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In the case of machine vision ... one ought to

understand image formation if one wishes to
recover information about the world from images.
- B. K. P. Horn(1986)[7].

Abstract

The image of a scene formed by an optical system such as a
lens contains both photometric and geometric information about the
scene. ‘Inverse Optics’ is the problem of recovering this informa-
tion from a set of images sensed by the camera. Previous solutions
to this problem— the depth-from-focusing methods— required a large
number (in principle, infinitely many) of images to be recorded and
processed. Hence the methods were slow and computationally inten-
sive. Recent work in this area suggests solutions that require only
a few images and therefore are fast and computationally efficient.
Here we present a coherent view of recent developments. Theoreti-
cal principles, practical issues, and unsolved problems are discussed.
Preliminary experimental results are presented.

1 Introduction

1.1 Lens based inverse optics is a well-posed problem

One of the early goals of a visual system is to recover the three-
dimensional geometry of scenes. In machine vision, most of the re-
search for recovering the scene geometry is based on a a pin-hole
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camera model (e.g.: [1, 15, 7]). While the image of a pin-hole camera
provides photometric information (i.e. scene radiance along different
directions of view), it completely lacks geometric information (i.e.
the distance of visible surfaces along different viewing directions).
Therefore, analyses based on a pin-hole camera model have to use
heuristic assumptions about the scenes to recover geometric infor-
mation. For example, in the shape-from-shading process, assump-
tions are made about the reflectance and shape of visible surfaces
(e.g.: the Lambertian reflectance model and “smoothness” of surface
structure).

Practical camera systems, and also the human eye, are not pin-
hole cameras but consist of convex lenses. In contrast to a pin-hole
camera, the image formed by a lens contains both photometric and
geometric information. For an aberration-free convex lens, (i) the
radiance at a point in the scene is proportional to the irradiance at
its focused image [7], and (ii) the position of the point in the scene
and the position of its focused image are related by the lens formula

1 1 1
Fouty 0

where f is the focal length, v is the distance of the object from the
lens plane, and v is the distance of the focused image from the lens
plane (see Figure 1). Given the irradiance and the position of the
focused image of a point, its radiance and position in the scene are
uniquely determined. In fact the positions of a point-object and its
image are interchangeable, i.e. the image of the image is the object
itself. Now, if we think of an object surface in front of the lens to
be comprised of a set of points, then the focused images of these
points define another surface behind the lens (see Figure 1). We can
think of this surface and the image irradiance on it as the focused
image. There is a one to one correspondence between this focused
image and the object surface. The geometry (i.e. the shape) and the
radiance distribution of the object surface is uniquely determined by
the focused image.

In this paper we are concerned with the principles and computa-
tional methods for recovering the geometry and the radiance of an
object from its sensed image. (Note that a sensed image is in general
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Figure 1: Image formed by a convex lens.

quite different from the focused image of an object.) This recov-
ery involves inverting the image formation process in a lens based
camera. We will term this inversion process as inverse optics. We
shall see that, under suitable conditions, inverse optics is a well-posed
problem, though, perhaps, #ll-conditioned.

1.2 Depth-from-focusing

In the depth-from-focusing method (e.g. [6, 8, 16, 9]), the lens for-
mula (1) is used for finding the distance of objects whose images are
in focus. Many approaches exist for focusing an object. These ap-
proaches are primarily found in the autofocusing literature for cam-
eras and microscopes (e.g.: [10, 24]).

In the depth-from-focusing method, an object is focused onto the
image detector by continuously varying one or both of the following
camera parameters: (i) distance between the lens and image detector,
and (ii) the focal length. For each setting of these camera parame-
ters, one image is recorded and processed to compute a “sharpness”
measure. The image which gives a global maximum for the sharp-
ness measure is taken to be the focused image. A simple measure
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of sharpness of an image g(z,v) is its energy [ [ ¢*(z,y)dz dy. It
can be shown that the global maximum of this measure corresponds
to the focused image (e.g. [18]). Measures based on the derivatives
of images can also be used. These measures have been found to be
more reliable because, usually, the attenuation caused by blurring
increases with increasing spatial frequency while the amplification
caused by derivatives increase with increasing spatial frequency.

The depth-from-focusing method is inherently slow and compu-
tationally intensive because it involves recording a large number of
images, computing the sharpness measure for each image, and then
finding the global maximum of the sharpness measure.

In this paper we are mainly concerned with methods that do not
require an object to be focused in order to find its distance or its
radiance. The approach to be presented here requires recording and
processing only a few images and therefore is much faster than the
depth-from-focusing method. It is also faster than active methods
such as laser ranging and does not suffer from the correspondence
problem of stereo ranging method. The computations involved are
simple and has the potential for hardware implementation.

1.3 Organization

This paper is primarily based on our work reported in [18, 19, 20, 21,
23]. The ideas and results there have been refined in many respects
and reorganized in a major way. Many details there have been left
out. The net result (we are afraid!) is that the approach here comes
out as quite simple and straightforward. The most closely related
work to this paper is Pentland’s [12, 13, 14].

We begin our discussion with methods for simple objects such as
points, lines, etc. and proceed in steps to increasingly complex ones.
First we focus on the basic principles of the approach. Many details
of the approach are delayed until much later to avoid distraction.
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Figure 2: Camera geometry.

2 Points, Lines, and Edges

The class of objects we deal in this section may be too simple to
be of much use in practice, but the principles presented here lay the
foundation for the following sections. We also present experimental
results which verify the mathematical model developed here.
Consider a convex lens camera as shown in Figure 2. Let P be
a point object in front of the lens and p’ be its focused image. The
relation between the positions of P and p’ is given by the lens formula
(1). If P is not in focus then it gives rise to a circular image called
blur circle on the image detector. From simple plane geometry (see
Figure 2) and the lens formula (1) we can show that the diameter d

of the blur circle is
1 1 1
d =1Ds ( ————— ) (2)

where D is the diameter of the lens aperture and s is the distance
from the lens to the image detector. Note that d can be either positive
or negative depending on whether s > v or § < v. In the former case
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the image detector is behind the focused image p’ and in the latter
case it is in front of it. According to geometric optics [7, 3|, the
intensity! within the blur circle is approximately constant. If b is the
brightness of P when focused, then its blurred image is

4 e 2 2 - d?
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1(@:y) { (7)T otherwise. (3)

Note that

//hl(a:,y) dr dy = b. (4)

If P is an isolated point object with no other light source in its vicin-
ity, then its distance can be determined from the diameter of its blur
circle. Knowing the camera parameters s, f,D and the blur circle
diameter d, the distance u is obtained from equation (2). The diam-
eter d itself can be either measured directly on the image detector
or estimated from the brightness within the blur circle. First b is
computed from equation (4). This provides photometric information
about P (i.e. b is proportional to the brightness of P). If by is the
brightness within the blur circle then d is obtained from equation (3)
as

d = £24/b/mhy. (5)

However the sign of d remains ambiguous. This ambiguity can be
resolved in two ways: (i) by setting s = f, or (ii) by changing s by a
small value and observing the change in the magnitude of d. In the
first case the sign of d is always negative (since u > 0 in equation
(2)). In the second case, from Figure 2 we see that, the magnitude of
d increases for a small increase in s if the image detector is behind the
focused point p’ (i.e. s > v and consequently d is positive) and the
magnitude of d decreases otherwise. Therefore d has the same sign
as the derivative d|d|/ds. Therefore, under ideal conditions, finding
the distance of a point object is straightforward.

In practice, the image of a point object is not a crisp circular
patch of constant brightness as suggested by geometric optics. In-
stead, due to diffraction, lens aberrations, and noise, it will be a

'We shall use the terms ‘brightness’, ‘intensity’, ‘radiance’, ‘irradiance’, ‘grey-
level’, etc. interchangeably, relying on context to convey the intended meaning.
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roughly circular blob with the brightness falling off gradually at the
border rather than sharply. Because of these non-idealities, a two-
dimensional Gaussian is often suggested as a model for the image
of a point object [7, 17] (also see [22] for the derivation of a model
from diffraction theory). For a point object of unit brightness (i.e.
b = 1), the intensity distribution of its image under the Gaussian
model would be

1 <242
h2($ay) = 27'('0'26 207 (6)

where o is the spread parameter. We shall not restrict ourselves to
the Gaussian model at this point. Indeed our experiments indicate
that Gaussian is not a good model for our camera. However we shall
use this model later to illustrate certain concepts.

Let h(x,y) be the intensity distribution of the image of the point
object P. Let the brightness of the focused image of P be unity (i.e.
b= 1) so that

//Ih(x,y) dedy =1 (7)

where [ is a region on the image detector containing the entire image
of P. h(z,y) as defined here is indeed the point spread function of the
camera. We shall assume that h(z,y) is circularly symmetric. This is
largely true of cameras with circular apertures. In order to determine
the distance u, we need to relate h{x,y) to the camera parameters
s, f, D, and the distance u. For this purpose, we characterize h with
a single parameter ¢ defined to be the standard deviation of the
distribution h(z,y), i.e.

= [[le-22+w-9A @y dody  ©

where (Z,7) is the center of mass defined by

z = //Ixh(a:,y)dxdy and § = //th(a:,y)dxdy. 9)

o is the square root of the second central moment of h(z,y). It can
also be thought of as the radius of gyration of h about its center
of mass. We shall call ¢ the spread parameter of the point spread
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function A(z,y). Sometimes we also refer to o as the blur parameter
as it is an indicator of the degree of blur.

Now we need a relation (analogous to equation (2)) between o,
the camera parameters, and the distance u. The actual derivation of
such a relation from theoretical considerations appears to be compli-
cated and therefore will not be considered. However we hypothesize
that

o =kdfor k>0 (10)

for some constant & where d is the diameter of the blur circle given by
equation (2). Our experiments, to be described shortly, support this
hypothesis strongly. The proportionality constant k is characteristic
of a given camera and can be determined through calibration.

Using equations (2,10) one can determine the distance u of a point
object from its image h(z,y) and the camera parameters k, s, f, D.
The explicit expression for v is

kDsf

YT kDG ) fo ty

Direct experimental verification of this method poses some practical
difficulties. For example, realizing a point object of sufficient bright-
ness, and accurate measurement of o, are difficult due to noise, quan-
tization, and digitization effects. Therefore we verify this through the
image of a step edge.

First let us define what we mean by focused image on the image
detector in a general case. For any point p (see Figure 2) on the
image detector, consider a line through that point and the optical
center. Let P be the point on a visible surface in the scene whose
focused image lies on this line. Let p’ be the focused image of P.
Then the intensity of the focused image on the image detector at p
is the intensity of the focused image at p’. In the rest of this paper,
we abbreviate ‘focused image on the image detector’ to just ‘focused
image’.

Consider a planar object normal to the optical axis at a distance
w in front of the lens. Let its focused image be f(z,y) which is a
step edge along the y-axis on the image detector. Let a be the image
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intensity to the left of the y-axis and b be the height of the step. The
image can be expressed as

flz,y) = a + bu(x) (12)

where u(z) is the standard unit step function. If g(x,y) is the ob-
served image, then, assuming the camera to be a linear shift-invariant
system (cf. [15]), we have

9(z,y) = hz,y) ® f(z,y) (13)

where ® represents the convolution operation. Note that, if a = 0
and b = 1 then g(z,y) gives the edge spread function of the camera,
i.e. the response of the camera to a unit step edge. The response
of the camera to a line (e.g. d(z) on the z — y plane) is called
the line spread function of the camera. Relations between the three
spread functions— point, line, and edge— are well known in the image
processing literature [15, 7]. We will not elaborate on this here. Using
these relations it can be shown that (see [23] for detailed derivations)
the line spread function #(x) can be obtained from the observed
image g(z,y) from the expression

g_g
0(r) = —4—. 14
(z) 00 gy (14)
The point spread function h(z,y) can be obtained from the above
line spread function using Abel Transform (because h(zx,y) is circu-
larly symmetric; see [7]). However this involves taking derivative of
the line spread function and the resulting h(z,y) becomes highly un-
stable due to noise and discretization. Note that (at least for now)
we are only interested in finding the standard deviation ¢ of the dis-
tribution A(x,y), not h(z,y) itself. If oy is the standard deviation
of the distribution of the line spread function é(x), then it can be
shown that (see [23])

c=+V20. (15)

Therefore ¢ can be estimated directly from the line spread function
f(x); it is not necessary to compute the point spread function A(z, y)!
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The relation between o; and the camera parameters is obtained
from equations (2,10,15) as

Jl:@(l_l_l) (16)

This equation suggests that, for a given setting of camera parameters,
the relation between o; and the distance v can be expressed in the
form

op = mut4¢ (17)

where m, ¢ are some camera constants (which depend on the actual
values of &, s, f, and D). These constants can be determined through
calibration. The important point to note here is that the spread pa-
rameter oy is linearly related to inverse distance. Therefore, having
determined the spread parameter from the observed image, the dis-
tance can be easily computed.

The discussion above suggests that, in addition to the distance
of point objects, the distances of line objects and also step edges can
be obtained from their blurred pictures.

Experiments were conducted with the following intent: (i) to ver-
ify the applicability of the mathematical model to practical camera
systems, and (ii) to test the usefulness of the method in practical ap-
plications. Black and white sheets of papers were pasted on a card-
board to create a step intensity edge. Many images of this step edge
were acquired with a Panasonic CCD camera (focal length 16mm,
aperture diameter 11.4mm) by keeping the camera parameters fixed
and varying the distance of the cardboard from the camera. Two of
these pictures are shown in Figure 3. The range of distance variation
was from 8 inches to about 8 feet. For each image the standard devi-
ation o; was computed and plotted against the reciprocal of distance.
Typical results for one set of nine pictures is shown in Figure 4. We
see that the graph is linear on either side of the focused position. Al-
though the spread parameter should be zero at the focused position,
it is about one pixel due to non-idealities such as lens aberrations
and discretization effects. The same experiment was carried out on
three more sets of pictures with different camera parameter settings
(by changing s, the lens to image detector distance). In all cases
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Figure 3: Pictures of a blurred step edge

Figure 4: Plot of spread parameter vs inverse distance.
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the same linear behavior was observed. See [23] for more details on
the experiments and a discussion of the results.

The experiments for obtaining the graph in Figure 4 can be con-
sidered as camera calibration. Given this graph, it is now straightfor-
ward to find the distance of a new object. The image of the object is
acquired and the spread parameter o; is computed for it. From this
computed oy, we just read off the distance u from the graph. However
we see that there could be a two-fold ambiguity corresponding to the
two line segments in the graph. This ambiguity can be resolved by
the same two methods mentioned earlier (i.e. setting s = f, or ob-
serving the sign of the derivative d|o;|/ds; the latter method requires
two images with slightly different values of s).

We see from the graph that the linear behaviour predicted by the
mathematical model (equation (17)) holds remarkably well. This
verifies the hypothesis in equation (10) and suggests that the math-
ematical model is applicable to practical camera systems.

Pentland [12, 13, 14] and Grossman [5] both addressed the prob-
lem of recovering depth from blurred edges. Pentland’s method is
restricted to the case where the point spread function of the camera
can be approximated by a two-dimensional Gaussian. Also the com-
putational algorithm of Pentland is relatively complicated in compar-
ison with the above method. Grossman [5] showed experimentally
that useful depth information can be obtained from blurred edges.
However he did not provide a theoretical justification for his compu-
tational algorithm.

3 Finite Planar Object with Known Bright-
ness Pattern

We now consider a slightly more complicated case as compared to the
case of points, lines, and edge objects considered above. We consider
a planar object with arbitrary, but known brightness pattern. The
object is taken to be placed normal to the optical axis at a distance u
and surrounded by a dark background (or background with constant
brightness). The object should be small enough such that, even when
it is blurred, its entire image is sensed by the image detector (note:
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a focused image “spreads” when blurred and hence becomes larger;
for example, a point object spreads into a circle when blurred).

As before, let f(z,y) denote the focused image, g(z,y) the ob-
served image, and h(z, y) the point spread function. Also, let F(w,v),
G(w,v) and H(w,v) be their respective Fourier transforms. The
functions f, g and h are related according to equation (13). Therefore
their Fourier transforms are related as follows (because convolution
in the spatial domain is equivalent to multiplication in the Fourier
domain):

G(w,v) = H(w,v) F(w,v) . (18)

Now, if the focused image f(z,y) is known, then the point spread
function can be obtained through deconvolution. This operation in
the Fourier domain is

(19)

H(w,v) above is called the optical transfer function of the camera.
Its inverse Fourier transform gives the point spread function h(z,y).
The spread parameter o can be computed from A(z,y). It may also
be possible to compute ¢ directly from the optical transfer function
without computing its inverse Fourier transform.

To illustrate this method, consider the case where the point spread
function is a Gaussian as in equation (6). The corresponding optical
transfer function is

H(w,v) = e~z (W 7)o’ (20)

where w, v are spatial frequencies in radians per unit distance. Hav-
ing obtained H(w,v) from the focused and the observed images (ac-
cording to equation (19)), we can solve for ¢ from equation (20):
o2 = 2 In H(w,v) . (21)
@+ 7)
In principle, according to the above equation, measuring H(w,v) at
a single point (w,v) is sufficient to obtain the value of 0. However,
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in practice, a more robust estimate can be obtained by taking the
average over some domain in the frequency space:

In H(w, v)
//R 207 dw dv (22)

where R is a region in the (w, ) space not containing points where
H(w,v) <0, and A is the area of R. Having obtained o, the distance
u is determined using equation (11).

Pentland [12, 13, 14] was perhaps the first to address the problem
considered in this section. Pentland suggested that a close approxi-
mation to the focused image can be obtained by setting the aperture
diameter D to be nearly zero. In this case the camera effectively
acts like a pin-hole camera. From equations (2,10) we see that the
spread o of the point spread function is proportional to D. There-
fore, when D is reduced to pin-hole dimensions, the spread o becomes
very small. Consequently the observed image will closely resemble
the focused image.

Pentland’s analysis of the problem is restricted to the case of
a Gaussian point spread function. Also, his computational method
for finding w is slightly complicated in comparison with the method
presented above.

4 Finite Planar Object with unknown Re-
flectance Pattern

The method described in the previous section requires the knowledge
of the focused image f(x,y). Although an approximation to the
focused image can be obtained by setting the aperture diameter to
be very small, this poses some serious practical difficulties. First,
the diffraction effects increase as the aperture diameter decreases,
thus distorting the recorded image. Second, a small aperture gathers
only a small amount of light and therefore the exposure period of
the film will have to be increased correspondingly. The exposure
period is approximately proportional to the reciprocal of the aperture
diameter squared. This could slow down the method.
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In this section we present a general method that does not require
the knowledge of the focused image. Therefore it is faster and more
practical than the previous method. The requirement of the focused
image is avoided by processing two pictures acquired with different
camera parameter settings.

Let g1(z,y) and go(z,y) be the observed images for two different
camera, parameter settings: s1, fi, D1 and so, fo, Ds. g1 and go will
have different spatial magnification if s; # so (see Figure 2). In
this case their magnifications will have to be made the same. In the
following discussion we shall assume that all images are scaled to have
unit magnification. This scaling is described by the transformation:

gn(a:/s,y/s) = go(xay) (23)

where g,(z,y) is the original observed image with the distance from
the lens to image detector being s, and g,(z,y) is the scaled image
with unit magnification. (Applying this magnification correction for
digital pictures is a little tricky, but can be done through an appro-
priate weighted averaging (or interpolation) scheme. We leave it to
the interested reader to figure it out!)

Analogous to the normalization of spatial magnification is the
grey-level rescaling. The pictures g; and go are normalized to have
the same mean grey value. This step compensates for variation in
mean brightness due to change in the camera parameters (e.g. a
smaller aperture produces a dimmer picture, unless the exposure
period is increased correspondingly). (This grey level normalization
should be applied after correcting for the vignetting effect.)

For an image whose magnification has been normalized to unity,
the expression for the blur circle diameter d in equation (2) also
needs to be normalized by dividing the diameter by s. Therefore,
the corresponding spread parameter ¢ of the point spread function
will also be a normalized quantity. Taking this into consideration, the
spread parameters o1 and o2 corresponding to g; and go respectively

are 1 1 1
g1 = k‘lDl (— - - = —) (24)

fi u st
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and

1 1 1
g9 — k‘QDQ (E - a - 5) . (25)

Eliminating » from the above two equations we get
o1 = aog+ (26)

where

k1Dq (1 1 1 1)
= and =kDi|———4+———]. 27
“ koDo nd f YI\A T R s s @7)

Equation (26) gives a relation between o1 and o9 in terms of the
known camera parameters. This equation plays a central role in our
method for depth recovery. To our knowledge, this relation has not
been derived before in the literature.

Let Gi(w,v) and Ga(w,v) be the Fourier transforms of g;(z,y)
and go(z,y) respectively. We will denote the point spread functions
corresponding to these two images by h(z,y;01) and h(z,y; o2) and
their Fourier transforms by H(w,v;01), H(w,v;02), where o1, 09 are
the respective spread parameters. (Here the function A itself does
not change with change in camera parameters.) With this notation,
we can write

Gi(w,v) = H(w,v;01)F(w,v) (28)

Ga(w,v) = H(w,v;o09)F(w,v). (29)
Dividing G1 by GQ,

Gi(w,v)  H(w,v;o1)
Go(w,v)  H(w,v;o9) (30)

This is the second equation of central importance along with equation
(26). While equation (26) gives a relation between o; and o9 in terms
of the camera parameters, this equation gives a relation in terms of
the observed images. Equations (26) and (30) together constitute
two equations in the two unknowns: ¢; and o9. They are solved
simultaneously to obtain o7 and o2. The depth u is then determined
from either oy or o9 using equation (11).



Depth from Inverse Optics 17

We now illustrate the above method for the case of a Gaussian
point spread function. The optical transfer function for this case is
as in equation (20). Therefore we get

Giw,) _ -t +)(el-o}) (31)

= e 2

GQ(w, V)

Taking logarithm on either side and rearranging terms, we get

-2 Gi(w,v)
2 _ 2 11\«
o1 =0 = In (Gg(w, V)) . (32)

For some (w, v), the right hand side of equation (32) can be computed
from the given image pair. Therefore equation (32) can be used
to estimate 07 — 04 from the observed images. As in the previous
section, measuring the Fourier transform at a single point (w, v/) is, in
principle, sufficient to obtain the value of o — 3, but a more robust
estimate can be obtained by taking the average over some domain in
the frequency space. Let the estimated average be C given by

1 -2 Gi(w,v) )
= — 1
C 1 //Rw2 2 n (Gg(w, ” dw dv (33)
where R is a region in the (w, ) space not containing points where

Gi1{w,v) = Ga(w,v), and A is the area of R. Therefore, from the
observed images we get the following constraint between oy and oo:

o -0k = C. (34)

Equations (26,34) together constitute two equations in two unknowns.
From these equations we get

(@®>—1)05 + 2080y + 2 = C. (35)

Above we have a quadratic equation in o9 which is easily solved. In
general there will be two solutions. However a unique solution is
obtained if D; = Dy. We can also derive other special cases where a
unique solution is obtained (e.g.: Dy # Do, 81 = 89 = f1 = fo; in this
case only the negative solution of o is acceptable which is unique.)
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Having solved for oo we obtain the distance v from equation (11).
Thus, the distance is determined from only two images obtained with
different camera parameter settings. This should be compared to the
depth-from-focusing methods [6, 10, 16, 9] which require recording
and processing a large number of images. Note that the camera
parameter setting could differ in any one, any two, or all three of the
parameters: s, f, D.

This method of depth recovery requires a camera system for
which one or more of the parameters s, f, D can be changed and
measured accurately. Such a camera system is not available to us at
present. We plan to acquire such a camera in the future to conduct
experiments.

5 Scene containing Curved Objects

In the presence of curved objects, the distance u of visible surfaces
is different along different directions of view. Let u(z,y) be the
distance along a line joining the optical center and the point (z,y)
on the image detector. Depending on u(z, y), the spread parameter o
of the point spread function also changes with position on the image
detector. Let this position dependence be denoted by o(z,y). In this
case the relation between the focused image and the observed image
cannot be expressed as a convolution operation. The transformation
from focused image to blurred image is still linear but not shift-
invariant. The problem now is to recover u(z,y) or the depth-map
of the scene.

One solution to depth-map recovery is to divide an image into
many smaller subimages and consider u(x,y) to be approximately
constant within each subimage. Then the depth corresponding to
each subimage is obtained using the method in the previous section.
If u(z,y) is not constant within a subimage, then this scheme gives
an “average” distance. This is still a useful piece of information in
many applications.

Dividing an image into subimages introduces some errors due
to border effects. An image region cannot be analyzed in isolation
because, due to blurring (caused by the finite spread of the point-
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spread-function), the intensity at the border of the region is affected
by the intensity immediately outside the region. We call this the im-
age overlap problem because the intensity distribution produced by
adjacent patches of visible surfaces in the scene overlap on the image
detector plane. In indoor scenes such as the environments of indus-
trial vision systems, the image overlap problem can be completely
avoided through selective illumination of the scene. For example,
the scene can be illuminated by square bright patches separated by
wide dark bands with no illumination. In this case the boundaries of
the subimages can be chosen to be in the middle of the dark bands.
Border effects are then avoided because the image intensity is zero
at and near the borders.

In situations where the illumination cannot be controlled (e.g.
outdoor scenes), the image overlap problem may be reduced as fol-
lows. The image intensity is first multiplied by a suitable center
weighted (e.g. a Gaussian) mask centered at the region of interest.
The resulting weighted image is then used for depth recovery. Be-
cause the weights are higher at the center than at the periphery,
this scheme gives a depth estimate which is approximately the depth
along the center of the field of view.

6 Error Sensitivity

The effective range of our approach depends on many factors such
as the values of the camera parameters, illumination condition of the
scene, aberrations of the optical system, image quality (i.e. noise,
spatial and grey level resolution), etc. Most existing camera sys-
tems have small apertures. This appears to be a deliberate design
decision to maximize the depth-of-field. For such cameras, objects
at all distances are nearly focused and consequently have low depth
discrimination. Therefore a camera system designed specifically for
depth recovery (having small depth-of-field) should perform signifi-
cantly better than the commercially available cameras.

The depth recovery approach here requires only one or two im-
ages; however the estimate of depth can be made more robust if
more images are used. If n images are available for different camera
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parameter settings, then n — 1 independent estimates of depth can
be made and the mean of these gives a robust estimate of the ac-
tual depth. Alternative schemes are also possible for using multiple
images.

A general and complete analysis remains to be done, but one
calculation under simplified assumptions leads to the following con-
clusions: (i) the approach is more accurate for nearby objects than
for far away objects, (ii) the effective range in practical applications
is about one hundred times the focal length of the camera system,
and (iii) for far away objects, even if the accuracy of the quantitative
estimate of depth may be unsatisfactory, we can still obtain useful
qualitative information such as, for example, “object A is nearer than
object B”, “there are no obstacles within distance X”, etc.

In some applications such as autonomous vehicle navigation where
approximate depth needs to be recovered in real-time, multiple cam-
eras could be advantageous. Each camera would have different pa-
rameters such that it is “tuned” to recover depth more accurately in
a particular range than out side of this range. Cameras with smaller
focal length lenses help to recover accurately the depth variations
at shorter distances and those with larger focal length lenses (e.g.
telescopic cameras) help to recover accurately the depth variations
at longer distances. Different cameras can be made to view the scene
from the same vantage point using a beam splitting device.

7 Notes

Autofocusing: The method for depth recovery presented here can
be used in the autofocusing of computer controlled video cameras.
Focusing by this method will be much faster than the depth-from-
focusing methods used at present.

Enhancing depth-of-field: A focused image may be obtained from
two observed images which are blurred. First the form of the point
spread function h(z,y; o) is determined through calibration. Then,
as in the depth recovery method, the spread o of the point spread
function is estimated. The observed image is then simply decon-
volved with the corresponding point spread function. The resulting
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image is the required focused image. Deconvolution is done by di-
viding the Fourier transform of the observed image with the Fourier
transform of its point spread function and then taking the inverse
Fourier transform. Although, in principle, deconvolution is simple,
in practice (especially in the presence of noise) it poses many serious
difficulties.

Domain of analysis: We have presented our approach based on
a Fourier domain analysis of the images. It is possible to do a corre-
sponding analysis in the spatial domain. We have chosen the Fourier
domain for its simplicity. In particular it should be noted that in
equation (30), the power spectral densities of G; and G4 could be
used instead of G| and G. This usually does not complicate solving
for the spread parameters. It also avoids computations on complex
numbers. Power spectral density may be preferable because it can
be computed very fast by optical methods [4].

Lens formula: The lens formula in equation (1) is valid exactly
only for an aberration-free lens and for points near the optical axis.
For an actual camera, one may consider v to be that distance of the
image detector from the lens for which the image of a point at dis-
tance u is “sharpest” (i.e. the spread of the point spread function is
a minimum). Therefore, for a given camera, one can experimentally
determine v as a function of u, f and the direction (or angular posi-
tion) of a point in the scene. Having determined this function, one
can use it in place of the lens formula and derive the corresponding
equations. Even if there is no satisfactory parametric representa-
tion of this function, a table-look-up method can be used. Only the
computational steps become clumsy.

Avoiding the correspondence problem: While changing s or f,
the front lens of the camera receiving light directly from the object
(i.e. the object piece) must never be moved. Instead, the image de-
tector should be moved backwards or forwards to change s, and a
lens other than the object piece should be moved to change the fo-
cal length. This avoids the correspondence problem encountered in
structure-from-motion where the camera is moved along the optical
axis. Correspondence is established through simple ray tracing prin-
ciples well known in geometric optics (cf. [3]). In most commercially
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available cameras, the front lens is moved instead of the image de-
tector or film. This introduces the correspondence problem. This
fact appears not to have been noted in previous work on depth-from-
focusing. When the camera consists of multiple lenses, the effective
focal length, and the positions of principal points and planes need to
be computed. Methods for doing this are well established (cf. [11]).

Relevance to human vision: In the human visual system, focusing
occurs by changing the focal length of the lens. In our method for
depth recovery, the two images may be obtained by changing only the
focal length. This suggests that humans can, in principle, perceive
the depth of all objects in the field of view even if the objects are not
in focus. There is evidence in support of the fact that the human
eye deliberately exhibits small fluctuations in the focal length of the
lens to obtain two images. The following paragraph is quoted from
Weale [25, page 18]:

“... the state of accommodation of the un stimulated eye
is not stationary, but exhibits micro fluctuations with an
amplitude of approximately 0.1 D (diopter: a unit of lens
power given by the reciprocal of focal length expressed in
meters) and a temporal frequency of 0.5 cycles/second.
He (Cambell, [2]) demonstrated convincingly that these
were not a manifestation of instrumental noise, since they
occurred synchronously in both eyes. It follows that their
origin is central.”

Our approach implies that such fluctuations could be used to perceive
depth in the entire scene simultaneously.

Plain objects: Objects like machine parts, wall, door, road, etc.
are often “plain” or “textureless”, i.e. their surfaces are smooth and
have no reflectance variation. Therefore they appear as objects with
constant brightness under uniform illumination. Our method fails for
such objects due to the lack of spatial frequency content. However,
if one has control over the illumination of the scene (as in indoor
scenes), one can introduce “texture” by projecting an arbitrary light
pattern (e.g. a random dot pattern) onto the surface of objects. Then
our method becomes applicable. Note that the projected pattern
need not be focused.
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Magnification correction: The normalization of spatial scaling
given by equation (23) appears to have been overlooked in the im-
plementation of all depth-from-focusing methods [10, 16, 9] known to
the author with the exception of Horn’s [6]. We believe that applying
this magnification correction will improve the reported experimental
results and also alleviate some of the problems associated with local
extrema and region correspondence.

8 Conclusions

We have presented some basic principles relevant to inverting the
image formation process in a convex lens camera. This approach,
termed inverse optics, suggests efficient methods for recovering scene
information. Methods for recovering the distance of point, line,
edge, and planar objects are presented. The difficulties associated
with curved objects are discussed. Preliminary experiments suggest
that the mathematical model developed here is applicable to actual
camera systems and that useful depth information can be obtained
through this approach.

The effective range of the current approach is limited by image
quality and camera parameters. There is much scope for improve-
ment in image quality (in terms of noise, spatial resolution, and grey-
level resolution) in the future. (The advent of superconductors may
advance the technology in this respect.) But, even with only the
currently available technology, major improvements can be achieved
through design of new camera systems meant specifically for depth
recovery.

The depth information obtained from this approach, even if ap-
proximate, could be very valuable to other shape recovery methods
like stereo vision. The approximate information can help to dras-
tically prune the search space to the problem of stereo correspon-
dence. Eventually this might indeed be the primary application of
this method. A scheme for incorporating this method into a binoc-
ular system and a method for motion recovery are described in [20].

Research on the approach presented here has begun only recently
and more extensive theoretical and experimental investigations are
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needed. The primary advantage of this approach is the absence of
any inherent problem that requires heuristic solutions, such as the
correspondence problem in stereo.
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