis. a Picture. b Dimension
(mm). c Point clouds model
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Fig. 12. RMS registration error between the ground truth and the
reconstructed 3D models. a Cubes. b Cylinder

Table 4. RMS and maximum errors of “cubes”

Dimension W (mm) D (mm) H (mm) V (mm3)

Size 60 60 90 324000

RMS error 1.06 0.90 0.85 330542

MAX error 2.99 3.03 2.17

(%) error (RMS) 1.76 1.50 0.94 2.04

Table 5. RMS and maximum errors of “cylinder”

Dimension H (mm) R (mm) V (mm3)

Size 138.2 52.04 1175797.4

RMS error 1.54 1.20 1179466.7

MAX error 4.56 4.42

(%) error (RMS) 1.11 2.29 0.31

in the W , H , and D dimensions are measured for all vertices
on corresponding planes – for example the top and the bottom
planes for the H dimension – with respect to the closest ver-
tices on the ground truth. Similarly for the “cylinder” object,
errors in the R and H dimensions are measured using points
on side surfaces, and top and bottom surfaces, respectively.
Table 4 shows RMS and maximum errors in all dimensions
of the “cubes” object. We also measure the volume V of the
reconstructed model using a volume-measuring technique de-
scribed in a reference paper [11]. Table 5 shows the results of
the “Cylinder” object.

5 Conclusions

We have introduced a stereo vision system to automatically
generate 3D computer models of real objects. The system
consists of an inexpensive stereo camera, a turntable, and a
personal computer. Calibration of the stereo camera and the
turntable stage is presented. We rectify stereo images and ob-
tain range images of an object from multiple viewpoints. Those
range images are then automatically registered to a common
coordinate system and integrated into a 3D mesh model. We
have introduced a new turntable coo rdinate system and a sim-
ple and accurate calibration technique. Reconstruction error
analysis shows the accuracy of our 3D reconstruction.
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