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CHAPTER 1

Introduction

‘‘One of the principal objects of theoretical research in any department of knowledge is
to find the point of view from which the subject appears in its greatest simplicity’’. -J.W.
Gibbs

Humans effortlessly perceive the shape and motion of unfamiliar objects from their changing images.
From a purely theoretical point of view this ability of the human visual system has intrigued perception
psychologists for decades, and more recently computer vision scientists, for two reasons. First, valuable
information is lost due to the projection of the three-dimensional scene onto the two-dimensional retina,
and second, light as an intermediary of information transmission introduces certain ambiguities (e.g. the
aperture problem discussed later) into the interpretation process. A primary goal of this research is to
understand this phenomenon at the level of its computational theory (Marr, 1982). A computational study
of this phenomenon is usually carried out in two stages. First is the measurement of visual motion. This
involves computing the motion of image elements from the changing intensity pattern on the eye’s retina.
The second stage is the interpretation of this visual motion, i.e., to infer the three-dimensional shape and
motion of objects given the visual motion. The first stage, the measurement of visual motion, has been
intensively studied by a number of researchers (e.g.: Horn and Schunck, 1981; Hildreth, 1983; Waxman
and Wohn, 1985). This book is concerned with the second stage, the interpretation of visual motion. It
extends the previous work of Longuet-Higgins and Prazdny (1980) and Waxman and Ullman (1985) in this
area in many ways. A general formulation of the problem and algorithms for the interpretation process are
presented. An important goal of computer vision is to understand human vision from an information pro-
cessing perspective. For this purpose, the task of vision can be divided into several stages, at least as a first
approximation. Marr has suggested that the goal of the first stage of visual processing is to obtain descrip-
tions of the physical properties of visible surfaces with respect to the viewer, properties such as distance,
orientation, texture, and reflectance. This stage has been termed the 2 1/2 -D sketch and the processes
involved are called early vision processes. This early stage of processing is primarily bottom-up, relying
on general knowledge about the world, but not on special high-level information about the scene to be
analyzed. Computational studies and perceptual experiments (Marr and Poggio, 1977) suggest that early
vision processes are generic ones that correspond to conceptually independent modules that can be studied,
at least to a first order, in isolation. Examples of early vision processes are edge detection for finding sharp
intensity changes, stereopsis for computing a depth-map from a stereo pair of images, shape from shading,
shape from texture, measurement of visual motion and interpretation of visual motion. There is no proof
yet that the paradigm for computational vision proposed by Marr and his collaborators is correct, but we
adopt it in the belief that something similar should be true. In this framework we contend that a rigorous
and thorough analysis of the individual visual modules is fundamental to understanding vision as an infor-
mation processing task. For this reason, this study focuses on one module, the visual motion module.
Existence of this module as an independent process in the human visual system is demonstrated in many
perceptual studies (Wallach and O’Connell, 1953; Johansson, 1973, 1975; Ullman, 1979; see Figure 1).
Another very important motivation for this research arises from its potential applications in machine vision
systems. This work is directly relevant to autonomous land vehicle and aircraft navigation, robot manipula-
tion of moving machine parts, and general machine vision systems. This thesis is a computational study of
the problem of visual motion interpretation. Before proceeding further we define the two key terms com-
putational theory and computational approach. These two terms were originally elucidated by Marr.

A formulation of a computational theory of an information processing task consists of four steps:

(i) identifying the input and the output entities,

1



(ii) specifying the relationship between the input and the output entities,

(iii) explicitly stating the conditions and assumptions under which the output entities are obtainable from
the input entities using the relations specified in step two, and

(iv) proving that the output entities are indeed obtainable from the input entities under the conditions and
assumptions stated in step three using the relations specified in step two.

A computational approach to an information processing task consists of two steps:

(i) constructing a representation for the input and the output entities and

(ii) developing an algorithm to transform input into output according to a computational theory of the
task for the representation constructed in step one.

In addition to the above two steps, we would like to add a third requirement for any computational
approach:

(iii) an implementation of steps one and two on some processing hardware, such as a computer system,
and a demonstration of its correctness on a variety of cases.

Tsotsos (1987) has recently argued that a computational study of a task must also include a complexity
level analysis.

For the problem of visual motion interpretation, the input is the visual motion field obtained from changing
intensity patterns on the eye’s retina and the output is a description of the changing scene. In this thesis a
computational theory of this process is formulated and a computational approach is given in the precise
sense defined above. In this approach the input representation is a set of image parameters and the output
representation is a set of scene parameters. The image parameters describe the local visual motion in the
image domain; these are the ‘‘observables’’ or ‘‘knowns’’. The scene parameters describe the local shape
and motion of surfaces in the scene; these are the ‘‘unknowns’’. Therefore the goal of visual motion
interpretation is to recover scene parameters from image parameters. Relations between the scene parame-
ters and the image motion parameters are established and an algorithm is given to recover scene parameters
from image motion parameters. The algorithm is implemented and tested on a computer system. The pro-
cess of inferring the time-varying geometry of a scene from the corresponding visual motion is carried out
locally, both in space and in time. The reason for this is that it is impractical to represent arbitrary shapes
and motions of surfaces in the scene by a global parameterization scheme. Restriction to local analysis
facilitates working in a smaller parameter space (but with less information, of course). Even this local
analysis is assumed to be preceded by a detection of discontinuities in the visual motion corresponding to
discontinuities in the geometry (distance, orientation, curvature, etc) and the motion (translation, rotation,
acceleration, etc.) of surfaces in the scene. This can, in principle, be achieved by an appropriate modeling
of the visual motion (e.g. requiring the motion field to be described by polynomials of fixed degree up to a
preset tolerance). Having located such discontinuities in the motion field a local analysis is carried out in
small image regions not containing these discontinuities to recover the structure and motion of the
corresponding surfaces in the scene. A patching together of this local three-dimensional information is
necessary to obtain a global description of the scene. The perception of motion from a monocular visual
stimulus is investigated. A computational theory of the interpretation of visual motion caused by the pro-
jection of a moving surface is presented. The formulation of the theory is basically an extension of the ear-
lier formulations of Longuet-Higgins and Prazdny (1980) and Waxman and Ullman (1985). Further, a
computational approach, in the sense defined earlier, is given for the interpretation process. A major por-
tion of this book is devoted to the study of visual motion resulting from rigid motion of objects. Here the
problem is to determine the three-dimensional shape and rigid motion of surfaces from their image motion.
Equations relating the local surface parameters (slopes and curvatures) and motion parameters (translation
and rotation) to the spatial image motion parameters are derived. These equations are solved for planar
surfaces and curved surfaces; in both cases the solution is derived in closed form. The solutions show that,
in general, planar surfaces have two interpretations whereas for curved surfaces the interpretation is
unique. Many theorems concerning the multiplicity of interpretations are proved. This formulation for the
analysis of instantaneous image motion is then extended to the analysis of spatio-temporal image motion.
In this formulation the equations relating the local orientation and motion of a surface and the first order
spatio-temporal image motion derivatives are derived. For this case, again, the solution for the orientation
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and motion is derived in closed form. Further, an interesting case where a camera tracks a point on a mov-
ing surface is solved with the knowledge of the camera’s tracking motion. An extension of this formula-
tion to deal with non-uniform or accelerated motion is described. This extension is illustrated with a sim-
ple example. Finally the formulation for rigid motion is generalized to deal with non-rigid motion. This
again is illustrated with a simple example. This general formulation leads to some new insights into the
intrinsic nature of the image motion interpretation problem. It makes explicit the well known fact that the
general problem of inverting the perspective projection transformation is inherently ill-posed (or under-
constrained), and that additional assumptions about the physical world are necessary to solve the problem.
It gives the minimum number of additional constraints (in the form of assumptions about the scene) neces-
sary to solve the problem. For example, it exposes the fact that the rigidity assumption, the assumption that
objects in the scene are rigid, is a powerful and sufficient constraint that results in a unique interpretation in
most cases. The general formulation serves to address the two fundamental issues: What information is
contained in the image motion field? How can it be extracted? We emphasize here that the approach taken
in this thesis is based on the assumption that the physical phenomena affecting the visual motion,
phenomena such as surface structure, translation, rotation, etc., vary ‘‘smoothly’’, both in space and in
time. However this assumption is not a drawback as long as locations of discontinuities in the image
motion field can be detected. The computational approach developed here has been implemented on a
computer system and tested on a variety of cases to verify the approach. Many experimental results are
included. An important conclusion of this thesis is that an independent perceptual module for visual
motion processing is capable of providing a wealth of information under some natural assumptions. The
study also discloses the limitations of such a module, limitations in the form of assumptions about the
world that are necessary to extract scene information from visual motion. The computational theory of
visual motion perception presented here provides a basis for further investigations. It motivates an inquiry
into the second order theory of the visual motion processing module, i.e. the interaction of this module with
other visual processing modules. It naturally raises certain questions: What types of interactions are neces-
sary? What type of interactions are possible? How can the different modules cooperate to achieve their
goals efficiently and robustly? An important outcome of this work is a computational approach which is
potentially useful in machine vision systems. It provides a uniform representation and a unified algorithm
applicable in a variety of situations. The approach is flexible in that a priori information can be easily
incorporated in the form of additional constraints and it is general enough to be extensible to many situa-
tions not considered explicitly in this study. However, in order to appply the theory developed here to
practical applications, visual motion needs to be measured very accurately. Accurate and robust measure-
ment of visual motion has remained a difficult problem to this day. An overview of the computational
stages in visual motion analysis is given in the next chapter. It defines some essential terminology and sum-
marizes previous work in this area. Chapter 3 gives the formulation of the problem for rigid motion of sur-
faces. Image motion equations that relate the scene parameters and the image parameters are derived.
Chapter 4 deals with solving the image motion equations and the multiplicity of interpretations. Chapter 5
extends the analysis to the temporal domain. Spatio-temporal parameters of image motion are related to
the three-dimensional structure and motion parameters. A number of interesting cases are solved including
a simple case of non-uniform or accelerated motion. Chapter 6 generalizes the formulation to the non-rigid
motion case. Error sensitivity analysis of the computational approach is discussed in Chapter 7.
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CHAPTER 2

Background

Early studies of the role of observer motion in the perception of the visual world have been reported by
perception psychologists (Helmoltz, 1925; Gibson, 1950, 1966). However, it was not until the wide use of
digital computers that a rigorous computational study of this phenomenon was undertaken. In recent years
the computer vision community has addressed extensively the computational aspects of visual motion per-
ception. This has led to significant advances in many respects. A variety of computational approaches have
been developed to measure as well as interpret visual motion. In this chapter we give a brief overview of
the different approaches. In this process we will define some necessary terminology, mention important
issues, and summarize previous work. At the end we discuss the relation of our work to previous work.
The visual stimulus is an intensity distribution on the eye’s retina changing with time. This can be thought
of as a function I (x,y,t) where (x,y) specifies a location on the retina and t denotes time (see Figure 2).
Generally the intensity function I is taken to be available in the form of a succession of images I (x,y,t 0),
I (x,y,t 0+δt), I (x,y,t 0+2δt), .... for small values of δt. Each such image is called an image frame and
the succession of images is called an image sequence. The goal of early visual processing is to recover the
geometry and the time-variation of the scene from I. This is an under-constrained problem because the
imaging process results in the loss of significant information. The depth information along the direction of
view is absent in the image, and in addition the information is ambiguous in that nothing can be said about
changes in the scene which do not cause changes in the image. For example, consider a sphere whose sur-
face has uniform reflectance everywhere. Suppose that the sphere is not translating and the illumination
pattern is not changing with time. Then the intensity variation in the image of the sphere is only due to the
changing surface orientation. In this case a rotation of the sphere about its center does not change the
image and therefore the interpretation is ambiguous with respect to rotation. Another manifestation of this
ambiguity is the ‘‘aperture problem’’ along iso-intensity contours discussed later. As an image provides
only partial information about the scene, general assumptions about the scene are necessary to reconstruct a
description of it from the image. Two assumptions that are usually applied are the rigidity assumption and
the smoothness assumption. The rigidity assumption states that the shapes of objects in the world do not
change with time. The smoothness assumption basically states that in a small space-time window the scene
parameters and the image parameters are analytic and change slowly. In addition, it is assumed that a vio-
lation of this assumption at any point can be detected from the visual motion field. This requirement helps
to demarcate boundaries that enclose regions within which the scene and image parameters are analytic and
vary smoothly. Such boundaries have been termed boundaries of analyticity and the regions enclosed by
them regions of analyticity by Waxman (1984b). Their recovery has been studied by Hildreth (1983), Adiv
(1985a), Wohn (1984), Thompson, Mutch and Berzins (1985), Waxman and Wohn (1986), Wohn and
Waxman (1986), and others. The smoothness assumption limits the number of local scene and image
parameters (i.e. parameters that specify the scene and the image in a small space-time interval) to small
values. These parameters may be coefficients of Taylor series expansions. Relations between these
parameters and I (x,y,t) are used to recover the scene. Previous approaches for this purpose can be
broadly classified into two categories, discrete and continuous; a brief overview of each of these
approaches is given below. In the discrete approach a set of distinct features are detected in the image and
are tracked over time. Examples of such features are points, lines, edges, or regions. Note that point
features corresponding to points in the scene trace out curves in the image space-time domain (x,y,t);
edges corresponding to curves in the scene trace out surfaces, and regions corresponding to surface patches
in the scene trace out solids. The time derivatives of the image ‘‘positions’’ of these features describe their
image motion. The image motion of these features are used to determine the relative positions and motions
of the corresponding features in the world-domain. If the image motions of these features are ‘‘large’’
compared to the temporal sampling rate, then the eye has to solve the correspondence problem, i.e. it has to
establish which feature at one time instant corresponds to which feature at the next time instant. In the
discrete approach, most of the research until recently has concentrated on determining position and motion
by observing the features over a very short image sequence (from only two or three images). In particular,
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point features corresponding to motion of points in the scene have been studied extensively. In this case,
under the assumption of smoothness of motion, the image motion of a set of points
(xi ,yi) = (ai(t),bi(t)) for i =1,2,..,n can be parameterized by the Taylor series coefficients of ai and
bi . A number of important results have been established for this case. Hay (1966) obtained the first
known results for coplanar points moving rigidly. He showed that three successive image frames of four
points uniquely determine their relative positions and motion. He also showed that two successive image
frames of such points, in general, give rise to a two-fold ambiguity. Tsai and Huang (1980) arrived at simi-
lar conclusions independently. Tsai and Huang (1984) also obtained important results for points in an arbi-
trary configuration undergoing rigid body motion. They showed that, in general, just seven points in only
two images (taken in a short time interval) are sufficient to determine their motion and relative positions.
Longuet-Higgins (1981) showed that, given two views of eight points, their rigid motion and relative posi-
tions can, in general, be determined uniquely. Ullman (1979) showed that, for orthographic projection,
three views of four points are sufficient to determine their positions up to a reflection. Necessary condi-
tions for the recovery of relative positions and motions of points under orthographic projection have been
derived recently by Aloimonos and Brown (1986). Also, Hoffman and Bennet (1985) have obtained many
important results for orthographic projection. Recent work in this area has concentrated on obtaining
robust solutions using more image frames and/or more points; e.g. Broida and Chellappa (1986a,b), Shariat
(1986), Sethi and Jain (1987). Progress has also been made in stereo-motion fusion (Aloimonos and
Rigoutsos, 1986; Aloimonos and Basu, 1986). For a review of this area see Aggarwal (1986). A valuable
collection of recent papers on this and related topics in time-varying image analysis has been compiled by
Martin and Aggarwal (1988). Line features corresponding to straight lines in the world domain have also
been used (Liu and Huang, 1986; Mitiche, Seida, and Aggarwal, 1986; Spetsakis and Aloimonos, 1987).
For a planar image the lines in the image domain can be specified by ai(t)x+bi(t)y+ci(t)=0 in a Carte-
sian coordinate system. For smooth motion, the Taylor coefficients of ai , bi and ci describe the image
motion. Liu and Huang (1986) have shown that, using six line correspondences over three image frames,
general rigid body motion can be recovered. Mitiche, Seida, and Aggarwal (1986) have used the conserva-
tion of the angular configuration between lines as a rigidity constraint and shown that four line correspon-
dences in three views are sufficient to determine the parameters of the lines and their rigid body motion.
Spetsakis and Aloimonos (1987) present closed-form solution to this problem. Recently edge features in
(x,t) or (y,t) space have been used to recover the geometry of the scene (Bolles and Baker, 1985; Mari-
mont, 1986). The observer motion is assumed to be known and restricted to pure translation in a plane. A
dense sampling of the I (x,y,t) function is used, thus avoiding the correspondence problem. In comparison
with other approaches, this approach is conceptually different in that the edge features are observed in a
two-dimensional domain with one dimension being time and the other being space. In this case first the
image velocity field or the image flow is determined. Image flow is a two-dimensional velocity field defined
over the retina (or image plane in the case of a camera). This velocity field is the result of projecting onto
the retina the instantaneous three-dimensional velocities of points on visible surfaces in the scene (see Fig-
ures 3). Image flow is also referred to as optical flow in the literature. An example of a scene and an image
flow field generated by it are shown in Figure 4a and Figure 4b. Note that image flow is dependent only on
the geometry of the scene and the motion of surfaces in the scene. In particular it does not depend on I.
Image flow is determined by one of two methods: either by using partial derivatives of the intensity distri-
bution I (x,y,t) or by using features of the intensity distribution. We will discuss each of these methods
briefly. Image flow can be estimated from I under certain assumptions. At any point on the retina, let
(u,v) denote the image velocity vector, (Ix ,Iy) denote the spatial intensity gradient vector, and It denote
the partial derivative of intensity with respect to time. Then, assuming that the intensity of the image of a
scene point remains unchanged with time, the following relation can be derived (Horn and Schunck, 1981):

(2.1)(Ix ,Iy).(u,v) = −It .

This is the well known optical flow equation. Let n̂n̂ denote a unit vector along the intensity gradient
(Ix ,Iy). Then the optical flow equation can be written as

(2.2)n̂n̂ .(u,v) =
√ddddIx

2+Iy
2

− Ithhhhhhh .

In this expression all quantities except (u,v) are known (i.e. obtainable from I). Here the left hand side
represents the magnitude of the component of image velocity along the spatial intensity gradient. Let the
component of image velocity along the spatial intensity gradient be denoted by vvn , i.e.
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(2.3)vvn = (n̂n̂ .(u,v) ) n̂n̂.

vvn at any point can also be thought of as the image velocity component normal to the iso-intensity contour
through that point. Therefore, effectively, the optical flow equation implies that at any point only that com-
ponent of image velocity normal to the iso-intensity contour through that point can be determined (see Fig-
ure 5). The other orthogonal component tangential to the iso-intensity contour cannot be determined. This
indeterminacy of one of the image velocity components is called the aperture problem (see Figure 6). This
is an inherent limitation and therefore heuristic assumptions are necessary to measure both components of
image velocity. Usually a smoothness constraint in the form of the minimization of a functional is intro-
duced (Horn and Schunck, 1981; Hildreth, 1983). Waxman and Wohn (1985) impose a polynomial model
on (u,v) for this purpose. Additional related work on this topic are (Fennema and Thompson, 1979; Nagel,
1983a,b; Anandan, 1986). A Fourier domain method for image flow extraction is found in Fleet and Jep-
son (1985), Watson and Ahumada (1985), and Heeger (1987). Image flow can be estimated by observing
spatial image features over time. Waxman and Wohn (1985) have suggested the use of image contours that
correspond to surface markings in the scene. These contours should typically span a field of view of a few
degrees. Suppose that one such contour is described by a set of parameters ai for i=1,2,... at some instant
of time. Then the way these parameters change with time due to a deformation of the contour can be used
to estimate image flow in a small neighborhood around the contour. Here also a smoothness constraint on
the image flow (e.g. a polynomial model for the image flow) is necessary. In general the number of param-
eters that specify a contour is too large. In order to overcome this problem Kanatani (1985) has suggested
using feature measures of these contours instead of the parameters that specify them. In principle, arbitrary
image features can be used to estimate image flow. An instantaneous description of these features is
specified by a set of parameters which satisfy a certain predicate and the change in these parameters with
time may be used to estimate image flow. In the last two subsections we have dealt with computing image
flow. Having done this, the next step is to find the scene motion and its geometry from this image flow.
Here the relations between the scene parameters and the image flow parameters are derived and the result-
ing equations are solved. Deriving the equations happens to be easy, but solving them is non-trivial as the
equations are non-linear. This thesis is primarily concerned with this step. Early studies of this stage dealt
with restricted situations such as pure translation, pure rotation, etc. of the observer in a stationery environ-
ment (Gibson, Olum, and Rosenblatt, 1955; Lee, 1974; Clockskin, 1978; Bruss and Horn, 1983; Jain,
1983). Nakayama and Loomis (1974) showed how depth contours may be extracted from a representation
of the retinal velocity field induced by motion of the observer. The first mathematical treatment of the gen-
eral rigid body motion case was by Longuet-Higgins and Prazdny (1980). They showed that, at any instant
of time, using up to second order spatial derivatives of the image flow, local orientation and rigid motion of
a curved surface patch could, in principle, be determined. Waxman and Ullman (1985) used a kinematic
approach to image flow analysis. Using a new representation for the image flow they showed that local
geometry (slopes and curvatures) and motion could be recovered for both planar and curved surfaces.
They also showed that there exist a class of situations for which there are multiple interpretations. The
approach taken here is mainly based on these last two approaches. Recently, Longuet-Higgins (1984), Sub-
barao and Waxman (1985), and Kanatani (1985) have independently obtained closed-form solutions to
planar surfaces in motion. Subbarao (1986b) used spatio-temporal derivatives of image flow and derived
closed-form solutions for the structure and motion parameters. More recently, Waxman, Kamgar-Parsi,
and Subbarao (1986), have obtained closed-form solutions for curved surfaces based on the solution of
planes. A direct solution method and a complete analysis of multiplicity of interpretations for curved sur-
faces was given by Subbarao (1986b). Some related results are also reported in Negahdaripour (1986). Of
the many generic approaches mentioned above, no single approach is adequate for all situations. Each
approach is more suitable than others under appropriate circumstances. For example, if the scene has many
easily identifiable feature points or lines, then the discrete approach is better. If there are no easily
identifiable feature points, the surfaces in the scene are smooth, and have no texture, then the continuous
approach based on intensity derivatives is better. If the surfaces in the scene are smooth and have dense
texture patterns in the form of surface markings then the continuous approach based on features is better.
However, we observe that image flow is fundamental to all approaches. In the discrete approach a very
sparsely sampled image flow is used and in the continuous approach a dense image flow is used. Image
flow is dependent solely on the geometry of the scene and the motion of surfaces in the scene; it is indepen-
dent of illumination, reflectance, or the physics of light. This study concentrates on interpreting image
flow. It is fundamentally a study of the time-varying projective geometry of surfaces moving through
space (Waxman and Wohn, 1986). The problem is to invert the perspective projection transformation to
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recover the scene. Since the primary goal of this thesis is to explore what information can be extracted
from a time-varying image, for the most part correct image flow is assumed to be available. This thesis
extends previous work in many ways. Some important extensions are deriving analytic solutions for planar
surfaces (Chapter 4), proof of multiplicity of interpretations for curved surfaces (Chapter 4), using both
spatial and temporal derivatives of image flow for the interpretation process (Chapter 5), and generalizing
the problem to arbitrary surface shapes and transformations under the smoothness assumption (Chapter 6).
In addition to these extensions, many relevant previously known results have been obtained in the new
approach (e.g. analytic solutions to rigid curved surfaces, Chapter 4). Therefore a major outcome of this
work is a general theoretical framework and a unified computational approach.
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CHAPTER 3

Formulation

In this chapter first we give an overview of the computational theory and the computational approach
presented in this thesis. Then we describe the imaging geometry and formulate the problem for the rigid
motion case. This part (i.e. the imaging geometry and the formulation for rigid motion) is basically similar
to the formulation of Longuet-Higgins and Prazdny (1980) and Waxman and Ullman (1985). However the
significance of this part lies in the details of the formulation. With minor modifications it can be extended
to a more general case (e.g. non-rigid motion). For reasons discussed in Section 1.4, we restrict our formu-
lation to a small field of view over a short period of time. Further, in this field of view and period of time,
the following are assumed to be ‘‘smooth’’ and changing slowly (the smoothness assumption; see Section
2.2): (i) the shape of the visible surface patch, (ii) the transformation of the surface patch, and (iii) the
visual motion field. The shape of the visible surface patch can be described by its distance to the observer,
orientation with respect to the observer, curvatures, and higher order variations along the center of field of
view. These are the surface parameters or the structure parameters. The transformation of the surface
patch during a short period of time is described by its rigid body motion and shape deformation during that
time. Measures of surface motion and deformation are the transformation parameters. The structure
parameters and the transformation parameters together comprise the scene parameters. The scene parame-
ters give a local description of the scene. The visual motion or image flow in the small space-time interval
is described by the initial image velocity and its spatial and temporal derivatives along the center of field of
view. These are the image flow parameters. Therefore, for the problem of visual motion interpretation, the
input entities are the image flow parameters which are to be measured from the changing image; the output
entities are the scene parameters which are to be obtained from the image flow parameters. In order to
obtain the scene parameters from the image flow parameters we must first know how they are related. We
will see in Chapter 6 that, in general, the relations between the scene parameters and the image flow param-
eters form an under-constrained system of equations. Therefore, in addition to the relations between the
scene parameters and the image flow parameters we need to use additional constraints on the scene to
obtain the scene parameters. One such constraint that is of practical importance is the rigidity assumption
(see Section 2.2). We first formulate our theory for some interesting rigid motion cases. For these cases we
derive the equations relating the scene parameters to the image flow parameters, describe a method of solv-
ing these equations, and state explicitly the conditions for the presence of unique and multiple solutions.
For cases where an assumption other than the rigidity assumption is used, we give clear directions as to
how one may proceed to formulate and solve the problem. This is illustrated with a simple example. These
results constitute our computational theory. The computational approach presented here is based on the
computational theory outlined above. The representation for the input and the output are Taylor coefficients
of analytic functions. A stepwise computational algorithm is given for each of the cases considered here.
The algorithm is quite straightforward and usually involves finding the roots of a low order polynomial
(e.g. a cubic equation). This algorithm is implemented on a computer system and some interesting numeri-
cal examples where multiple solutions occur are included here. A first approximation to the human eye is a
pin-hole camera. For the purpose of this study we assume a pin-hole camera with a planar projection screen
(see Figure 7). A pin-hole camera with a curved projection screen corresponding to the eye’s retina would
be closer to reality, but the screen geometry is entirely a matter of convenience and does not compromise
the generality of the approach. Note that there is a one to one correspondence between an image on a
curved screen such as the eye’s retina and an image on a planar screen. The camera model (adopted from
Longuet-Higgins and Prazdny, 1980) is illustrated in Figure 8. (In this model, without loss of generality,
the projection plane is taken to be in front of the pin-hole to avoid dealing with inverted images.) All the
terms defined previously can be defined for this camera model by replacing ‘‘eye’’ by ‘‘camera’’ and
‘‘retina’’ by ‘‘image plane’’. Henceforth, all our references to key terms refer to this camera model unless
stated otherwise. The choice of the planar screen geometry restricts our analysis to the field of view along
the optical axis. However, the image flow in a field of view not along the optical axis can be analyzed by
first projecting the image velocities onto a suitable plane perpendicular to the field of view (see Figure 9).
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This projection process is quite straightforward (Kanatani, 1986). In the camera model, the origin of a
Cartesian coordinate system OXYZ forms the center of projection (corresponding to ‘‘pin-hole’’ or optical
center) of the camera. The Z-axis is aligned with the optical axis and points in the direction of view (or
line of sight). The image plane is at unit distance from the origin perpendicular to the optical axis. The
image coordinate system oxy on the image plane has its origin at (0,0,1) and is aligned such that the x and
y axes are, respectively, parallel to the X and Y axes. In this section and the next chapter we deal with the
instantaneous image flow due to rigid motion of surfaces. Later we extend our formulation to progressively
more complex cases. Let the relative motion of the camera with respect to a rigid surface along the optical
axis be described by translational velocity (VX ,VY ,VZ) and rotational velocity (ΩX ,ΩY ,ΩZ) around the
origin. Due to the relative motion of the camera with respect to the surface, a 2D image flow is created by
the perspective image on the image plane. At any instant of time, a point P on the surface with space coor-
dinates (X, Y, Z) projects onto the image plane as a point p with image coordinates (x, y) given by

(3.1a,b)x = X / Z and y = Y / Z .

If the position of P is given by the position vector RR(X,Y,Z) then its instantaneous velocity (X
.
, Y

.
, Z

.
) is

given by UU = −(VV + ΩΩ × RR). Therefore we have

(3.2a)X
.

= −VX − ΩY Z + ΩZ Y ,

(3.2b)Y
.

= −VY − ΩZ X + ΩX Z ,

(3.2c)Z
.

= −VZ − ΩX Y + ΩY X .

The instantaneous image velocity of point p can be obtained by differentiating equations (3.1a,b):

(3.3a,b)x
.

=
Z
X
.

hh −
Z
Xhh

Z
Z
.

hh and y
.

=
Z
Y
.

hh −
Z
Xhh

Z
Z
.

hh

In the above two expressions we substitute for the appropriate quantities using relations (3.2a-c,3.1a,b) to
obtain

(3.4a)x
.

= u =
I
K
L
x

Z

VZhhh −
Z

VXhhh
M
N
O
+ [xy ΩX − (1 + x 2) ΩY + y ΩZ ] and

(3.4b)y
.

= v =
I
K
L
y

Z

VZhhh −
Z

VYhhh
M
N
O
+ [(1 + y 2) ΩX − xy ΩY − x ΩZ ] .

These equations define the instantaneous image velocity field, assigning a unique two-dimensional velocity
to every point (x, y) on the surface’s image. Note that the image velocity at a point (x, y) (given by
equations (3.4a,b)) in the image domain is due to the world velocity of a point (xZ, yZ, Z) in the world
domain. The value of Z is determined by the actual surface. Suppose that the visible surface is described
by Z = f (X, Y) in our camera-centered coordinate system; then, assuming that the surface is continuous
and differentiable, a Taylor series expansion of f can be used to describe a small surface patch around the
optical axis:

(3.5)Z = Z 0 +ZX X +ZY Y +
2
1hh ZXX X 2 +ZXY X Y +

2
1hh ZYY Y 2 +O3 (X, Y)

for Z 0 > 0 . In the above expression, Z 0 is the distance of the surface patch along the optical axis, ZX
and ZY are the slopes with respect to the X and Y axes, ZXX , ZYY , ZXY are the curvatures, and the last
term denotes higher order terms of the Taylor series with respect to X and Y. Using the method given in
Appendix A the surface can be expressed in terms of the image coordinates of the image points:

(3.6)Z(x,y) = Z 0

I
J
L
1−ZXx−ZYy−

2
1hhZxxx 2−Zxyxy−

2
1hhZyyy 2−O 3(x,y)

M
J
O

−1

where

9



(3.7a-c)Zxx = Z 0 ZXX , Zxy = Z 0 ZXY , Zyy = Z 0 ZYY

and O 3(x, y) denotes higher order terms. Note that the curvatures are scaled by the distance along the
optical axis according to relations (3.7a-c) and therefore absolute curvatures are not recoverable. The
slopes ZX , ZY and the scaled curvatures Zxx , Zyy , Zxy will be collectively referred to as the structure
parameters. Substituting for Z from equation (3.6) into equations (3.4a,b) we obtain

(3.8a)u(x,y)=
I
J
L
x

Z 0

VZhhh−
Z 0

VXhhh
M
J
O

I
J
L
1−ZXx−ZYy−

2
1hhZxxx 2−Zxyxy−

2
1hhZyyy 2−O 3(x,y)

M
J
O

+ R
QxyΩX−(1+x 2)ΩY+yΩZ

H
P,

(3.8b)v(x,y)=
I
J
L
y

Z 0

VZhhh−
Z 0

VYhhh
M
J
O

I
J
L
1−ZXx−ZYy−

2
1hhZxxx 2−Zxyxy−

2
1hhZyyy 2−O 3(x,y)

M
J
O

+ R
Q(1+y 2)ΩX−xyΩY−xΩZ

H
P.

In the above equations, the distance Z 0 between the surface and the camera along the optical axis always
appears in a ratio with the translational velocity VV and therefore is not recoverable. Therefore, we adopt
the following notation in presenting the image flow equations.
Translation parameters:

(3.9a-c)Vx =
Z 0

VXhhh , Vy =
Z 0

VYhhh , Vz =
Z 0

VZhhh for Z 0 > 0 .

The three components of rotation ΩX , ΩY , ΩZ and the three components of scaled translation Vx , Vy ,
Vz will be collectively referred to as the motion parameters. Now, since the surface is assumed to be
smooth (i.e. continuous and differentiable) the instantaneous image velocity in a small neighborhood
around the image origin may be expressed in the form of a Taylor series:

(3.10a)u(x,y)=u 0+uxx+uyy+
2
1hh uxxx 2+uxyxy+

2
1hh uyyy 2+O 3(x,y) and

(3.10b)v(x,y)=v 0+vxx+vyy+
2
1hh vxxx 2+vxyxy+

2
1hh vyyy 2+O 3(x,y)

where the subscripts indicate the corresponding partial derivatives evaluated at the image origin and
O 3 (x, y) denotes higher order terms of the Taylor series. In the above expression, the coefficients of the
Taylor series expansion, u 0 , v 0 , ux , . . . , etc., will henceforth be referred to as the image flow parame-
ters. From the image velocity equations (3.8a,b), we can derive the following equations which relate the
image flow parameters up to second order at the image origin (i.e. x =y =0) to the structure and motion
parameters:

(3.11a,b)u 0 = − Vx − ΩY , v 0 = − Vy + ΩX ,

(3.11c,d)ux = Vz + Vx ZX , vy = Vz + Vy ZY ,

(3.11e,f)uy = ΩZ + Vx ZY vx = − ΩZ + Vy ZX ,

(3.11g,h)uxx = −2 Vz ZX + Vx Zxx − 2 ΩYuxy = −Vz ZY + Vx Zxy + ΩX ,

(3.11i,j)uyy = Vx Zyy , vxx = Vy Zxx ,

(3.11k,l)vxy = −Vz ZX + Vy Zxy − ΩY and vyy=−2VzZY+VyZyy+2ΩX .

These equations were originally derived by Longuet-Higgins and Prazdny (1980). The method we have
described to derive the above equations can also be used to derive the equations relating the third and
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higher order image flow parameters to the structure and motion parameters. However we stop at second
order as we have a sufficiently constrained system of equations (twelve equations in eleven unknowns).
We will say more about this in the next section. For the rigid motion case, equations (3.11a-l) will be
referred to as the image flow equations. The image flow equations (3.11a-l) form twelve non-linear alge-
braic equations in eleven unknowns (five structure parameters and six motion parameters). Since the sys-
tem of equations is overdetermined it is found that, in general, the solution is unique, but since the equa-
tions are non-linear, in some exceptional situations multiple solutions do occur. In these equations we
observe that none of the rotational components appear in the non-linear terms. All the non-linear terms are
formed by the product of a structure parameter and a translation component. Further, all structure parame-
ters appear only in products with the translation parameters. Therefore, it is translation through space that
reveals surface structure. If there is no translation, all the structure parameters remain undetermined. Also,
a curvature parameter always appears in product with a component of translation parallel to the image
plane. Therefore, if there is no translation parallel to the image plane the curvatures remain undetermined
by image flow parameters up to second order. There are also many situations where some of the image
flow equations become dependent in which case multiple solutions occur. For example, if all the curvatures
are zero (i.e. the surface is planar), or if the optical axis, direction of translation and surface normal all lie
in a plane, then there are in general two solutions. A systematic analysis of all the different cases is given
in the appendices. The solution in general cases and a summary of the nature of the solutions are given in
the following chapters. Notice that measuring the image velocity derivatives up to second order (given by
the coefficients of the Taylor series in equations (3.10a,b)) is adequate since we obtain a sufficient number
of constraints (twelve) on the eleven unknowns. On the other hand spatial derivatives up to only first order
are inadequate since the first six image flow equations give only six equations involving eight unknowns.
Since our analysis is local, we need to solve for the structure and motion parameters separately for each
small image neighborhood. However, interestingly, for planar surfaces eight image motion parameters
specify the image motion field globally (e.g. see Subbarao and Waxman, 1985). An intuitive explanation
of this is that the motion parameters are constant everywhere in both cases, but whereas the structure
parameters for a plane constituting the two slopes are constant everywhere, for curved surfaces they
change.

‘‘This analysis (of Longuet-Higgins and Prazdny, 1980) is another example of how com-
putational theory can help empirical investigation. By solving the mathematics of the
problem-- and this was surely long overdue-- Longuet-Higgins and Prazdny have pro-
vided a framework within which to enquire whether we humans actually do make use of
optical flow, as Gibson suggested, and if we do, how.’’

-David Marr (1982)
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CHAPTER 4

SOLVING THE IMAGE FLOW EQUATIONS

‘‘....... I know how slippery they (the image flow equations) are!’’
-H.C. Longuet-Higgins1

In this chapter we present closed-form solutions to the image flow equations for both planar and curved
surfaces. For this purpose we assume that all the structure and motion parameters are finite. Detailed
derivations of these solutions and the solutions in some degenerate cases are given in Appendices B,C, and
F. In solving for the structure and motion parameters from the given image motion parameters, we use a
new parameterization of the solution space; we use a trigonometric substitution which introduces two new
variables r and θ which respectively correspond to the (signed) magnitude and direction of the translational
component parallel to the image plane. The relation of the translation parameters (Vx, Vy ,Vz) to r, θ is
shown in Figure 10. This particular representation of the problem simplifies the task of solving the prob-
lem and proving many uniqueness results. For all rigid motion cases, we can first solve for r and θ by
simultaneously solving a small set of equations (typically three) and from these we can compute the other
unknowns. An important advantage of this method is that the set of relations used to compute the structure
and motion parameters from r and θ are the same in the many different cases considered here. The only
difference is in the expressions we use to solve for r and θ. Therefore, the computational approach given
here forms a general method useful in many different cases. In solving the image flow equations we note
that the first six equations (3.11a-f) relate the first-order spatial derivatives of image flow to the structure
and motion parameters. These six equations do not contain the curvature terms and therefore form six
equations in eight unknowns. The solution of these equations in terms of r and θ is derived in Appendix B
(Theorem 5). Using the notation

(4.1a,b)s ≡ sinθ , c ≡ cosθ for −π/2 < θ ≤ π/2 ,

(4.2a,b)a 1 = uy+vx , and a 2 = ux−vy

the solution is given by

(4.3a,b)Vx ≡ rc, Vy ≡ rs,

(4.3c,d)Vz = uxs 2+vyc 2−a 1cs, ΩZ=uys 2−vxc 2+a 2cs,

(4.3e,f)ZX = (a 1s+a 2c)/r, ZY = (a 1c−a 2s)/r,

(4.3g,h)ΩX = v 0+rs, ΩY = −(u 0+rc),

The above relations give an explicit solution for the orientation and motion in terms of r and θ. Therefore
once we have solved for r and θ we can solve for the two slopes and all the motion parameters. Notice that
Vz and ΩZ are given only in terms of θ. Therefore they can be determined from θ alone. This observation
will be important later on. In order to solve for r and θ we need additional constraints. In the next two
subsections we will consider solving for r and θ for planar and curved surfaces using the second order spa-
tial derivatives of the image flow (i.e. equations 3.11g-l). The image flow equations are non-linear and
therefore many degenerate cases are possible. Therefore we solve these equations systematically by con-
sidering all possibilities. However we shall not do so in this chapter. Here we present only the main ideas
that underlie our approach; a thorough treatment is given in Appendix B. The solutions of the image flow
equations in three degenerate cases are given in Appendix B. These cases are: (i) translation is zero, (ii)
translation parallel to the image plane is zero, and (iii) the surface is planar and frontal. In the remainder of
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 Personal communication.
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this chapter we shall preclude the occurence of these cases. One case of special interest is when the sur-
faces in the field of view are planar or nearly planar. This is often true in small fields of view. But if a large
surface is known to be planar we shall see later that it is not necessary to restrict our analysis to small fields
of view; the image flow in the entire field of view spanned by that surface can be analyzed as a whole. The
solution of the image flow equations for planar surfaces was originally obtained independently by
Longuet-Higgins (1984), Kanatani (1985), and Subbarao and Waxman (1985), each by a different
approach. In this section we rederive the results of Subbarao and Waxman (1985) in our new approach.
For planar surfaces the equations involving the second order spatial derivatives of the image flow are
obtained by setting all the curvature terms (i.e. Zxx ,Zyy and Zxy ) to zero in equations (3.11g-l). This
results in the following constraints:

(4.4a,b)vxy = −Vz ZX − ΩY , uxy = −Vz ZY + ΩX ,

(4.4c-f)uxx = 2 vxy , vyy = 2 uxy , uyy = 0 , vxx = 0 .

We see that only the first two equations involve the structure and motion parameters and therefore are use-
ful in solving for r and θ. The last four equations simply give constraints for the surface to be planar.
Further it is easy to show that for planar surfaces all third and higher order spatial derivatives of image flow
are identically zero. Therefore the image flow of a planar surface is specified globally by just eight parame-
ters (two zeroth order, four first order, and two second order flow parameters); in contrast, for general
curved surfaces piecewise quadric surface approximation is used and twelve parameters specify the image
flow locally. Relations (4.4a,b) can be used to solve for r and θ. Details of the solution method are given
in Appendix C. Equations (4.4a,b) give the following constraints on θ and r:

(4.5a)r 2c − (vxy−u 0) r − Vz (a 1s+a 2c) = 0 ,

(4.5b)r 2s − (uxy − v 0) r − Vz (a 1c−a 2s) = 0 .

In these relations Vz can be expressed in terms of θ (using relation (4.3c)) yielding two equations in the
two unknowns r and θ. Note that equations (4.5a,b) are quadratic in r. Equating the roots of these qua-
dratic equations we obtain an equation in θ alone (see equation (C25) in Appendix C). Using this equation
we can easily solve for θ by simply searching in the interval (−π/2, π/2]. From θ, r is obtained as the
common root(s) of the quadratic equations (4.5a,b). In general, it is shown (Theorem 8, Appendix C) that
there are two solutions for θ, and corresponding to each of these there is one solution for r (Theorem 4,
Appendix D) given by

(4.6)r = Vz (vxy−u 0)s − (uxy−v 0)c

(a 1cos2θ − a 2sin2θ)hhhhhhhhhhhhhhhhhhh .

In the above method we solved for θ numerically by searching in the interval (−π/2, π/2]. For any given
precision we can carry out this search in a constant amount of time (because the search space is finite).
However there is another method by which we can obtain an analytic solution for θ. Here we first solve for
the velocity Vz along the line of sight and then solve for θ. In Appendix C (Theorem 1) it is shown that
Vz can be determined by solving a cubic equation. Also it is shown that all three roots of the cubic equa-
tion are real (Lemma 1, Appendix C) and that Vz is the middle root (Theorem 4, Appendix C). This root
can be determined utilizing the analytic expressions for the roots of a cubic equation (Theorem 5, Appen-
dix C). A numerical method may also be used for computational purposes. Using relation (4.3c) we can
derive the following equation for θ in terms of Vz :

(4.7)(ux−Vz) tan2θ − a 1tanθ + (vy−Vz) = 0.

This is a quadratic equation in tanθ and therefore can be easily solved to obtain θ. Since the equation is
quadratic, there are in general two solutions for θ. We have seen that the relations (4.3c,d) for the velocity
of approach along the line of sight Vz and the rotational velocity around the line of sight ΩZ are functions
of θ only; they do not depend on r. Therefore relations (4.3c,d) can be used to establish upper and lower
limits on Vz and ΩZ . In particular, it is shown (Theorem 6, Appendix C) that the maximum and minimum
values of Vz , ΩZ are
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(4.8a)Vz
(max /min) =

2

ux+vyhhhhhh ±
2

√ddddda1
2 +a2

2
hhhhhhhh ,

(4.8b)ΩZ
(max /min) =

2

uy−vxhhhhhh ±
2

√dddddddddddd(uy+vx)2+(ux−vy)2
hhhhhhhhhhhhhhhhhh .

Note that all terms on the right hand side of the above expressions are only first order flow parameters; no
second or higher order parameters are involved. Further, the above limits hold irrespective of whether the
surface is planar or curved. This is an interesting observation for the following reason. Biological vision
systems have been found to be very quick in responding to approaching objects (which can potentially hurt
the organism). This has been called the ‘‘looming effect’’ (Schiff, Caviness, and Gibson, 1962). In this
context, an implication of the above result is that first order flow parameters are sufficient to determine the
maximum value of the velocity of approach; second or higher order parameters, whose estimation requires
higher quality images and more computation, are not necessary. Thus, an organism can, in principle,
quickly evaluate the potential danger of an approaching object from only coarse information. This possi-
bility, irrespective of the shape of the object, and even while the organism is rotating, is by itself interest-
ing. (This observation may also be useful for obstacle avoidance in a robot navigation system.) In addi-
tion, the knowledge of an interval in which Vz lies may be useful in determining its actual value. For
example, in the case of moving planar surfaces, Vz is obtained by solving a cubic equation; if an interval in
which Vz lies is known in this case, then a simple binary search can be used to solve the cubic equation.
Alternatively such information can be used to guess an initial solution for a numerical solution method. For
the special case where an observer is moving in a static environment, the above result has an interesting
consequence. (Examples of such a case are flying bees, birds, and helicopters.) In this case, by determin-
ing the bounds on the translational and angular velocities along some three mutually orthogonal viewing
directions, bounds on the over all translational and rotational velocities of the observer can be determined
from only first order image flow derivatives. In the image domain the bounds can be expressed in terms of
the three first order differential invariants of image flow: divergence, curl, and shear magnitude. The
divergence of the image flow corresponds to the isotropic expansion (contraction) of an image neighbor-
hood (Figure 11a,b). The curl represents the rigid body rotation of the image neighborhood (Figure 12a,b).
And the shear magnitude is a measure of the shape deformation of the image neighborhood (Figure 13a,b).
These quantities are invariant with respect to the orientation of the image axes. Therefore they are called
differential invariants. Analysis of image flow using such an invariant representation has been done by
several researchers in the Computer Vision area (Koenderink and Van Doorn, 1975, 1976; Waxman and
Ullman, 1985; Kanatani, 1986). It is shown in Appendix C that the bounds on Vz and ΩZ can be expressed
as

Maximum/Minimum approach velocity

(4.8c)=
2
1hh I

LDivergence ± Shear magnitudeM
O ,

I
J
Laround the viewing direction

Maximum/Minimum angular velocityM
J
O

(4.8d)=
2
1hh I

L−Curl ± Shear magnitudeM
O.

Relation (4.8c) is illustrated diagrammatically in Figure 14. The bounds can also be expressed in terms of
invariant quantities in the scene domain. Denoting the translation parallel to the image plane by VV 1 (as in
equation (4.15a)) and surface gradient vector by PP (as in equation (4.16b)), the following relations are
derived in Appendix C:

(4.8e)Vz
(max /min) = Vz +

2
1hh I

LVV 1
.PP ± cVV 1 c cPP cMO and
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(4.8f)kk ΩZ
(max /min) = kk ΩZ+

2
1hh I

LVV 1×PP ± kk cVV 1 c cPP cMO ,

where kk is a unit vector along the Z −axis. There does not appear to be a straightforward interpretation of
the above relations although they have a pleasing form. Koenderink and Van Doorn (1975) discuss the dif-
ferent types of image flows generated depending on the eigen values of the velocity gradient tensor (see
Appendix C) of the image flow. Their work is directly relavent to the interpretation of the above equations.
The number of interpretations of an image flow field is determined by the number of solutions to (θ , r)
obtained by solving equations (4.5a,b). It is shown (Theorem 4, Appendix D) that there are in general two
solutions to equations (4.5a,b), and among these two solutions there is always one which corresponds to the
correct physical interpretation. Suppose that the quantities corresponding to the correct interpretation are
denoted by appending ‘‘0’’ to their subscripts. Then in Appendix D it is shown that, in terms of the actual
physical interpretation, the two solutions to (θ,r) are

(4.9a,b)(θ0 , r 0), (θ′0 , −Vz 0 k 0)

where θ′0 , k 0 are such that (see Figure 15)

(4.10a,b)ZX 0 = k 0 cosθ0 ′ and ZY 0 = k 0 sinθ0 ′ .

Note that r 0 and θ0 are the magnitude and direction respectively of the translation vector (Vx 0 ,Vy 0)
parallel to the image plane whereas k 0 and θ′0 correspond respectively to the magnitude and direction of
the surface gradient vector (ZX 0 ,ZY 0). Alternatively, k 0 and θ′0 can be thought of as measures of,
respectively, the slant and tilt of the surface. (Slant is the angle by which the surface dips away from the
frontal plane, and tilt is the direction in which the dip takes place.) Therefore, the two solutions for (θ,r)
are such that one corresponds to the translation vector parallel to the image plane and the other corresponds
to the surface gradient vector scaled by the translation component along the line of sight. Thus, in general,
an instantaneous image flow of a planar surface has two interpretations. Further, given one interpretation
the other interpretation can be obtained using relations (4.10a,b). There are two exceptions to the two-fold
ambiguity of interpretation. The first is when there is no translation along the line of sight, i.e. Vz = 0. In
this case, from the solution (4.9b), we see that the spurious solution for r becomes zero. Since r =0 is ruled
out due to previous consideration of degenerate cases, we get the unique solution (4.9a) for (θ,r). The
second exception is when the direction of translation is parallel to the surface normal (A general case of the
physical situation is shown in Figure 16.). In this case it is easy to show that θ0=θ′0 and r 0= −Vz 0k 0 .
Therefore the two solutions (4.9a,b) merge into one, resulting in a unique interpretation.
We have seen that the instantaneous image flow of a planar surface has in general two interpretations. This
ambiguity of interpretation may be resolved by using additional information. Here we consider two
sources of information which may aid this process. First is the image flow of a second planar surface in the
scene which is rigid and stationary with respect to the first one (e.g. two faces of a polyhedron). In this
case, for the spurious solutions the orientations of the two surfaces are the same and the rotation parameters
are, in general, different (Theorem 1, Appendix E). These solutions are not acceptable because different
surfaces in the scene usually have different orientations and should have the the same rotation parameters
as the surfaces are stationary with respect to each other. We call this the spatial consistency requirement.
For resolving the ambiguity in this manner we need to first segment the image flow field into regions
corresponding to different surfaces in the scene. Then the image flows of different surfaces are interpreted
separately. The second source of information we consider for resolving the ambiguity is the change in the
image flow after a short time interval. Here we require that the interpretation of the image flow at one time
instant should be consistent with that at an instant a short time later. For example, we require that the orien-
tation of the surface determined from the image flow at a given instant should be consistent with the orien-
tation and rotation determined from the image flow a short time earlier. We call this the temporal con-
sistency of solutions. It is shown in Appendix E (Theorem 3 and Figure 20) that this requirement is in gen-
eral sufficient to single out the unique interpretation corresponding to the physical world. For curved sur-
faces the second spatial derivatives of the image flow depend on their curvatures. Therefore use of second
order image flow parameters to solve for r and θ introduces the three curvatures as additional unknowns.
Thus we need at least five more equations to solve for all the unknowns. However, we shall use all the six
equations which relate the six second order flow parameters to the structure and motion parameters. Hav-
ing previously considered some degenerate cases and the planar surface case, in the remaining part of this
chapter we preclude the possibility of these cases. This in effect implies that we are dealing only with
cases where the surface is curved (i.e. at least one of the curvatures is non-zero) and the translation parallel
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to the image plane is non-zero. For curved surfaces, a formulation and a solution method were originally
proposed by Longuet-Higgins and Prazdny (1980). However, their method cannot be used if either there is
no translation along the line of sight, or the direction of translation, the surface normal, and the line of sight
all lie in a plane. Waxman and Ullman (1985) proposed a numerical solution method which could be used
in all cases. Recently Waxman, Kamgar-Parsi, and Subbarao (1986) obtained a complete solution in closed
form for this problem. However many important questions concerning the multiplicity of solutions still
remained open. These questions were investigated in Subbarao (1986a) using a new approach. Further,
closed-form solutions were also obtained in the new approach. This section presents the results in Subbarao
(1986a). In previous approaches (Longuet-Higgins and Prazdny, 1980; Waxman and Ullman, 1985; Wax-
man, Kamgar-Parsi, and Subbarao, 1986) the image flow parameters were first transformed corresponding
to a rotation of the image coordinate system (around the line of sight) and then the image flow equations
were solved; after solving the equations in this rotated coordinate system, the solution for the structure and
motion parameters was transformed back to the original coordinate system. In comparison, the solution
method given here does not involve such an intermediate step; the image flow equations are solved directly
in the original coordinate system. This saves some computation. Apart from this minor computational
advantage, the solution method used here facilitates easy proofs of the conditions for the occurrence of
unique and multiple solutions (see Appendix G). In Theorems 1,2 of Appendix F the solution is derived
for a curved surface with non-zero translation parallel to the image plane. The solutions for the motion
parameters and the slopes are given by relations (4.3a-h). The solution for the curvatures is

(4.11a)Zxx =
r
1hh I

Luxxc + vxxs − 2u 0c − 2rc 2 + 2VzZXcM
O

(4.11b)Zyy =
r
1hh I

Luyyc + vyys − 2v 0s − 2rs 2 + 2VzZYsMO

(4.11c)Zxy =
2r
1hhh I

Ls(uyy+2vxy−uxx) + c(vxx+2uxy−vyy)MO
(Note: the right hand sides of equations (4.11a,b) can be expressed in terms of only r and θ by substituting
for ZX , ZY and Vz from (4.3c,e,f).) In Theorem 2 of Appendix F the following three equations are
derived for r and θ:

(4.12a)uyy tan3θ+(2uxy−vyy) tan2θ+(uxx−2vxy) tanθ−vxx = 0 ,

(4.12b)2r 2cs+ I
Lvxxc−(uxx−2u 0)sMOr−2Vzs(a 1s+a 2c)=0 ,

(4.12c)2r 2cs+ I
Luyys−(vyy−2v 0)cM

Or−2Vzc(a 1c−a 2s)=0.

(Equation (4.12a) is also derived in Longuet-Higgins and Prazdny (1980)). Equations (4.12a-c), after sub-
stituting for Vz from (4.3c), form three equations in the two unknowns: r, θ. Therefore, to solve the image
flow equations, first we solve for θ by solving the cubic equation (4.12a). Then r is obtained as the com-
mon root of the two quadratic equations (4.12b,c). If there is no common root then the corresponding solu-
tion of θ is not valid. Thus there is one extra constraint and this in general results in a unique solution.
Corresponding to each solution of r and θ obtained by solving equations (4.12a-c) we get one solution for
the image flow equations (from 4.3a-h,4.11a-c) In general we can obtain an explicit solution for r by elim-
inating the term 2r 2cs from equations (4.12b,c). The solution is

(4.13)r =
(vyy−2v 0+vxx)c−(uxx−2u 0+uyy)s

2Vz
I
Ls(a 1s+a 2c)−c(a 1c−a 2s)MOhhhhhhhhhhhhhhhhhhhhhhhhhhh .

This solution should further satisfy either (4.12b) or (4.12c) in order for it to be acceptable. If either the
denominator or the numerator on the right hand side is zero, then the above expression degenerates and
cannot be used to solve for r. This is because we are solving for a case where the translation parallel to the
image plane is finite and non-zero. In this case we have to go back to (4.12b,c) to obtain r. A complete
computational algorithm for solving the image flow equations is given in Appendix F. The number of solu-
tions for the image flow equations (3.11a-l) is equal to the number of solutions for r,θ obtained by solving
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equations (4.12a-c). Therefore conditions for the occurrence of multiple solutions can be obtained by an
exhaustive analysis of these three equations. This analysis turns out to be a long and tedious exercise in
algebra. This analysis is given in Appendix G. A summary of the analysis is given below. Since equations
(4.12a-c) form an over-constrained system of equations (three equations in two unknowns) the solution is
in general unique (Theorem 9, Appendix G), but multiple solutions are possible as the equations are non-
linear. Equation (4.12a) is a cubic equation involving only θ and therefore is easily solved. This gives at
most three solutions for θ (in the interval −π/2 < θ ≤ π/2). We find (in Lemma 1 of Appendix G) that
for ovoid surfaces (i.e. convex or bowl shaped surfaces) only one of the three roots of equation (4.12a) is
real and therefore we obtain a unique solution for θ. For cylindrical surfaces up to two, and for saddle
shaped surfaces up to three solutions for θ are possible (Lemma 1 of Appendix G). Note that, for a given θ
we can immediately solve for Vz and ΩZ from relations 4.3c,d. Therefore, given θ, equations (4.12b) and
(4.12c) reduce to simple quadratic equations in r and therefore can be easily solved. The common root(s)
of these two equations is (are) the solution(s) for r. If there is no common root then the given solution for θ
is not acceptable. If the roots of the two quadratic equations obtained from equations (4.12b,c) are identi-
cal (which is the case when the coefficients of the two equations are proportional) then we have two solu-
tions for a given θ. This is found to be the case (Theorems 7 and 8 in Appendix G) when the direction of
translation, the surface normal and the optical axis all lie in a common plane. However, in this case, the
solution for r becomes unique when the two roots of the quadratic equation (4.12b or 4.12c) are equal. In
one case (Theorem 8, Appendix G) the two roots become equal when the direction of translation is parallel
to the surface normal. There are two special situations when equations (4.12b,c) reduce to a single linear
equation in r (as compared to two quadratic equations in a general case) for a given θ : (i) a specular saddle
surface (i.e. the tangent plane to the surface is frontal or parallel to the image plane and the surface itself is
saddle shaped; see Figure 17) with mean scaled curvature equal to −1 (Theorem 5 of Appendix G), and (ii)
a saddle or a cylindrical surface with mean scaled curvature equal to −1, no translation along the optical
axis, and the slopes and curvatures satisfy a certain condition (G17) (Theorem 6 of Appendix G). In these
situations all solutions for θ obtained by solving equation (4.12a) are acceptable (Theorem 3 of Appendix
G) and each of these results in one solution for the image flow equations. In fact it is found that for case (i)
above three solutions exist (Theorem 5 of Appendix G) and for case (ii) up to two solutions are possible
(Theorem 6 in Appendix G). There is one case where there are two solutions for θ and for each of these
there are two solutions for r, thus leading to a total of four solutions. This occurs when there is a rare coin-
cidence (relations G6c,G23) of the translation vector, slopes, and curvatures (see Theorem 7, Appendix G).
However the presence of four solutions is an artifact of using only up to second order image flow parame-
ters. Use of higher order flow parameters should prevent any more than three solutions according to May-
bank (1985). Maybank (1985) has also obtained some results concerning the multiplicity of interpretations.
His formulation uses a polar projection (spherical image screen) camera model. The main result of his
work is that an ambiguous flow field has at most three values of angular velocity compatible with it. This
should be compared to our result above which gives explicit conditions for the occurrence of three solu-
tions for the image flow equations. Maybank indicated an implicit method for constructing a case where
three solutions exist, but did not give a numerical example. In Chapter 7 we give one example (Example 1)
of this case which is constructed using our own algorithm in Appendix G. A more precise account of the
nature of the solution in various cases is summarized in Section 4.4. For curved surfaces, occurrence of
multiple solutions is rare. When they do occur, the interpretation is ambiguous only locally, both in space
and in time. The extension of the ideas of spatial and temporal consistency discussed for planar surfaces is
quite straightforward. One form of spatial consistency that can be imposed is by using third or higher order
image flow parameters. Here we require that the solution for the structure and motion parameters obtained
from second and lower order flow parameters be in agreement with the third (and higher) order flow
parameters. For a fixed level of noise in the input image flow, use of higher order flow parameters is
equivalent to extending the image flow analysis to a slightly larger image neighborhood; or, for a fixed size
of image neighborhood, it is equivalent to using image flow with a lower noise level. This subsection sum-
marizes the detailed results presented in Appendices B, D, and G. The most important results of these
appendices are the explicit statement and proofs of all the conditions for the occurrence of up to four solu-
tions, four being the maximum possible. Following is a summary of the nature of the solutions to the
image flow equations (3.11a-l) in different cases. (Figure 16 may be helpful in visualizing some of these
cases.) Here we list the different cases in a sequential order such that the occurrence of a particular case is
detected by the absence of the previous cases and checking for the satisfaction of one or more constraints
on the image flow parameters.

(i) If there is no translation, the structure parameters are undetermined and the solution is unique.
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(ii) If either there is no translation parallel to the image plane or the surface is planar and frontal,
then there can be up to three solutions for the image flow equations.
(iii) If the surface is planar then there are two solutions with the exception of the following cases:

(a) There is no translation along the optical axis.
(b) Translation is parallel to the surface normal.

(iv) There are three solutions if the surface is a specular saddle and the mean scaled curvature is
−1 (i.e. Zxy

2 −ZxxZyy > 0, ZX = ZY = 0 and (Zxx+Zyy)/2 = −1.).
(v) There are two solutions if the surface is saddle (Figure 17) or cylindrical (i.e.
Zxy

2 −ZxxZyy ≥ 0), there is no translation along the optical axis and the mean scaled curvature is
−1 except when the translation vector, surface normal and the optical axis all lie in a plane; in this
case the solution is unique.
(vi) There can be up to four solutions if the translation vector, surface normal and the optical axis
all lie in a plane.
(vii) In cases other than the ones listed above the solution is unique.

In this chapter the scene parameters and the image flow parameters are represented by the Taylor
coefficients of appropriate analytic functions. The values of these Taylor coefficients are dependent on the
orientation of the image coordinate system in the image plane. A rotation of the image coordinate system
about the optical axis changes the values of these quantities. The transformation equations for the change in
these quantities due to such rotations can be easily derived (e.g. see Waxman and Ullman, 1985; Kanatani,
1986). However, an image itself has no inherent coordinate system, and therefore our choice of a coordi-
nate system is completely arbitrary. For this reason, we would like to use a canonical representation for the
scene parameters and the image parameters where the quantities have conceptually ‘‘simple’’ physical
interpretations. To clarify this point, let us consider the representation of the image flow parameters. Sup-
pose that the image coordinate system is rotated counterclockwise about the optical axis by an angle θ and
in this coordinate system the new values of the corresponding quantities are denoted by a prime. Then, for
the image flow parameters, the transformation can be expressed in the form

(4.13)

R
J
J
J
J
J
J
J
Q
v ′yy

.

.
u ′x
v ′0
u ′0 H

J
J
J
J
J
J
J
P

=

R
J
J
J
J
J
J
Q

T (θ)

H
J
J
J
J
J
J
P

R
J
J
J
J
J
J
J
Q
vyy

.

.
ux

v 0

u 0 H
J
J
J
J
J
J
J
P

(Note: the fact that the transformation can be expressed in the above form is a property of this set of param-
eters.) In the above expression the new value of a flow parameter is given as a linear function of the initial
flow parameters. Now consider the fact that our choice of Taylor coefficients to represent the image flow is
arbitrary, and that we could have used any appropriate linear combinations of these Taylor coefficients to
represent the image flow. In particular we would be interested in flow parameters C 1 ,C 2 , .... such that
the transformation matrix T is diagonal (i.e. all non-diagonal elements are zero). In fact, it is known that
for our case of coordinate rotation there always exists one such set of parameters. For this set of parame-
ters the transformation equation is of the form

(4.14)

R
J
J
J
J
J
J
Q
C ′m

.

.
C ′2
C ′1 H

J
J
J
J
J
J
P

=

R
J
J
J
J
J
J
J
Q 0

e −in 1θ

e −in 2θ

.

.

e −inmθ

0 H
J
J
J
J
J
J
J
P

R
J
J
J
J
J
J
Q
Cm

.

.
C 2

C 1
H
J
J
J
J
J
J
P

.

where i is the imaginary unit, and nk is an integer. In the above relation, all quantities are transformed
independently of the others. There exists no mutual coupling. Thus, intuitively, each of these quantities
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describes a single independent property of the image flow. We call the quantities C 1 ,C 2 , .... the fully
reduced flow parameters. An introduction to the application of group theoretical methods to derive canoni-
cal representations for image characteristics can be found in Kanatani (1986). The above discussion is
mainly derived from this reference. Next we give the fully reduced parameterizations for the scene and the
image flow representation (the parameterization for the image flow was derived by Kanatani, 1986). Also
we give the image flow equations in this representation. Two of the advantages of such a representation
are its conceptual simplicity and compactness.

(4.15a)VV 1 = Vx+iVy , n= 1

(4.15b)VV 2 = Vz , n= 0

(4.15a)ΩΩ1 = ΩX+iΩY , n= 1

(4.15b)ΩΩ2 = ΩZ , n= 0

(4.16a)PP = ZX+iZY , n= 1

(4.16b)KK 1 =
2

Zxx+Zyyhhhhhhh , n=0

(4.16c)KK 2 =
2

Zxx−Zyyhhhhhhh+iZxy , n= 2

(4.17a)UU = u 0+iv 0 , n= 1

(4.17b)TT = ux+vy , n= 0

(4.17c)RR = vx−uy , n= 0

(4.17d)SS = (ux−vy)+i(vx+uy) , n= 2

(4.17e)HH = (0.5uxx+vxy−0.5uyy) + i(0.5vyy+uxy−0.5vxx) , n= 1

(4.17f)LL = (0.5uxx−vxy+1.5uyy) + i(0.5vyy−uxy+1.5vxx) , n= 1

(4.17g)MM = (0.5uxx−vxy−0.5uyy) + i(0.5vxx+uxy−0.5vyy) , n= 3 .

The image flow equations (3.11a-l) can be represented in terms of the above defined quantities as below
(note: * denotes complex conjugate).

(4.18a)UU = −VV 1+iΩΩ1

(4.18b)TT = 2VV 2+Real[VV 1PP *]

(4.18c)RR = −2ΩΩ2+Imaginary[VV 1PP *]

(4.18d)SS = VV 1PP

(4.18e)HH = −2VV 2PP+i2ΩΩ1+VV *
1KK 2

(4.18f)LL = 2VV 1KK 1−VV *
1KK 2

(4.18g)MM = VV 1KK 2

In the previous sections we first expressed the structure and motion parameters in terms of θ and r and then
derived equations for θ and r. Similarly, here we first express all the unknowns in terms of VV 1 using
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relations (4.18a-d,f,g) and then obtain an equation in VV 1 using relation (4.18e). Following this method we
get

(4.19a)ΩΩ1 = −i(UU+VV 1) ,

(4.19b)PP =
VV 1

SShhh ,

(4.19c)VV 2 =
2

TT−Real[VV 1PP *]hhhhhhhhhhhhh ,

(4.19d)ΩΩ2 =
2

−RR+Imaginary[VV 1PP *]hhhhhhhhhhhhhhhhhhh ,

(4.19e)KK 2 =
VV 1

MMhhh ,

(4.19f)KK 1 =
2VV 1

LL+VV *
1KK 2hhhhhhhhh ,

and finally, VV 1 is obtained by solving the equation

(4.19g)HH = I
LReal R

QSS
* e i2arg(VV 1) H

P−TTM
O VV 1

SShhh + 2(UU+VV 1) + MM e −i2arg(VV 1) .

However, for computational purposes, the solution method given earlier is simpler.

20



CHAPTER 5

Using Temporal Information: Rigid Motion

‘‘.... although the instantaneous velocity field contains sufficient information for the
recovery of the 3-D shape, the reliable interpretation of local structure from motion
requires the integration of information over a more extended time period.’’

-Shimon Ullman (1984)

In the previous two chapters we have considered the interpretation of instantaneous image flow. Informa-
tion about the spatial variation of image flow was used to determine the structure and motion of surfaces. In
this chapter we extend the previous formulation to incorporate temporal information. For this purpose we
assume that the surface structure and motion in the scene domain and image flow parameters in the image
domain are locally smooth in the space-time domain. Use of temporal information is necessary for two
reasons. First, in many cases we can trade noise-sensitive spatial information for relatively robust temporal
information. For example, consider a small surface patch in motion which is approximately planar. In this
case, in general, we can use the first order temporal derivatives of the motion field in place of the second-
order spatial derivatives. The second and more important reason is that using temporal information makes
it possible for us to deal with more complicated situations such as when the object in view is undergoing
non-uniform (or accelerated) motion. Here we consider three important cases where the motion is rigid and
uniform and one more case where the motion is non-uniform. Of the three rigid uniform motion cases, the
first two relate to the case where the image motion is observed in a fixed image neighborhood and the third
relates to the case where the camera tracks a point on the object in motion and the tracking motion of the
camera is known. In all three cases we have solved for the local orientation and rigid motion of the surface
patch around the line of sight using only the first-order spatial and temporal derivatives of the image velo-
city field. In comparison, in the previous chapter we used up to second-order spatial derivatives of image
flow. Temporal information has scarcely been used in the past for image flow interpretation. Hoffman
(1980) used time derivatives of image flow to recover shape and motion of surfaces for orthographic pro-
jection. (Our formulation is for the perspective projection case.) Recently Bandopadhyay and Aloimonos
(1985) and Wohn and Wu (1986) have used temporal information to solve a restricted case of rigid motion.
This case is the one we have considered in Section 5.3.1. A systematic way of incorporating temporal
information in the interpretation of image flow was proposed in Subbarao (1986b). This chapter and most
of the next chapter are based on this work. The essence of our approach is described in the next section
and detailed solution methods are given in the following sections. The main extension that is necessary for
the previous formulation is that we have to consider the structure and motion parameters to be functions of
time. Each of these parameters is assumed to be changing ‘‘smoothly’’ with time so that their time varia-
tion in a small time interval can be parameterized by the first few Taylor coefficients of the corresponding
function. For example a surface is represented by

(5.1)Z = (Z 0+Z
.

0t+...) + (ZX+Z
.
X t+...)X + (ZY+Z

.
Yt+...)Y + . . .

In this case the scene parameters consists of the initial structure and motion parameters and the time deriva-
tives of the motion parameters. The time derivatives of the structure parameters are determined by the
motion parameters and their time derivatives. Therefore the time derivatives of the structure parameters are
not a part of the scene parameters. In the image domain the image flow is assumed to be analytic in the
space-time domain. The image flow is represented by

(5.2a)u(x,y,t) = u 0+uxx+uyy+utt+O 2 (x,y,t) and

(5.2b)v(x,y,t) = v 0+vxx+vyy+vtt+O 2 (x,y,t)

where the subscripts indicate the corresponding partial derivatives evaluated at the image origin and time
t = 0 and O 2 (x, y, t) indicates second and higher order terms of the Taylor series. The coefficients of
this Taylor series are the spatio-temporal image flow parameters. Now our goal is to derive the relations
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between the scene parameters and the image flow parameters and use these relations to recover the scene
parameters from the image flow parameters. We illustrate this process for a few simple cases and from this
it will be clear how more complicated cases can be tackled by following similar steps. In relation (5.1),
neglecting second and higher order terms in X,Y and t we have

(5.3a)Z = Z 0 + ZXX + ZYY+Z
.

0t

Rearranging terms this can be rewritten as

(5.3b)Z
I
J
L
1 −

Z
Xhh ZX −

Z
Yhh ZY −

Z
thh Z

.
0

M
J
O
= Z 0 .

Or, using relations (3.1), equation (5.3b) can be rewritten as

(5.3c)Z = Z 0 (1− ZX x− ZY y− Z
.

0 (t /Z) )−1

Substitution of this into the image velocity equations (3.4a,b) gives

(5.4a)u =
I
J
L
x

Z 0

VZhhh−
Z 0

VXhhh
M
J
O
(1−ZXx−ZYy−Z

.
0(t /Z))+ R

QxyΩX−(1+x 2)ΩY+yΩZ
H
P

(5.4b)v =
I
J
L
y

Z 0

VZhhh−
Z 0

VYhhh
M
J
O
(1−ZXx−ZYy−Z

.
0(t /Z))+ R

Q(1+y 2)ΩX−xyΩY−xΩZ
H
P

In the above equations, as in the previous formulation, Z 0 always appears in ratio with the translational
velocity VV and therefore is not recoverable. Therefore, we adopt the same notation as before (see relations
3.9a-c) in presenting the image flow equations. Using relations (5.4a,b) we can derive the relations
between the spatio-temporal image flow parameters and the scene parameters. We point out here that the
relations between the spatial derivatives of image flow and the instantaneous scene parameters are the same
as before (relations 3.11a-l). Therefore relations (3.11a-f) are the same in this case. The solution of rela-
tions (3.11a-f) are already given in terms of r and θ (relations 4.3a-h). Here we shall determine r and θ
using the temporal derivatives of the image flow. The relations between these and the scene parameters are
given for some simple but interesting cases. Also, for each case we give analytic solutions for r and θ. In
deriving the equations relating r and θ to ut and vt we consider three different cases which are explained
below. With the exception of the second case (in a limited sense which will be made clear later) we
assume the motion to be uniform, i.e. all orders of the derivatives of VV and ΩΩ with respect to time are zero.
In each of these cases, we derive the equations relating ut , vt to the structure and motion parameters and
use them to solve for θ and r. Assuming that the translational velocity VV is uniform with respect to the
camera’s reference frame (i.e. ΩΩ = 00 or ΩΩ is parallel to VV) we can derive the following from equations
(5.4a,b):

(5.5a,b)ut = Vx (Z
.

0/Z 0) and vt = Vy (Z
.

0/Z 0) .

Using relation (E10a) in Appendix E, we can express Z
.

0/Z 0 in terms of the scene parameters. Therefore,
from relations (E10a,3.11a,b), relations (5.5a,b) can be expressed as

(5.6a,b)ut = Vx p and vt = Vy p

where

(5.6c)p = − (u 0 ZX + v 0 ZY + Vz) .

Now we solve for θ and r using relations (5.6a-c). Taking the ratio of relations (5.6a,b) and using relations
(4.3a,b) the solution for θ is obtained as

(5.7a)tanθ =
ut

vthhh .
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We solve for r using relations (5.6a-c), (4.3a,b,e,f) to get

(5.7b)r =
− Vz

(ut+u 0a 2+v 0a 1)c+(vt+u 0a 1−v 0a 2)shhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh .

Thus, given the image flow parameters u 0 , v 0 , ux , . . . , etc. of equations (5.2a,b), we first solve for θ ,
Vz and ΩZ from relations (5.7a,4.3c,d) and then solve for r from relation (5.7b). In this case, there are
some situations in which the system of equations (3.11a-f,5.6a-c) becomes under-constrained and so cannot
be solved completely. The first situation is when the distance of the surface along the line of sight (given by
Z 0 ) remains constant. In this case p (given by Z

.
0 / Z 0 , see equation (E10a,E14)) is zero and therefore

equations (5.6a,b) degenerate and in their place we get a single constraint p = 0. So we find that the sys-
tem of equations cannot be solved. Another situation is when there is no translation along the line of sight,
i.e. Vz = 0. In this case r is indeterminate. There are other degenerate cases such as when there is no
translation parallel to the image plane (Vx = Vy = 0), when the surface patch is a frontal (ZX = ZY = 0),
etc., when the equations are partially solvable and some of the unknowns become undetermined. In a com-
putational algorithm, the presence of such degenerate cases should be detected in the early stages and dealt
with (e.g. see Appendix B). Bandopadhyay and Aloimonos (1985) had shown earlier that in this case,
given the image velocities at any three non-collinear points where their temporal derivatives are non-zero,
the motion parameters are uniquely determined. Wohn and Wu (1986) have also solved this case by a dif-
ferent approach. In the previous case we assumed that the translation and rotation are uniform with respect
to the camera’s reference frame. But in many real world situations, their magnitudes remain the same but
their directions change due to the rotation of the camera’s reference frame. For example, consider a ball in
the air which is moving horizontally with respect to the ground and spinning along an axis not parallel to
the direction of translation (see Figure 18). Suppose that during a short time interval the motion of the ball
can be considered uniform (ignoring gravity) in the world reference frame. Then the relative translation of
the ground as seen from a reference frame fixed with respect to the ball changes continuously in direction
with time due to the rotation of the ball, although the magnitude remains the same. The solution method in
this case is similar to that in the previous case except that the expressions for ut and vt are more compli-
cated than before. In deriving expressions for ut and vt from relations (5.4a,b) we consider VV and ΩΩ to be
functions of time t. The rates of change of VV and ΩΩ with time are given by

(5.8a,b)V
.
V
.

= VV × ΩΩ and Ω
.
Ω
.

= ΩΩ × ΩΩ = 0 .

Using the above relations, we can derive expressions for ut and vt from relations (5.4a,b) to be

(5.9a)ut = Vz ΩY − Vy ΩZ + Vx p and

(5.9b)vt = Vx ΩZ − Vz ΩX + Vy p

where p is, as before, given by relation (5.6c). Relations (5.9a,b) can be used to solve for θ and r. Using
relations (4.3a,b,e,f), the right hand sides of equations (5.9a,b) can be expressed in terms of θ, r, Vz and
ΩZ . From the resulting equations we can solve for r to get

(5.10a)r =
− (ΩZ s + 2 Vz c)

ut + u 0 Vz + c qhhhhhhhhhhhhhhh

and

(5.10b)r =
ΩZ c − 2 Vz s

vt + v 0 Vz + s phhhhhhhhhhhhhh

where

(5.10c)q ≡ u 0 (a 1 s + a 2 c) + v 0 (a 1 c − a 2 s)

Equating the right hand sides of the two equations (5.10a,b), substituting for Vz and ΩZ in terms of θ
using relations (4.3c,d), and simplifying, we can derive a fifth degree equation in tanθ. This derivation is
given in Appendix H. θ is obtained by solving for the roots of the fifth degree polynomial. Therefore θ
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may have up to five solutions, but requiring the solution to be consistent over time should give a unique
solution in most cases. For example, if ZX and ZY are the slope components of the surface patch at time
t = 0, then these components after a small time dt should be (approximately) ZX + Z

.
X dt and

ZY + Z
.
Y dt where Z

.
X and Z

.
Y are given by relations (E10b,c). Having solved for θ we solve for Vz and

ΩZ from equations (4.3c,d). We then solve for r from either (5.10a) or (5.10b). In this case, there are two
special situations which deserve mention. In both these cases, the orientation of the surface patch is
indeterminate as there is no translation parallel to the image plane. These cases are summarized in Appen-
dix H. One case of special interest is when the camera system deliberately tracks a point on the object’s
surface along the line of sight by rotating around the focus (about an axis perpendicular to the line of sight)
and the voluntarily induced angular velocity and acceleration of the camera in order to track the point are
known. If ωωand ω

.
ω
.

are respectively the angular velocity and acceleration of the camera, then the image
velocity and acceleration of the point being tracked with respect to a ‘‘stationary’’ camera are given by
ωω ×k̂k̂ f and ω

.
ω
.

× k̂k̂ f where f is the focal length of the camera. In this case, due to the tracking motion of
the camera, VV and ΩΩ are changing with time in a complex manner. In this situation, the image velocity
field in a small neighborhood around the image of the point being tracked over a short duration of time is
given by

(5.11a)u (x, y, t) = (u 0 + u
.

t) + ux x + uy y + O 2 (x, y, t) and

(5.11b)v (x, y, t) = (v 0 + v
.

t) + vx x + vy y + O 2 (x, y, t)

where (u
.
, v

.
) is the acceleration of the image of the point being tracked at time t = 0. Notice that the

above expressions are similar to relations (5.2a,b) except that ut , vt are replaced by u
.
, v

.
respectively.

The expressions for u
.

and v
.

are obtained from equations (5.4a,b) by considering x and y to be functions of
time t (i.e. x = X(t) / Z(t) and y = Y(t) / Z(t) ) and differentiating and evaluating at the image origin
and t = 0. Alternatively, they can be obtained by directly differentiating relations (3.1a,b) twice with
respect to t and evaluating at the image origin. This has been derived in Appendix I to be

(5.12a)u
.

= v 0 ΩZ + u 0 Vz − Vx Vz and

(5.12b)v
.

= v 0 Vz − u 0 Ωz − Vy Vz .

In Appendix I the solution for θ is derived to be

(5.13)tanθ =
ux u 0 + uy v 0 − u

.
v 0 vy + vx u 0 − v

.
hhhhhhhhhhhhhhh .

Having solved for θ from the above equation, we solve for Vz , ΩZ (using relations 4.3c,d). In terms of
these quantities the solution for r is shown (in Appendix H) to be

(5.14)r = u 0c+v 0s +
Vz

(v 0ΩZ−u
.
)c−(u 0ΩZ+v

.
)shhhhhhhhhhhhhhhhhhhh .

In this case, we find that when there is no translation along the line of sight (i.e. Vz = 0), r and θ are
indeterminate. Although ΩZ can be computed as u

.
/v 0 (or −v

.
/u 0 ) all other parameters of motion and

structure remain undetermined. The problem of interpreting instantaneous image flow when a binocular
camera tracks a feature point has been considered by Bandopadhyay, Chandra, and Ballard (1986). In the
previous examples we have restricted the time dependence of the motion parameters. In general they can
be arbitrary (but analytic) functions of time. We can in principle deal with these cases. Solving the general
case involves using second and higher order image flow derivatives. Here we illustrate the method with a
simple example which involves only first order image flow parameters. In this example, we restrict the
situation in the following ways: no relative rotation between the camera and the surface patch, the surface
is rigid and the translational acceleration is uniform. In this case, we can derive the following equations
from equations (5.4a,b):

(5.15a,b)u 0 = − Vx , v 0 = − Vy ,
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(5.15c,d)ux = Vz + Vx ZX , vy = Vz + Vy ZY ,

(5.15e,f)uy = Vx ZY , vx = Vy ZX ,

(5.15g,h)ut = −
∂t

∂Vxhhhh and vt = −
∂t

∂Vyhhhh .

The term
dt

dVZhhhh corresponding to the acceleration along the line of sight does not appear in the above equa-

tions and therefore is not recoverable from the available information (knowing uxt or vyt would make it
possible for us recover this term). Equations (5.15a-h) are overdetermined (eight equations in seven
unknowns). Solving these equations is straightforward.
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CHAPTER 6

The General Formulation

‘‘The formulation is mathematically equivalent to more usual foundations. There are,
therefore, no fundamentally new results. However, there is a pleasure in recognizing old
things from a new point of view. Also, there are problems for which the new point of view
offers a distinct advantage.’’ -Richard P. Feynmann (1948)

Until now we have only considered rigid motion of objects. In this chapter we consider the general case of
non-rigid motion. Restricted types of non-rigid motion problem has been addressed by some of researchers
Koenderink and Van Doorn (1986), Chen (1985), and Ullman (1984). General non-rigid motion problem
was recently formulated in Subbarao (1986b). A refined and extended version of this formulation will be
presented here. The formulation for the non-rigid motion case is basically an extension of the rigid motion
case. The primary difference is that here the instantaneous velocities of points on surfaces in the scene are
considered to be functions of their positions in the scene. The formulation of a general non-rigid motion
case has two stages: (i) the representation of non-rigid motion of surfaces, and (ii) relating the non-rigid
motion parameters to the changing image flow in space and time. Here we describe the non-rigid motion
of a small surface patch in terms of the deformation and motion of a small volume element embedding the
surface patch (see Figure 19). This is an adequate representation because given the deformation parame-
ters of the volume element the deformation of the embedded surface is computable (see Appendix J for
more discussion of this). In fact we can recover from the image flow field only those deformation parame-
ters which affect the embedded surface patch and in any case this is all that we want. For example, for a
planar surface patch, the extension (or contraction) of a line segment normal to the planar surface is not
recoverable from the image flow and we don’t need it anyway because it has no effect on the surface patch.
An alternative representation of surface deformation can be obtained by using a curvilinear coordinate sys-
tem fixed in the surface. In this system, geometric points on the surface are labelled by two independent
parameters and the partial derivatives of the velocities of material particles on the surface with respect to
these parameters represent the surface deformation parameters (see Aris, 1962; Waxman, 1984a; McCon-
nell, 1957). But the velocity gradient tensor representation we have used is simpler and may be more desir-
able because the deformation of a surface in the physical world is often due to deformation of the 3D object
of which it forms a part. Let the instantaneous three-dimensional velocities of points in a small volume
embedding a small surface patch along the line of sight be given by UU = (X

.
, Y

.
, Z

.
) where

(6.1a)X
.

= a 10 + a 11 X + a 12 Y + a 13 (Z − Z 0) + O 2(X, Y, Z)

(6.1b)Y
.

= a 20 + a 21 X + a 22 Y + a 23 (Z − Z 0) + O 2(X, Y, Z)

(6.1c)Z
.

= a 30 + a 31 X + a 32 Y + a 33 (Z − Z 0) + O 2(X, Y, Z) .

In the above expressions the last terms denote the second and higher order terms with respect to X, Y and
Z. The 3 × 3 matrix defined by aij for 1 ≤ i, j ≤ 3 is in fact the spatial velocity gradient tensor at the
point (0, 0, Z 0). An intuitive interpretation of this velocity gradient tensor and aij are given in Appen-
dix J. Comparing the above expressions for a general non-rigid motion to relations (3.2a-c) for a rigid
motion, we see that in the case of rigid motion

(6.2a,b)a 11 = a 22 = a 33 = 0 , a 23 = −a 32 = ΩX ,

(6.2c,d)a 31 = −a 13 = ΩY and a 12 = −a 21 = ΩZ .

Therefore, non-zero values for the terms a 11 , a 22 , a 33 , a 12 + a 21 , a 13 + a 31 , and a 23 + a 32 ,
imply a non-rigid motion. Substituting for Z from equation (5.3a) in equations (6.1a-c) and rearranging
terms we obtain
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(6.3a)X
.

= a 10+(a 11+a 13ZX)X+(a 12+a 13ZY)Y+a 13Ztt+O 2(X,Y,Z,t)

(6.3b)Y
.

= a 20+(a 21+a 23ZX)X+(a 22+a 23ZY)Y+a 23Ztt+O 2(X,Y,Z,t)

(6.3c)Z
.

= a 30+(a 31+a 33ZX)X+(a 32+a 33ZY)Y+a 33Ztt+O 2(X,Y,Z,t) .

Now we wish to solve for aij and the local surface structure given the image flow field. Here, as there are
more unknowns than before, we have to consider terms in the Taylor series expansion of the image velo-
city field beyond first order (see relations (5.2a,b)). The coefficients of this Taylor series are the new image
flow parameters. The relations between these image flow parameters and the deformation, motion and local
surface structure parameters are derived by a method similar to that in the rigid motion case (Chapter 3)
except that in this case X

.
, Y

.
and Z

.
are taken to be as in relations (6.3a-c) instead of (3.2a-c). We illustrate

this for a simple case where we need to consider only the first order image flow parameters. The general
case is considered later. Consider a simple situation where a surface patch along the direction of view of a
camera is translating uniformly and expanding (or contracting) along the X and Y directions. In this case
we have

(6.4a)a 12 = a 13 = a 21 = a 23 = a 31 = a 32 = a 33 = 0 ,

(6.4b-d)a 10 = − VX , a 20 = − VY , a 30 = − VZ ,

(6.4e,f)a 11 = −
∂X

∂VXhhhh , and a 22 = −
∂Y

∂VYhhhh .

Now we can derive the following from equations (5.4a,b):

(6.5a,b)u 0 = − Vx , v 0 = − Vy ,

(6.5c,d)ux = Vz + Vx ZX −
∂X

∂VXhhhh , vy = Vz + Vy ZY −
∂Y

∂VYhhhh ,

(6.5e,f)uy = Vx ZY , vx = Vy ZX ,

(6.5g,h)ut = Vx s ′ and vt = Vy s ′
where

(6.5i)s ′ = Vx ZX + Vy ZY − Vz .

Equations (6.5) are eight equations in seven unknowns. The equations are overdetermined because of the
restricted type of motion and deformation we have assumed. Solving these equations is straightforward.
Combined non-rigid and non-uniform motions can be analyzed by considering the parameters aij in the
previous case to be functions of time. This modification is similar to our extension in the previous chapter
from uniform motion to non-uniform motion. In this case the velocity field in the scene domain takes the
form:

(6.6a)X
.

= a 10 + a 11 X + a 12 Y + a 13 (Z − Z 0) + a 14 t + . . .

(6.6b)Y
.

= a 20 + a 21 X + a 22 Y + a 23 (Z − Z 0) + a 24 t + . . .

(6.6c)Z
.

= a 30 + a 31 X + a 32 Y + a 33 (Z − Z 0) + a 34 t + . . .

Further, we can use finer local surface models (quadric, cubic, etc.) by considering longer Taylor series
expansions of the surface expressed in the form Z(X, Y, t) (see equation (5.1)). However, in this case we
need to know how the general spatio-temporal derivatives of image flow are related to the scene parame-
ters. We consider this next. In order to derive the equations relating the time and space-time derivatives of
image flow to the scene parameters, it is necessary to know how the corresponding surface structure
parameters are changing with time; i.e., if the surface is represented by
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(6.7)Z = b 0+b 1X+b 2Y+b 3X 2+....

then we need to know how b 0 ,b 1 ,b 2 , .... are changing with time (compare the above equation with
equation (3.5)). For this purpose, if the transformation of the surface in the scene is assumed to be
‘‘smooth’’ and analytic with time, then each of the surface structure parameters can be expressed in a Tay-
lor series expansion as

(6.8)bi=bi 0+bi 1t+bi 2t 2+ . . . for i=0,1,2, ....

(Compare the above with terms within parantheses in equation (5.1)). The transformation can be any com-
bination of translation, rotation, deformation, and higher order variations of these quantities. The time
dependence of these parameters is determined by the scene transformation parameters, i.e., aij . If aij are
themselves changing with time then we can express them as functions of time as in the case of bi (see
equation (6.8)). The first order dependence of the structure parameters on time, denoted by bi 1 , can be
related to aij as follows. Differentiating equation (6.7) we obtain

(6.9)Z
.

= b
.

0+b
.

1X+b 1X
.
+b

.
2Y+b 2Y

.
+b

.
3X 2+....

In the above expression we substitute for X
.
,Y

.
,Z

.
using equations (6.6a-c) respectively and then substitute

for Z from equation (6.7). Simplifying the resulting expression we can obtain an expression of the form

(6.10)C 0+C 1X+C 2Y+C 3X 2+....=0.

We can equate each of the coefficients Ci to zero in the above expression since the above equation should
hold for every (X,Y) value. Using the set of equations Ci=0 at time zero we can explicitly express bi 1 in
terms of aij (see equations (E8-E10) as examples in Appendix E). In order to derive the second order
dependence of the structure parameters we differentiate equation (6.9) and follow steps similar to the previ-
ous one. In general this method can be used to express all bij for j>0 in terms of aij . Having obtained
these relations, the equation of the surface as a function of time is given by equations (6.7) and (6.8).
Using this representation of the surface, the equations relating the time and space-time derivatives to the
scene parameters (i.e. bi 0 ,aij) can be derived. The method is similar to that of the rigid motion case in
Chapter 3. The result is that we have a general method for obtaining the relation between the image flow
parameters of any order and the scene parameters. Solving these equations constitutes the interpretation of
image flow. As we generalize our method to incorporate more general motions (non-rigid, non-uniform,
etc.) and finer local surface patch models (quadric, cubic, etc.) more unknown parameters are introduced.
In these situations, the general principle is to consider sufficiently long Taylor series expansions of the
image velocity field so that enough equations are available to solve for all the unknowns. Typically, each
Taylor series coefficient of the image velocity field yields one equation (sometimes all the equations may
not be independent as some of them may yield extra constraints such as a rigidity constraint, etc.). These
Taylor series coefficients are to be extracted from the given image velocity field. Since this image velocity
field is itself estimated from an image sequence, the longer the Taylor series, the higher the desired quality
of the input image data (in terms of spatial and grey-level resolution). The problem of image flow interpre-
tation in its general form is inherently ill-posed or under-constrained. In order to see this we first observe
that, in general, each image flow parameter (which is assumed to be known) gives one image flow equation
for the scene parameters (the unknowns). If we consider up to nth order Taylor coefficients in equations
(5.2a,b), then it can be shown that we get 2 I

L 3
n +3M

O image flow equations where
I
Lr
nM
O denotes the obvious

binomial coefficient. In these equations, all scene parameters up to nth order will appear. Therefore the
number of unknowns is obtained by summing the number of aij in equations (6.6a-c) and the number of bi
in equation (6.7) for i >0 (b 0 has been taken to be the scaling factor which is indeterminate; see earlier
discussion in Section 5.2 following equation (5.4b)). This sum can be shown to be
3 I

L 4
n +4M

O + I
L 2
n +2M

O − 1. Therefore, the number of equations increase as O(n 3) whereas the number of

unknowns increase as O(n 4). Thus, for any given order of image flow parameters the number of equa-
tions is lower than the number of unknowns (see Table 1). In order to solve for the unknowns we will have
to impose additional constraints on the scene parameters. For example, consider the case in section 5.4
where n =1. The above formulas give eight image flow equations and seventeen unknowns. Now the rigi-
dity assumption gives effectively six additional equations represented by equations (6.2a-d). The assump-
tion that the motion is uniform (i.e. acceleration is zero with respect to an external reference frame) gives
three additional equations (one for each component of V

.
V
.
) as in equation (5.8a). (Note: Ω

.
Ω
.

is a second order
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scene parameter and therefore equation (5.8b) does not give additional constraints.) Therefore we arrive at
a situation where the number of equations exactly match the number of unknowns (seventeen each). (Only
for n =0 we will have to consider an object centered coordinate system for our formulas to hold (in this
paper we are using a camera centered coordinate system). In this case ΩX and ΩY will not appear in equa-
tions that correspond to (3.11a,b)). In practice the assumptions of rigidity of motion, local planarity of sur-
faces, and constancy of motion with respect to time are useful. In general some model of the scene param-
eters is required for the interpretation process.

Order of Taylor coefficients: 0 1 2 3 4 ..
Number of equations: 2 8 20 40 70 ..
Number of unknowns: 3 17 50 114 224 ..

Table 1. The numbers in the first row represent the maximum order of the Taylor coefficients considered
for the scene parameters and the image flow parameters. We see that under any given column, the number
of unknowns exceeds the number of equations.

‘‘The critical step in formulating the computational theory of stereopsis is the discovery
of additional constraints on the process that are imposed naturally and that limit the
result sufficiently to allow a unique solution. Finding such constraints is a true
discovery-- the knowledge is of permanent value, it can be accumulated and built upon,
and it is in a deep sense what makes this field of investigation into a science.’’ -David
Marr (1977)
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CHAPTER 7

Error Sensitivity and Numerical Examples

In the computational approach described here, the solution for the image flow equations is given by explicit
analytic expressions. Therefore, a theoretical sensitivity analysis can be done by taking error differentials.
If the uncertainty in the input image flow parameters are known, then approximate bounds on the max-
imum error in the 3D structure and motion parameters can be estimated. This analysis holds for all cases.
In contrast, the sensitivity analyses of previous approaches are based on a few numerical examples; a gen-
eral analysis was not possible as closed-form solutions were not available (Adiv, 1985a,b; Waxman and
Ullman 1985; Waxman and Wohn 1985). The error in the output 3D structure and motion parameters
depend on the uncertainty in the input flow parameters. The errors in the flow parameters in turn depend
on two factors: the image quality (in terms of spatial resolution, gray level resolution, and the noise level in
grey level and pixel registration) and the computational method employed in estimating the flow deriva-
tives. If a tolerance is specified for the output structure and motion, then it is in principle possible to obtain
an approximate idea of the required image quality. A sensitivity analysis based on error differentials gives
only the worst case behavior. Therefore such an analysis is often inadequate in practical applications. A
more accurate analysis is difficult unless a domain of application is specified. This difficulty arises from the
non-linear nature of the problem. The maximum absolute error in the computation of an analytic function
can be estimated using the total differential of the function (cf. Piskunov, 1974). Let
y = f(x 1 ,x 2 , ....,xn) be an analytic function and ∆x 1 ,∆x 2 , .....,∆xn be the errors in the corresponding
arguments. Then, for sufficiently small absolute values of ∆x 1 ,∆x 2 , .....,∆xn , the error ∆y in y can be
shown to satisfy the relation

(7.1)c∆y c ≤ c
∂x 1

∂ fhhhh c c∆x 1 c + c
∂x 2

∂ fhhhh c c∆x 2 c + .... + c
∂xn

∂ fhhhh c c∆xn c

Relation (7.1) can be used to estimate the maximum absolute errors in the scene parameters given the
uncertainties in the image parameters. For example, consider the estimation of error in tanθ by solving the
cubic equation (4.12a). Let the cubic equation be represented by

(7.2)x 1+x 2y+x 3y 2+x 4y 3 = 0 .

Then, using relation (7.1) we can obtain

(7.3)c∆y c ≤
cx 2 + 2x 3y + 3x 4y 2 c

c∆x 1 c + c∆x 2 c cy c + c∆x 3 c cy 2 c + c∆x 4 c cy 3 chhhhhhhhhhhhhhhhhhhhhhhhhhh .

Therefore, if the uncertainties in the coefficients of the cubic equation are given, then the uncertainty in the
roots can be estimated. Errors in the other unknowns can be estimated similarly. The actual error is usu-
ally much smaller than that given by relation (5.1). We give here the result of an experiment where the
correct solution and the solution obtained from noisy input are given. This example is included to give an
idea about the sensitivity of the approach. Bounds on the error are not estimated.

Example: The estimated image flow parameters for a curved surface in rigid motion using the velocity
functional method (Waxman and Wohn, 1985) are given (from Wohn, 1984). The estimation was based on
a noisy (5%) normal velocity field along a contour. The contour spanned approximately a ten degree field
of view. The result of solving the image flow equations in this case is given below.

Noisy input image flow parameters:

u 0 : -6.017523 ux : 2.999429 uy : -0.088125
uxx : 3.009457 uxy : 0.023188 uyy : 3.052289
v 0 : -3.965109 vx : 0.087267 vy : 2.997560
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vxx : 2.020104 vxy : -0.015687 vyy : 2.046979

Solution of image flow equations:

(Vx ,Vy ,Vz) : ( 5.991399 3.984022 2.998529 )
(Ox ,Oy ,Oz) : ( 0.018913 0.026124 -0.087696 )
(ZX ,ZY) : (-0.000008 -0.000005 )
(Zxx ,Zyy ,Zxy) : ( 0.506775 0.001294 0.509323 )

Original scene parameters:

Z 0 : 1.000000
(Vx ,Vy ,Vz) : ( 6.000000 4.000000 3.000000 )
(Ox ,Oy ,Oz) : ( 0.034966 0.017453 -0.087266 )
(ZX ,ZY) : ( 0.000000 0.000000 )
(Zxx ,Zyy ,Zxy) : ( 0.500000 0.00000 0.500000 )

Here we see that that the computed solution compares well with the original values.

In general it has been observed that the image flow parameters recovered by Wohn (1984) are very robust
for planar surfaces, but are error sensitive for curved surfaces, perhaps due to the inadequate spatial resolu-
tion of the images. Consequently the 3D interpretation is reliable for planar surfaces but is unsatisfactory
for curved surfaces. The solution method described here was implemented on a Symbolics 3600 computer.
Random values of motion and structure parameters were generated and the image flow parameters were
computed using relations (3.11a-l). These image flow parameters were given as input to a program to solve
the image flow equations. The program was successfully run on hundreds of test examples. Many of these
examples were specifically designed (using the results in Appendix B and G) to produce the cases of multi-
ple interpretations. Some non-trivial examples of these cases are given here. The validity of each of these
examples is easily verified by computing the image motion parameters for the different solutions using
relations (3.11a-l) and comparing them to the input image motion pameters. (All values are rounded to the
sixth decimal place.)

Example 1 : For a curved surface with non-zero translation parallel to the image plane, there are three
solutions if the surface is a specular saddle and the mean curvature is −1.

Input image motion parameters:

u 0 : 9.560000v 0 : 13.570000 ux : -9.140000 vx : 8.960000
uy : -8.960000 vy : -9.140000 uxx : 14.563000 vxx : -3.402000
uxy : -5.825180 vxy : -40.404280 uyy : 4.557000 vyy : 30.542000

The set of solutions for (θ, r):

{ (-0.035108 , -50.740273) , (1.381851 , -10.399291) , (1.329556 , -7.785441) }.

Solution 1:
(Vx , Vy , Vz) : ( -50.709006 , 1.781027 , -9.140000)
(OX , OY , OZ) : ( 15.351027 , 41.149006 , -8.960000)
(ZX , ZY) : ( 0.000000 , 0.000000 )
(Zxx , Zyy , Zxy ) : ( -1.910134 , -0.089866 , 0.417602)

Solution 2:
(Vx , Vy , Vz) : ( -1.953224 , -10.214214 , -9.140000)
(OX , OY , OZ) : ( 3.355786 , -7.606776 , -8.960000)
(ZX , ZY) : ( 0.000000 , 0.000000 )
(Zxx , Zyy , Zxy ) : ( 0.333065 , -2.333065 , 4.700416)
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Solution 3:
(Vx , Vy , Vz) : ( -1.860000 , -7.560000 , -9.140000)
(OX , OY , OZ) : ( 6.010007 , -7.700000 , -8.960000)
(ZX , ZY) : ( 0.000000 , 0.000000 )
(Zxx , Zyy , Zxy ) : ( 0.450000 , -2.450000 , 6.363006)

Example 2 : For a curved surface with non-zero translation, there are two solutions if it is saddle or
cylindrical, there is no translation along the line of sight, its mean scaled curvature is −1 and the slopes and
curvatures are related by relation (G17).

Input image motion parameters:

u 0 : -13.090000 v 0 : 10.130000 ux : -2.025000 vx : 6.870000
uy : -0.618000 vy : -3.050400 uxx : 2.625994 vxx : -12.576974
uxy : -23.874837 vxy : 10.120568 uyy : -28.805994vyy : 32.836974

The set of solutions for (θ, r):

{ (-1.187512 , 31.733480) , (-0.545848 , 4.738576) }

Solution 1 :
(Vx , Vy , Vz) : ( 11.867317 , -29.430945 , 0.000000 )
(OX , OY , OZ) : (-19.300945 , 1.222683 , -1.848000)
(ZX , ZY) : ( -0.170637 , 0.103646 )
(Zxx , Zyy , Zxy ) : ( 0.427338 , -2.427338 , -0.385419)

Solution 2:
(Vx , Vy , Vz) : ( 4.050000 , -2.460000 , 0.000000)
(OX , OY , OZ) : ( 7.670000 , 9.040000 , -5.640000)
(ZX , ZY) : ( -0.500000 , 1.240000 )
(Zxx , Zyy , Zxy ) : ( 5.112591 , -7.112591 , -7.788849)

Example 3 : There are four solutions when the vector given by (slope along the X-axis, slope along the Y-
axis, 1+mean scaled curvature) is parallel to the translation vector.

Input image motion parameters :

u 0 : -8.300000 v 0 : 2.530000 ux : 8.886919 vx : -4.112594
uy : -1.332594 vy : 3.122606 uxx : -30.694250vxx : 3.251107
uxy : -12.390270 vxy : -4.858356 uyy : 14.094250 vyy : 1.808893

The set of solutions for (θ, r):

{ (-0.378468 , 2.733441) , (-0.378468 , -5.917901 )
( 1.192328 , -15.826524) , ( 1.192328 , -4.995007 ) }.

Solution 1:
(Vx , Vy , Vz) : ( 2.540000 , -1.010000 , 2.040000)
(OX , OY , OZ) : ( 1.520000 , 5.760000 , 1.390000)
(ZX , ZY) : ( 2.695638 , -1.071887 )
(Zxx , Zyy , Zxy ) : (-3.218917 , 5.548918 , -6.337371)

Solution 2:
(Vx , Vy , Vz) : (-5.499101 , 2.186651 , 2.040000)
(OX , OY , OZ) : ( 4.716651 , 13.799101 , 1.390000)
(ZX , ZY) : (-1.245098 , 0.495098 )
(Zxx , Zyy , Zxy ) : ( 1.486797 , -2.563010 , 2.927191)
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Solution 3:
(Vx , Vy , Vz) : ( -5.847863 , -14.706508 , 9.969525)
(OX , OY , OZ) : (-12.176508 , 14.147863 , 1.390000)
(ZX , ZY) : ( 0.185128 , 0.465571 )
(Zxx , Zyy , Zxy ) : ( -0.221066 , -2.410154 , -0.757158)

Solution 4:
(Vx , Vy , Vz) : (-1.845643 , -4.641518 , 9.969525)
(OX , OY , OZ) : (-2.111518 , 10.145643 , 1.390000)
(ZX , ZY) : ( 0.586574 , 1.475146 )
(Zxx , Zyy , Zxy ) : (-0.700440 , -7.636498 , -2.399032)

Example 4 : Given the first order spatial and temporal image flow derivatives for a rigid motion case
where the angular velocity and the magnitude of translation are constant with time, but the direction of
translation changes due to angular velocity (see Section 5.4), up to five interpretations are possible.

For this case about fifty random numerical examples were generated. For these examples, it was found that,
most often the number of possible interpretations was three (about three out of four); occasionally (about
one out of five) there were five possible interpretations, and in a few cases (about one out of twenty) the
interpretation was unique. Below we give one case where there are five possible interpretations:

Input image motion parameters:

u 0 : -9.150000 v 0 : -8.970000 ux : 54.466200 vx : 21.655800
uy : 0.062400 vy : -1.488400 ut : 304.508958 vt : 303.101922

The set of solutions for (θ, r):

{ (1.129612 , 0.762626) , (0.6196659 , 4.598889) , (0.545963 , 9.899050)
(0.235251 -31.567504) , (-1.014546 , 6.088551) }

Solution 1:
(Vx , Vy , Vz) : ( 3.214788 , -5.170647 , 48.605154)
(OX , OY , OZ) : ( -14.140647 , 5.935212 , -31.082672)
(ZX , ZY) : ( 1.823151 , 9.688064 )

Solution 2:
(Vx , Vy , Vz) : ( -30.698008 , -7.357963 , -3.371209)
(OX , OY , OZ) : ( -16.327963 , 39.848008 , -7.792830)
(ZX , ZY) : ( -1.884077 , -0.255887 )

Solution 3:
(Vx , Vy , Vz) : ( 8.460000 , 5.140000 , 3.960000)
(OX , OY , OZ) : ( -3.830000 , 0.690000 , 9.030000)
(ZX , ZY) : ( 5.970000 , -1.060000 )

Solution 4:
(Vx , Vy , Vz) : ( 3.743829 , 2.670866 , 7.116296)
(OX , OY , OZ) : ( -6.299134 , 5.406171 , 12.123849)
(ZX , ZY) : ( 12.647452 , -3.221688 )

Solution 5:
(Vx , Vy , Vz) : ( 0.325650 , 0.689602 , 37.877619)
(OX , OY , OZ) : ( -8.280398 , 8.824350 , 17.707709)
(ZX , ZY) : ( 57.081497 , -54.184914 )
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‘‘The purpose of computing is insight, not numbers.’’
-Richard W. Hamming
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CHAPTER 8

Conclusions

We started with the problem of determining the shape and rigid motion of a surface given the visual
motion. We first solved this problem for planar and curved surfaces from instantaneous visual motion, and
then solved it for constant space motion using visual motion in a small space-time interval. Finally, we
generalized our formulation to arbitrary structure and transformation of surfaces. We found that the gen-
eral problem is inherently under-constrained and that additional constraints on the scene are necessary to
solve the problem. From a practical standpoint, perhaps the most important part of this research is that
related to the rigid motion of surfaces. The assumption of rigid motion or ‘‘nearly rigid motion’’ holds in
most cases in the world. The existence of a closed-form solution in this case suggests that a visual system
can solve this problem quickly, and using minimal processing hardware. The many results concerning the
multiplicity of interpretations suggests that cooperation between processors processing ‘‘adjacent regions’’
of visual motion can expedite obtaining a unique interpretation. Also, the computational approach
developed for this case is potentially useful in building machine vision systems. It provides a theoretical
basis for further investigations into designing robust methods for interpreting visual motion. From a
theoretical viewpoint, however, the generalized formulation is important. It reveals the inherent illposed-
ness of the problem. It makes explicit the solvability of the problem for a given set of constraints on the
scene. This gives us clues as to what implicit constraints the human visual system might be using in order
to solve the problem. More importantly, it provides an overall theoretical and computational framework
from which to view the visual motion problem. The problem of visual motion perception is not yet solved
completely. However, we now have clear directions for future work. We know how to relate the scene
parameters and the image parameters in a general case; and we know the nature of these equations. In the
future several questions need to be addressed. We do not yet have a general solution method for non-rigid
motion. Interpretation of binocular visual motion needs to be investigated thoroughly. General methods for
the measurement of image flow in the spatio-temporal domain have not been developed until now. Possi-
ble interactions of the visual motion module with other modules of vision are yet to be explored. New
‘‘multi-resolution analysis’’ methods may reduce computation in the measurement as well as the interpre-
tation of image flow.
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APPENDIX A

Expressing a surface in terms of image coordinates

Here we give a method of deriving the function that maps image points (x,y) on the image plane to points
on the surface in the scene along the optical axis. Since the image at a point (x, y) on the image plane
corresponds to the point (xZ, yZ, Z) in the scene, our goal is to express Z in terms of (x, y) and the sur-
face structure parameters. In Longuet-Higgins and Prazdny (1980) and Waxman and Ullman (1985) Z was
so expressed only up to second order terms of (x, y). Below we give a systematic method which can be
used to express Z up to any desired order of terms in (x, y). Assuming that the surface is smooth and is
given by Z = f (X,Y) we can expand f (X,Y) in a Taylor series:

(A1)Z = a 0+a 1X+a 2Y+a 3X 2+a 4XY+a 5Y 2+a 6X 3+.....

Using equations (3.1a,b) and equation (A1) we can obtain an implicit expression for Z in terms of the
image coordinates x, y :

(A2)Z = a 0 + Z (a 1x + a 2y + Zii ( a 3x 2 + a 4xy + a 5y 2 + Z (a 6x 3 + .....) ) )

Now we systematically substitute for the appropriate Zs on the right hand side to eliminate second and
higher order terms in Z on the right hand side of equation (A2). Substituting the entire right hand side of
equation (A2) for the Z underlined in equation (A2) we get

(A3)Z = a 0+Z (a 1x+a 2y+(a 0+Z (a 1x+a 2y+....))

(a 3x 2+a 4xy+a 5y 2+Z (a 6x 3+.....)))

Rearranging terms in equation (A3) we have

(A4)Z = a 0+Z(a 1x+a 2y+a 0a 3x 2+a 0a 4xy+a 0a 5y 2+a 0Zii(a 6x 3+.....)

+Zii(a 1x+a 2y+....)(a 3x 2+a 4xy+a 5y 2+Z(a 6x 3+.....)))

We again substitute for the Zs underlined in equation (A4) the entire expression on the right hand side of
equation (A4):

(A5)Z = a 0+Z(a 1x+a 2y+a 0a 3x 2+a 0a 4xy+a 0a 5y 2+(a0
2a 6+a 0a 1a 3)x 3+...).

Continuing this recursive substitution procedure, Z can be expressed explicitly in terms of the image coor-
dinates x, y to any required order of terms. Using O 3(x,y) to denote third and higher order terms equa-
tion (A5) can be written as

(A6)Z = a 0+Z (a 1x+a 2y+a 0a 3x 2+a 0a 4xy+a 0a 5y 2+O 3(x, y)) .

Rearranging terms in equation (A6) we get

(A7)a 0 = Z (1−a 1x−a 2y−a 0a 3x 2−a 0a 4xy−a 0a 5y 2−O 3(x,y)) .

Equation (A7) can be used to obtain an expression for Z which is explicit up to second order terms:

(A8)Z = a 0 [1−a 1x−a 2y−a 0a 3x 2−a 0a 4xy−a 0a 5y 2−O 3(x,y)]−1 .
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APPENDIX B

Some degenerate cases and conditions

In this appendix we mainly consider some degenerate cases. Conditions for the presence of these
cases are given in terms of the image flow parameters and in each case the solution of the image flow
equations is given. This enables us to analyze a general case by precluding the occurrence of these
degenerate cases. This strategy of analysis is almost a necessity due to the non-linear nature of the
image flow equations. At the end we also give conditions on the image flow parameters for a surface
in motion to be planar and curved. The intepretation of image flow in these two cases is considered
in later appendices. Below we systematically consider the different cases in a sequential order. The
solution is presented in a sequence of theorems and lemmas. Typically, a theorem or a lemma gives
the solution when a specified condition is true. The condition part usually specifies that the condition
for none of the preceding theorems or lemmas is true but a certain condition specific to this
(theorem/lemma) holds. This style of presentation suggests an implementation algorithm based on
testing for conditions on the image flow parameters. Whenever the proof of a theorem or a lemma is
obvious or simple we have not included the proof here. Theorem 1 : The condition

(B1)ux=vy=uy+vx=uxx−2u 0=u 0−vxy=vyy−2v 0=v 0−uxy=uyy=vxx=0.

is true if and only if there is no translation, i.e. Vx=Vy=Vz=0.

Lemma 1: Under the condition stated in the above theorem the solution of the image flow equations
(3.11a-l) is

(B2a)ZX , ZY , Zxx , Zyy and Zxy are indeterminate ,

(B2b)(Vx , Vy , Vz) = (0, 0, 0) , and

(B2c)(ΩΩX , ΩΩY , ΩΩZ) = (v 0 , −u 0 , uy) .

Theorem 2 : The condition under Theorem 1 is false and

(B3)(ux−vy=uy+vx=uxx−2vxy=vyy−2uxy=uyy=vxx=0)

if and only if one of the following is true:
(i) there is no translation parallel to the image plane, i.e.

(B4a)Vx = Vy = 0

(ii) the surface is frontal, planar, and Vx=0, i.e.

(B4b)ZX = ZY = Zxx = Zyy = Zxy = Vx=0 .

(iii) the surface is frontal, planar, and Vy=0, i.e.

(B4c)ZX = ZY = Zxx = Zyy = Zxy = Vy=0 .

Lemma 2a : Under the conditions of the above theorem there can be up to three solutions for the
image flow equations (3.11a-l), one solution each for the three cases (B4a),(B4b), and (B4c). The solu-
tions are

(B5a)(i) Zxx , Zyy and Zxy are indeterminate ,

(B5b)(Vx , Vy , Vz) = (0, 0, ux) ,
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(B5c)(ΩΩX , ΩΩY , ΩΩZ) = (v 0 , −u 0 , uy) ,

(B5d)(ZX , ZY) = I
L (u 0−vxy)/ux , (v 0−uxy)/ux

M
O

(B6a)(ii) ZX = ZY = Zxx = Zyy = Zxy = 0 ,

(B6b)( Vx , Vy , Vz) = (0, uxy−v 0 , ux) ,

(B6c)(ΩΩX , ΩΩY , ΩΩZ) = (uxy , −vxy , uy) ,

and

(B7a)(ii) ZX = ZY = Zxx = Zyy = Zxy = 0 ,

(B7b)( Vx , Vy , Vz) = (vxy−u 0 , 0, ux) ,

(B7c)(ΩΩX , ΩΩY , ΩΩZ) = (uxy , −vxy , uy) .

Theorem 3 : Conditions under Theorem 1 and Theorem 2 are both false and

(B8)(uyy=vxx=uxx−2vxy=vyy−2uxy=0)

if and only if the surface is planar, and there is a finite translation parallel to the image plane, i.e.

(B9a)Zxx = Zyy = Zxy = 0 ,

(B9b)Vx ≠≠ 0 OR Vy ≠≠ 0 .

This case of planar surfaces is treated in the next appendix. Theorem 4 : If conditions under
Theorem 1, Theorem 2, and Theorem 3 are all false, then the surface is curved (i.e. at least one of the
curvatures is non-zero) and translation parallel to the image plane is non-zero; i.e.

(B10a)( Zxx≠≠0 OR Zyy≠≠0 OR Zxy≠≠0 ) AND

(B10b)Vx ≠≠ 0 OR Vy ≠≠ 0 .

This case of curved surfaces is considered later (Appendices F and G). The condition part of the
above theorem (i.e. conditions under Theorem 1, Theorem 2, and Theorem 3 are all false) will be
referred to as the curved-surface- condition. Theorem 5: Suppose that translation parallel to the image
plane is not zero and let r and θθ be such that

(B11a,b)Vx ≡≡ r cosθ and Vy ≡≡ r sinθ for −ππ/2 < θ ≤≤ ππ/2 .

Then, using the notation

(B12a,b)s ≡≡ sinθ and c ≡≡ cosθ ,

the motion and orientation are given by relations (4.3a-h).

Proof : Relations (4.3a,b,g,h) are easily obtained from relations (3.11a,b) and (B11a,b). From rela-
tions (4.2a,b), (3.11c-f), and (B11a,b,B12a,b) we can get

(B13a,b)a 1 = rcZY + rsZX and a 2 = rcZX − rsZY .

Solving for ZX and ZY from above equations, we get relations (4.3e,f). Now, from relations (3.11c),
(B11a), and (4.3e) we can get

(B14a)Vz = ux−a 1cs−a 2c 2 .

Or, using relation (4.2b) and the identity s 2+c 2=1,

(B14b)Vz = ux(s 2+c 2)−a 1cs−a 2c 2 .

Relation (4.3c) can be obtained from the above relation. The derivation of relation (4.3d) is similar to
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that of relation (4.3c) g
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APPENDIX C

Solving the image flow equations: planar surfaces

Throughout this section we assume that the surface in motion is planar, non-frontal, and has a non-
zero translation parallel to the image plane. Condition for the presence of this case in terms of the
image flow parameters is given in Theorem 3 of Appendix B. We give here a method to solve the
image flow equations by first solving for the translation along the line of sight.

Theorem 1 : The translation along the line of sight Vz is a root of the cubic equation

(C1)αα3 + C 1 αα2 + C 2 αα + C 3 = 0

where, using the notation

(C2a,b)A = u 0 − vxy , B = v 0 − uxy ,

(C3a)C 1 = − (ux + vy) ,

(C3b)C 2 = − (
4
1hhA 2 +

4
1hhB 2 + a1

2 − ux vy) , and

(C3c)C 3 =
4
1hhA 2 vy +

4
1hhB 2 ux −

2
1hh a 1 AB .

Proof : We eliminate all parameters except Vz from equations (3.11a-f,4.4a,b). From equations
(3.11a,b) we have

(C4a,b)ΩΩY = −u 0 − Vx and ΩΩX = v 0 + Vy .

Substituting for ΩΩX and ΩΩY from above in equations (4.4a,b) and rearranging terms, we find

(C5a,b)Vx = Vz ZX − A and Vy = Vz ZY − B ,

where A and B are as in (C2a,b).

Using the above relations, we eliminate Vx and Vy from (3.11c-f) to get

(C6a)ux = Vz + (Vz ZX − A) ZX

(C6b)vy = Vz + (Vz ZY − B) ZY

(C6c)a 1 = (Vz ZY − B) ZX + (Vz ZX − A) ZY .

We have here three equations in three unknowns. Equations (C6a,b) are quadratic in ZX and ZY ,
respectively, with solutions given in terms of Vz as

(C7a)ZX +, ZX − =
2Vz

A ±± √√dddddddddddA 2 − 4Vz(Vz−ux)hhhhhhhhhhhhhhhhhhhh

(C7b)ZY +, ZY − =
2Vz

B ±± √√dddddddddddB 2 − 4Vz(Vz−vy)hhhhhhhhhhhhhhhhhhhh .

Substituting for ZX and ZY from (C7a,b) into (C6c) and simplifying yields

40



(C8)2 a 1Vz + AB = ±±√√ddddddddddddddddddddddddddd[ A 2 − 4Vz(Vz−ux) ] [ B 2 − 4Vz(Vz−vy) ] .

Squaring expression (C8) and simplifying gives

(C9)Vz ( Vz
3 + C 1 Vz

2 + C 2 Vz + C 3 ) = 0 .

Here we have a quartic equation in Vz . However it can be shown that the coefficient C 3 is equal to
zero if and only if the translation along the line of sight is zero. Therefore the quartic equation
reduces to the cubic equation (C1) g

Longuet-Higgins (1984) obtained the same cubic equation by a different approach.

Lemma 1: All three roots of the cubic equation are real and are given by

(C10)αα0 , αα+, αα− = Vz ,
2
1hh

I
K
L
νν . λλ ±± √√dddddddddddd(νν . νν) (λλ . λ)λ)

M
N
O

where νν is the scaled translational velocity vector with its Z-component reversed, i.e.
νν = (Vx , Vy , −Vz), and λλ is a vector normal to the planar surface given by λλ = ( ZX , ZY , −1).

Proof : By expressing the coefficients C 1 , C 2 , C 3 in terms of Vx , Vy , Vz , ZX and ZY this lemma
is easily verified g

Below we state a theorem which helps in identifying the required solution αα0 for Vz from the spuri-
ous solutions αα+ and αα−. The theorem effectively implies that if the spurious solutions are not equal
to αα0 then they result in complex valued solution for either slope or both slopes. In contrast αα0
always results in real valued solutions for the slopes. This fact is proved by considering the signs of
the radicands in equations (C7a,b).

Theorem 2 :

(C11a,b)A 2 − 4 αα0 (αα0 − ux) ≥≥ 0 and B 2 − 4 αα0 (αα0 − vy) ≥≥ 0 ,

(C11c,d)A 2 − 4 αα+ (αα+ − ux) ≤≤ 0 or B 2 − 4 αα+ (αα+ − vy) ≤≤ 0 ,

(C11e,f)A 2 − 4 αα− (αα− − ux) ≤≤ 0 or B 2 − 4 αα− (αα− − vy) ≤≤ 0 .

Proof : This can be easily proved by expressing all quantities in terms of the structure and motion
parameters g

Theorem 3 : If for a non-middle root of equation (C1) (i.e. αα+ or αα−) both radicands (C7a,b) vanish,
then it is equal to αα0 g

We now state another theorem which implies that the correct solution αα0 for Vz is the middle root
of the cubic equation. This fact helps us to select αα0 from among the three roots without actually
evaluating the radicands (C7a,b) for each of the roots.

Theorem 4 :

(C12)αα− ≤≤ αα0 ≤≤ αα+ .

Proof : This is proved using the relations (C11a-f). Let

(C13a)A + , A − = (1/2) (ux ±± √√dddddux
2+A 2 )

and

(C13b)B + , B − = (1/2) (vy ±± √√dddddvy
2+B 2 ) .
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Then from relation (C11a)

A 2 − 4 αα0 (αα0 − ux) ≥≥ 0

→ αα 0
2 − ux αα0 −

4
1hh A 2 ≤≤ 0

→ (αα0 − A −) (αα0 − A +) ≤≤ 0

(C14a)→ A − ≤≤ αα0 ≤≤ A +.

Similarly, from relation (C11b) we can show that

(C14b)B − ≤≤ αα0 ≤≤ B + .

Hence

(C14c)max (A −, B −) ≤≤ αα0 ≤≤ min (A +, B +).

Similarly, from relations (C11c-f) we can show that

(C15a,b)αα+ ≥≥ max (A +, B +) and αα− ≤≤ min (A −, B −) .

Relations (C14c) and (C15a,b) imply that αα0 is the middle root of the cubic equation (C1) (i.e.
αα− ≤≤ αα0 ≤≤ αα+ ) g

The following theorem gives an analytic solution for αα0 .

Theorem 5 : Let

(C16a,b)p =
3

C 2hhh −
9

C1
2

hhh and q =
27

C1
3

hhh −
6

C 1 C 2hhhhhh +
2

C 3hhh.

Then, if p = 0,

(C17a)αα0 = 3 √√dddd−2q − C 1/3 ;

if q = 0 ,

(C17b)αα0 = − C 1/3 ;

otherwise,

(C17c)αα0 = 2 d cos
I
J
L 3
π+ψhhhhh

M
J
O
−

3

C 1hhh

where

(C18a,b)d = sign(q)√√ddddJ p J and ψ = cos−1
I
J
L d 3

qhhh
M
J
O
.

Proof : This is a direct consequence of the closed-form solutions for a cubic equation; see Rektorys
(1969) g Theorem 6 : The first order flow parameters determine lower and upper bounds on the velo-
city of approach Vz of a surface along the line of sight. The bounds are

(C19)Vz
(max /min) =

2

ux+vyhhhhhh ±±
2

√√ddddda1
2 +a2

2
hhhhhhhh

where a 1 , a 2 are as in relations (4.2a,b).

Proof : By simple trigonometric manipulation, expression (4.3c) for Vz can be reexpressed as
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(C20)Vz =
2

ux+vyhhhhhh −
2

a 1hhh sin2θ −
2

a 2hhh cos2θ .

Differentiating the right hand side above and equating the resulting expression to zero we can show
that the θθs corresponding to the extrema of Vz are given by

(C21)tan2θ =
a 2

a 1hhh .

From the above expression we have

(C22a,b)sin2θ =
√√ddddda1

2 +a2
2

a 1hhhhhhhh and cos2θ =
√√ddddda1

2 +a2
2

a 2hhhhhhhh for 0≤≤2θ≤≤2ππ.

Substituting for sin2θθ and cos2θθ from the above expressions in expression (C20) we can get relation
(C19) g A similar theorem can be stated for ΩΩZ , the rotational velocity about the line of sight. An
interpretation of the bounds is discussed at the end of this appendix. Having solved for Vz = αα0 , we
can obtain the remaining unknowns by back substituting its value in reverse order in the steps lead-
ing to the derivation of the cubic equation (C1). Assuming Vz≠≠0 the solution method is as follows.
Substitute the value of Vz into equation (C8) and determine the sign of the right hand side which
satisfies this equation. If this is ‘‘+’’, then the two solutions for the slopes are (ZX + , ZY +) and
(ZX − ,ZY −). If it is ‘‘−’’, the two solutions for the slopes are (ZX + ,ZY −) and (ZX − ,ZY +). If the
sign is indeterminate, as when the right hand of equation (C8) is zero, it can be arbitrarily chosen as
either sign gives the same solution. At this point we can solve for Vx and Vy using relations (C5a,b),
and ΩΩX and ΩΩY using relations (C4a,b). Finally, ΩΩZ is found from relation (3.11e/f). The above
method cannot be used if Vz=0. In this case we need to use an alternative method. Assuming Vz=0
the solution for the other unknowns can be easily obtained (see Waxman and Ullman, 1985). How-
ever we would like to use a uniform method in all cases. Therefore, below we give a method where θθ
and r are determined first (possibly from a knowledge of Vz), and then the other unknowns from
relations (4.3a-h). Also this method conforms to the other problems considered later on (e.g. curved
surfaces, and planar surfaces using spatio-temporal derivatives). Theorem 7 : For planar surfaces the
constraints on r and θθ are

(C23a)r 2c − (vxy−u 0) r − Vz (a 1s+a 2c) = 0 ,

(C23b)r 2s − (uxy − v 0) r − Vz (a 1c−a 2s) = 0

where Vz is expressed in terms of θθ as in relation (4.3c).

Proof : From relations (4.3c,e-h) and (4.4a,b) we can derive

(C24a)vxy − u 0 = rc − Vz (a 1s+a 2c)/r ,

(C24b)uxy − v 0 = rs − Vz (a 1c−a 2s)/r .

Since the translation parallel to the image plane is assumed to be non-zero, we have r≠≠0 and there-
fore relations (C23a,b) are easily obtained from relations (C24a,b) g Considering relations (C23a,b)
to be quadratic equations in r and equating the roots of these equations, we can obtain

(C25)Bc − As = ±±s√√dddddddddddddA 2+4cVz(a 1s+a 2c) ±± c√√dddddddddddddB 2+4sVz(a 1c−a 2s)

where the two ±± signs are used to denote four combinations of signs. In the above relation we can
substitute for Vz in terms of θθ from relation (4.3c) and get an equation involving only θθ. The result-
ing equation can be solved to obtain θθ by a simple numerical method (say by searching for θθ in the
interval (−ππ/2,ππ/2]). Having solved for θθ we can obtain Vz from relation (4.3c) and then solve for
r from relations (4.5a,b). However it is easier to solve for θθ in terms of Vz which, as we have seen,
can be obtained by solving a cubic equation.

Theorem 8 : tanθθ is given by the roots of the quadratic equation
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(C26)(ux−Vz) tan2θ − a 1tanθ + (vy−Vz) = 0.

Proof : This follows from relation (4.3c) g First we solve for Vz as the middle root of the cubic equa-
tion (C1). Then we solve the quadratic equation (C26) to get θθ. There are in general two solutions for
θθ and for each of them we solve for r by solving the quadratic equations (C23a,b). The common
root(s) of these equations are the solutions for r. From r and θθ the other unknowns are obtained
from relations (4.3a-h). In order to interpret the bounds on Vz and ΩΩZ we make the following
observation. To a first order, the image velocity field in a small field of view around the direction of
view can be described by

(C27)
R
J
Qv
uH
J
P
=

R
J
Qv 0

u 0 H
J
P
+

R
J
Qvx

ux

vy

uy H
J
P

R
J
Qy
xH
J
P
.

The above expression represents an affine transformation. In this expression, the vector [u 0 , v 0]T

gives the pure translation of the image region at the image origin; the 2××2 tensor on the right hand
side is the velocity gradient tensor. This tensor can be expressed uniquely as the sum of a symmetric
tensor and an anti-symmetric tensor as below:

(C28)
R
J
Qvx

ux

vy

uy H
J
P
=

R
J
Q(vx+uy)/2

ux

vy

(vx+uy)/2H
J
P

+
R
J
Q−(uy−vx)/2

0

0

(uy−vx)/2H
J
P
.

In Fluid Mechanics literature (e.g.: Aris, 1962), the symmetric tensor of a velocity gradient tensor is
called the deformation or rate of strain tensor and the anti-symmetric tensor is called the spin tensor.
These tensors have nice physical interpretations. We will borrow these well known ideas from Fluid
Mechanics to interpret our results. The independent parameter uy−vx of the spin tensor is called
the spin or vorticity. It is also the negative curl of the image velocity field at the image origin, i.e.

(C29)−curl = uy−vx .

This can be easily verified from relation (C27). It gives the rigid body rotation of the image neighbor-
hood at the image origin (Figure 12b). By setting all terms except the curl term to zero, i.e.

(C30)u 0=v 0=(vx+uy)=ux=vy=0,

we can obtain the image flow field corresponding to this term. The term results in a purely rotational
flow field (see Figure 12a). The deformation tensor gives the deformation of the image neighborhood
at the image origin. We can interpret this tensor in terms of its eigen values. The two eigen values of
this tensor are in fact Vz

max , Vz
min , given by relation (4.8a). The sum of the eigen values (which is

also the trace of the original tensor) is the divergence of the image velocity field at the image origin,
i.e.

(C31)divergence = ux+vy .

This can be easily verified from relation (C27). This quantity gives the isotropic expansion or contrac-
tion of the image neighborhood at the image origin (Figure 11b). The image flow corresponding to
the divergence term is obtained by setting other terms to zero, i.e.

(C32)u 0=v 0=uy=vx=(ux−vy)=0 .

The result is a purely divergent flow (see Figure 11a). The difference of the two eignen values of the
deformation tensor is the magnitude of pure shear of the image neighborhood at the image origin, i.e.,

(C33)Shear magnitude = √√dddddddddddd(uy+vx)2+(ux−vy)2 .

The image neighborhood undergoes a contraction along one direction and an expansion orthogonal
to it under constant area (see Figure 13b). The directions of contraction and expansion are aligned
with the two eigen vectors of the deformation tensor. The image flow corresponding to a pure shear
transformation is obtained by setting all but the shear terms to zero, i.e.,

(C34)u 0=v 0=ux+vy=uy−vx=0 .

An example of a pure shear flow is shown in Figure 13a. In summary, a small circular image element
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at the image origin translates rigidly with velocity [u 0 , v 0]T , rotates as a rigid area with spin
uy−vx , dilates according to the sum of the eigen values of the deformation tensor, and undergoes a
stretch and compression at constant area according to the difference of the eigen values of the defor-
mation tensor (along mutually orthogonal axes aligned with the eigen vectors) (Koenderink and Van
Doorn, 1975, 1976; Waxman and Wohn, 1986). In view of our above discussion and equations
(C29,C31,C33), and (4.8a,b), relations (4.8c,d) can be derived. The quantities: divergence, curl, and
shear magnitude are all invariant with respect to the orientation of the image axes. Their values are
unaffected by a rotation of the image coordinate system. This can be easily shown by considering how
the image flow derivatives ux ,uy ,vx ,vy are transformed by a rotation of the image coordinate sys-
tem (e.g. see Kanatani, 1986). Hence they are called differential invariants of image flow. Let us now
interpret what the bounds mean in the scene domain. For this sake we introduce two vectors, VV 1 as
in relation (4.15a) which is the direction of translation parallel to the image plane, and PP as in rela-
tion (4.16a) which is the gradient of the object’s surface with respect to the image plane. Now, from
equations (3.11c,d,C31,4.15a,4.16a) we can show that

(C35a)divergence = 2Vz + VV 1
.PP .

Let kk be a unit vector along the Z axis. Then, from equations (3.11e,f,C29,4.15a,4.16a) we can show
that

(C35b)−curl kk = 2ΩΩZkk + VV 1××PP .

Also, from equations (3.11c-f,C33,4.15a,4.16a) we can show that

(C35c)Shear magnitude = cVV 1 c cPP c .
The above relations (C35a-c) show how the differential invariants of image flow are related to the
three-dimensional motion and surface orientation. Some of the terms in these relations are in agree-
ment with our intuition, for example the appearance of Vz in divergence and ΩΩZ in curl. Now, from
equations (4.8c,d,C35a-c) we can derive relations (4.8e,f). See the main text for some comments on
these relations.
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APPENDIX D

Nature of solutions for planar surfaces

Theorem 1 : The interpretation of the image flow of a planar surface is unique when the translation
along the line of sight is zero.

Proof : Vz is the translation component along the line of sight. Setting Vz to zero in relations
(C24a,b) we see that the resulting equations uniquely determine r and θθ. Each solution of (θθ,r) gives
one solution to the structure and motion parameters according to relations (4.3a-h). Hence the
theorem g

Theorem 2 : There are two solutions to θθ which correspond respectively to the direction of transla-
tion parallel to the image plane and the surface tilt ( tilt is the angle between the x-axis and the pro-
jection of surface normal on the image plane).

Proof : By expressing the coefficients of the quadratic equation (C26) in terms of the structure and
motion parameters (using relations (4.2a,3.11c-f)) its roots can be shown to be

(D1)tanθ =
Vx

Vyhhh ,
ZX

ZYhhh

The first solution corresponds to the direction of translation parallel to the image plane and the
second one corresponds to the surface tilt g

Theorem 3 : If the direction of translation is parallel to the surface normal then the solution for the
structure and motion parameters is unique.

Proof : First we observe that (Vx ,Vy ,Vz) is the translation vector and (ZX ,ZY ,−1) is the surface
normal. If these vectors are parallel then their corresponding components are proportional. There-
fore we can show that

(D2a,b,c)
Vx

Vyhhh =
ZX

ZYhhh , Vx = −Vz ZX , and Vy = −Vz ZY .

From relations (D1,D2a) it follows that the two solutions for θθ are equal. In addition we can show
these two results: (i) In equations (C23a,b) the corresponding coefficients of r become proportional,
and therefore the two quadratic equations in r become linearly dependent; consequently both equa-
tions have the same pair of roots. (ii) The two roots of both (C23a,b) are equal. Therefore we get a
unique solution for r. Thus, in effect, we have a unique solution for (θ,r) and therefore a unique
solution for the structure and motion parameters g

Theorem 4 : If neither the translation along the line of sight is zero nor the direction of translation is
parallel to the surface normal then there are two solutions for the structure and motion parameters.

Proof :

Case 1. The translation vector, surface normal, and optical axis lie in a plane.

In this case it is easy to see that the two solutions for θθ given in relation (D1) are equal. However in
this case it can be shown that equations (C23a,b) are equivalent and give two distinct solutions for r.
Therefore, effectively (θ,r) has two solutions.
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Case 2 : This corresponds to the situation where Case 1 is false. Under this assumption, multiplying
equation (C23a) by s and equation (C23b) by c we get

(D3a)r 2cs − (vxy−u 0) r − Vz (a 1s+a 2c) = 0 ,

(D3b)r 2cs − (uxy − v 0) r − Vz (a 1c−a 2s) = 0 .

Subtracting equation (D3a) from (D3b) and simplifying we get

(D4)r = Vz (vxy−u 0)s − (uxy−v 0)c

(a 1cos2θ − a 2sin2θ)hhhhhhhhhhhhhhhhhhh .

Under the conditions stated in the theorem it can be shown that the right hand side of this equation is
non-zero and finite. Therefore the above equation gives a unique solution for r for each θθ. In this
case θθ has two distinct solutions. Therefore we get two solutions for (θ,r).

In each of the two cases we get two solutions for the structure and motion parameters g The image
flow equations always have one solution which corresponds to the actual shape and motion of the sur-
face in the physical world. Therefore when there are multiple solutions it is natural to try to relate
the spurious solutions to the actual shape and motion of the surface. In order to do this we will adopt
the following notation: we will denote the parameters corresponding to the actual or the ‘‘correct’’
solution by appending a ‘‘0’’ to the subscripts of the respective parameters, and we will denote the
spurious solutions by appending distinct integers to these subscripts. For example, r 0 denotes the
actual translation parallel to the image plane whereas r 1 , r 2 , ..., etc. denote the spurious solutions
for the translation parallel to the image plane. In addition, we will define the quantities k, θ′ such
that

(D5a,b)ZX = k cosθ′ and ZY = k sinθ′ .

Note that θ′ corresponds to surface tilt. We also use the abbreviations

(D6a,b)c ′ = cosθ′ and s ′ = sinθ′ .

With this notation, the two solutions of θθ are

(D7a,b)tanθ0 =
Vx

Vyhhh and tanθ1 =
ZX

ZYhhh = tanθ′0 .

Theorem 5 : The solutions of (θ,r) are

(D8a,b)(θ0 , r 0), (θ′0 , −Vz 0 k 0) .

Proof : The common root(s) of equations (C23a,b) are the solutions of r. Expressing the roots of
these equations in terms of the structure and motion parameters we can show that, for θθ = θ0 the
common root is r 0 , and for θθ = θ1 it is −Vz 0 k 0 g

Waxman and Ullman (1985) obtained a result equivalent to the above theorem.
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APPENDIX E

Resolving the ambiguity of interpretation: planar surfaces

We have seen that an instantaneous image flow of a planar surface has in general two interpreta-
tions. In this section we will show that a unique interpretation is obtained in two cases: (i) the instan-
taneous image flow of two planar patches moving rigidly is given, and (ii) for a single planar surface
the image flows at two time instants separated by a ‘‘short’’ time interval are given. Waxman and
Ullman (1985) first obtained the relation between the two solutions for a planar surface. Denoting the
quantities corresponding to the ‘‘spurious’’ solution by a hat on top, the relations are

(E1a)ẐX = −Vx / Vz ,

(E1b)ẐY = −Vy / Vz ,

(E1c)V̂x = −ZXVz ,

(E1d)V̂y = −ZYVz ,

(E1e)V̂z = Vz ,

(E1f)ΩΩ̂X = ΩΩX − Vy − VzZY ,

(E1g)ΩΩ̂Y = ΩΩY + Vx + VzZX ,

(E1h)ΩΩ̂Z = ΩΩZ + VxZY − VyZX .

Given either of the two solutions for a planar surface we can obtain the other using these relations.
Therefore the pairs of solutions that satisfy relations (E1a-h) have been termed dual solutions by
Waxman and Ullman (1985). These relations can be easily verified from relations (4.3a-h) and the
fact that the solutions for (θ,r) are (θ0 ,r 0) and (θ′0 ,−Vz 0k 0) (see Theorem 5, Appendix D).

Theorem 1 : If two planar patches are moving as a rigid body and neither of them passes through the
origin then the interpretation of their instantaneous image flow is unique.

Proof : The fact that the two planar patches are moving rigidly implies that there is no relative
motion between the two; their motion parameters are the same. Further, since neither of them
passes through the origin, we have Z 0≠≠0. This is important because the translation is scaled by Z 0 .
Suppose that solving the flow field for the structure and motion of the two surfaces yields the dual
solution pairs (SS (1) , SDSD (1)) and (SS (2) , SDSD (2)) where

(E2a)SS (1) = (Vx
(1) , Vy

(1) , Vz
(1) , ΩΩX

(1) , ΩΩY
(1) , ΩΩZ

(1) , ZX
(1) , ZY

(1) )

(E2b)SS (2) = (Vx
(2) , Vy

(2) , Vz
(2) , ΩΩX

(2) , ΩΩY
(2) , ΩΩZ

(2) , ZX
(2) , ZY

(2) ) ,

and SDSD (1) and SDSD (2) are related to SS (1) and SS (2) by relations (E1a-h). Then we shall show that
the solutions corresponding to the actual interpretation for the structure and motion of the two sur-
faces, say SS (1) and SS (2) , are uniquely determined.

Suppose that the two surfaces are not parallel (i.e. they have different orientations); then for SS (1)

and SS (2) we have

(E3a)(ZX
(1) , ZY

(1) ) ≠≠ (ZX
(2) , ZY

(2) ) .
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But for the slopes of SDSD (1) and SDSD (2) , from relations (3.9a-c) and (E1a,b), we always find that

(E3b)(T̂X
(1) , T̂Y

(1) ) = (T̂X
(2) , T̂Y

(2) )

since

(E3c)( −Vx
(1) / Vz

(1) , −Vy
(1) / Vz

(1) ) = ( −Vx
(2) / Vz

(2) , −Vy
(2) / Vz

(2) ) ,

which reflects the rigid body motion of the planar surface pair. Furthermore, SS (1) and SS (2) have
the same rotation parameters, whereas, in general, this is not true with SDSD (1) and SDSD (2) . There-
fore, SDSD (1) and SDSD (2) can be ruled out as they are inconsistent.

If the two planar surfaces are in fact parallel but distinct (i.e. Z0
(1) ≠≠ Z0

(2) ), then SS (1) and SS (2) still
have the same rotation parameters whereas SDSD (1) and SDSD (2) do not. Thus, again we can rule out
SDSD (1) and SDSD (2) as unacceptable.

Therefore, for two (or more) planar surfaces moving as a rigid body (e.g. faces of a polyhedron), a
unique 3-D interpretation may be derived from an instantaneous image flow field. Of course, the flow
field itself must first be segmented into regions corresponding to individual planar surfaces (Wax-
man, 1984b; Wohn 1984) g

Now we give a result which will be used in proving the second uniqueness result. At time instant t,
let a planar surface in motion be described by

(E4)Z = Z 0 + ZX X + ZY Y

in the coordinate system shown in Figure 8, where Z 0 is the Z intercept of the plane and ZX , ZY are
the X and Y slopes respectively. Also, let VV and ΩΩΩΩ be the relative translational and rotational velo-
cities in space of an observer with respect to the planar surface. This relative motion in space is
assumed constant over short time intervals (over three image frames). We represent the relative
motion of the observer and the structure of the plane at time t in matrix form:

(E5)SS =

R
J
J
J
QZX

ΩΩX

Vx

ZY

ΩΩY

Vy

Z 0

ΩΩZ

Vz
H
J
J
J
P

.

In this matrix, the first row represents the translational velocity components scaled by distance Z 0 ,
the second row the rotational velocity components and the third row the slopes of the plane and the
distance scale factor. The motion and structure parameters, represented by SS above, change with
time due to the relative motion between the plane and the observer’s reference frame. In the follow-
ing theorem we derive expressions for these parameters after a small time interval dt has elapsed.

Theorem 2 : If the structure of a planar surface and the instantaneous motion of an observer relative
to the planar surface at time t is SS given by (E5), and at time t+dt is SESE given by

(E6)SESE =

R
J
J
J
QT ′X
ΩΩ′X
V ′x

T ′Y
ΩΩ′Y
V ′y

Z ′0
ΩΩ′Z
V ′z

H
J
J
J
P

,

then SS and SESE are related by

(E7a)

R
J
J
J
QV ′z
V ′y
V ′x

H
J
J
J
P

=

R
J
J
J
QVz

Vy

Vx
H
J
J
J
P

+

R
J
J
J
QΩΩY

−ΩΩZ

−p

−ΩΩX

−p

ΩΩZ

−p

ΩΩX

−ΩΩY
H
J
J
J
P

R
J
J
J
QVz

Vy

Vx
H
J
J
J
P

dt ,

where p is as defined in (E14),
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(E7b)( ΩΩ′X , ΩΩ′Y , ΩΩ′Z ) = ( ΩΩX , ΩΩY , ΩΩZ ), and

R
J
J
J
QZ ′0
T ′Y
T ′X

H
J
J
J
P

=

R
J
J
J
QZ 0

ZY

ZX
H
J
J
J
P

+

R
J
J
J
QZ 0(ΩΩY+Vx)

−ΩΩZ

ΩΩYZX−ΩΩXZY

−Z 0(ΩΩX−Vy)

ΩΩYZX−ΩΩXZY

ΩΩZ

−Z 0Vz

−ΩΩX

ΩΩY
H
J
J
J
P

R
J
J
J
Q 1

ZY

ZX
H
J
J
J
P

dt.

Proof : To compute the change in the structure parameters during the time interval dt, we first take
the time derivative on either side of equation (E4) to get

(E8)Z
.

= Z
.

0+Z
.
XX+ZXX

.
+Z

.
YY+ZYY

.

Substituting for (X
.
, Y

.
, Z

.
) in the above expression from relations (3.2a-c), and for Z from relation

(E4), and rearranging terms, we get
I
K
L dt

dZ 0hhhh − Z 0 ( (ΩΩY + VX /Z 0) ZX − (ΩΩX − VY/Z 0) ZY − VZ/Z 0 )
M
N
O
+

I
K
L dt

dZXhhhh − ( ZX (ΩΩY ZX − ΩΩX ZY) + (ΩΩY + ΩΩZ ZY) )
M
N
O

X +

(E9)
I
K
L dt

dZYhhhh − ( ZY (ΩΩY ZX − ΩΩX ZY) − (ΩΩX + ΩΩZ ZX) )
M
N
O

Y = 0 .

In the above expression, since X, Y are independent parameters of points on the plane in motion, we
can equate each of the three terms above to zero separately to get the exact differentials for the
slopes and distance:

(E10a)dZ 0 = Z 0
R
Q (ΩΩY + Vx) ZX − (ΩΩX − Vy) ZY − Vz

H
P dt ,

(E10b)dZX = R
QZX (ΩΩY ZX − ΩΩX ZY) + (ΩΩY + ΩΩZ ZY)HP dt ,

(E10c)dZY = R
QZY (ΩΩY ZX − ΩΩX ZY) − (ΩΩX + ΩΩZ ZX)HP dt .

Using the above relations, we can get expressions for the new structure parameters at time t +dt as

(E11a-c)T ′X = ZX + dZX , T ′Y = ZY + dZY and Z ′0 = Z 0 + dZ 0 .

The new translational velocity VV ′ at time t +dt is found (in the absence of accelerations) from

(E12)VV ′ = VV + VV××ΩΩΩΩ dt .

Dividing VV ′ by Z ′0 and simplifying, we get the new scaled velocity components

(E13a)V ′x = Vx + (Vy ΩΩZ − Vz ΩΩY − Vx p) dt + O (dt 2) ,

(E13b)V ′y = Vy + (Vz ΩΩX − Vx ΩΩZ − Vy p) dt + O (dt 2) ,

(E13c)V ′z = Vz + (Vx ΩΩY − Vy ΩΩX − Vz p) dt + O (dt 2) ,

where

(E14)p ≡≡ (ΩΩY + Vx) ZX − (ΩΩX − Vy) ZY − Vz .

The rotational velocity remains unchanged since

(E15)ΩΩΩΩ′ = ΩΩΩΩ + ΩΩΩΩ××ΩΩΩΩdt = ΩΩΩΩ .
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Relations (E10-E15) prove the theorem g Theorem 3 : Given the image flow of a planar surface at two
time instants separated by a ‘‘short’’ time interval, its structure and motion are uniquely deter-
mined.

Proof : The scheme of our proof is given in Figure 20. An image flow field FF at time t generated by a
planar surface in motion has two solutions, say SS given by (E5) and SDSD which is related to SS by rela-
tions (E1a-h); i.e.

(E16)SDSD =

R
J
J
J
Q−Vx /Vz

ΩΩX−Vy−VzZY

−ZXVz

−Vy /Vz

ΩΩY+Vx+VzZX

−ZYVz

Z 0

ΩΩZ+VxZY−VyZX

Vz
H
J
J
J
P

.

For these two solutions, assuming that the motion in space is constant over a short time, the slope
parameters change with time due to rotation and the scaled translational velocity components change
with time due to the combined effect of translation and rotation. As a result, after a short time δt,
SS and SDSD evolve into two new solutions, say SESE and SDESDE, respectively. SDSD and SESE are given in
terms of SS by relations (E7a-c) and (E16) respectively. SDESDE can be obtained by substituting the ele-
ments of SDSD for the corresponding elements of SS in expression (E7) for SESE. The proof of uniqueness
of interpretation is that, at time t, although SS and SDSD are related by (E1a-h) corresponding to the
two interpretations of the planar surface, at time t +dt, their time evolved solutions, SESE and SDESDE
respectively, are not related by the relations (E1a-h). A simple way to verify that SESE and SDESDE do
not satisfy the relations (E1a-h) is to note that their Z-components of translational velocity are not
the same (i.e. relation (E1e) is not satisfied). It can be shown easily that the values of this velocity
component for SESE and SDESDE are related by

(E17)Vz (SDESDE) = Vz (SESE) + ( Vx
2 − Vz

2 ZX
2 + Vy

2 − Vz
2 ZY

2 ) dt .

The two velocity components are the same (i.e. the term with dt above vanishes) when the direction
of translational velocity is parallel to the plane’s normal, in which case the interpretation is unique
according to our discussion in Section 4.2.4.

Thus, if FF ′ is the instantaneous flow field at time t+δt, then either SESE or SDESDE will be one of its two
solutions. If SESE is a solution of the image flow field FF ′ then the actual motion and orientation of the
planar surface at time t are given by SS g
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APPENDIX F

Solving the image flow equations: curved surfaces

Throughout this section we assume that the surface in motion is curved (i.e. at least one of the curva-
tures is non-zero), and translation parallel to the image plane is not zero. Conditions for the pres-
ence of this case in terms of the image flow parameters is given in Theorem 4 of Appendix B. We
give here a method to solve the image flow equations by first solving for θθ, then for r and then for the
other unknowns. Theorem 1: Suppose that the curved-surface-condition (see Appendix B, Theorem 4)
is true. Then the solutions for the curvatures are given in terms of θθ and r by relations (4.11a-c).

Proof : In equation (3.11g) we substitute for Vx and ΩΩY from relations (4.3a,h), multiply the result-
ing equation by c and rearrange terms to get

(F1a)rc 2 Zxx = uxxc − 2u 0c − 2rc 2 + 2VzZXc.

In equation (3.11j) we substitute for Vy from (4.3b) and multiply the resulting equation by s to get

(F1b)rs 2Zxx = vxxs .

Adding equations (F1a,b) and simplifying we can get equation (4.11a). Derivation of equation (4.11b)
is similar to that of (4.11a) above. In this case we multiply (3.11l) by s, (3.11i) by c, add the resulting
equations, do appropriate substitutions, and simplify to get (4.11b). From equations (3.11g,k,4.3a,b)
we get

(F2a)uxx−2vxy = rcZxx − 2rsZxy

From equations (3.11j,4.3b) we have

(F2b)Zxxs = vxx /r.

Multiplying (F2a) by s and using (F2b) we get

(F2c)s(uxx−2vxy) = cvxx − 2rs 2Zxy .

Now we use equations (3.11l,h,4.3a,b) to get

(F3a)vyy−2uxy = rsZyy − 2rcZxy .

From equations (3.11i,4.3a) we have

(F3b)Zyyc = uyy /r.

Multiplying (F3a) by c and using (F3b) we get

(F3c)c(vxx−2uxy) = suyy − 2rc 2Zxy .

Adding (F2c,F3c) and simplifying we get (4.11c) g Theorem 2 : When the curved-surface-condition is
true, the parameters r and θθ are related to the image flow parameters by the relations (4.12a-c).

Proof : In equation (F2c) we substitute for Zxy from (4.11c) and simplify to get

(F4a)s(uxx−2vxy) = vxxc + s 3(uxx−2vxy) − s 3uyy + s 2c(vyy−2uxy) − s 2cvxx .

Using the identity s 2+c 2 = 1, this can be rewritten as

(F4b)s(uxx−2vxy) = vxxc + (1−c 2)s(uxx−2vxy) − s 3uyy

+ s 2c(vyy−2uxy) − (1−c 2)cvxx .

Simplifying the above equation and dividing by c 3 we get (4.12a). In equation (3.11g) we substitute
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for Vx and ΩΩY from relations (4.3a,h), multiply the resulting equation by s and rearrange terms to
get

(F5a)rcs Zxx = uxxs − 2u 0s − 2rcs + 2VzZXs.

In equation (3.11j) we substitute for Vy from (4.3b) and multiply the resulting equation by c to get

(F5b)rcsZxx = vxxc .

Subtract (F5b) from (F5a), substitute for ZX from (4.3e), and simplify to obtain (4.12b). Derivation
of equation (4.12c) is similar to that of (4.12b) above. In this case we multiply (3.11l) by c, (3.11i) by
s, subtract the resulting equations, do appropriate substitutions, and simplify to get (4.12c) g First
check if the input image flow corresponds to a degenerate case as discussed in Appendix B, and if so,
obtain the solution according to Appendix B. Otherwise first solve for θθ by solving the cubic equa-
tion (4.12a) and then solve for r by simultaneously solving equations (4.12b,c). Now, for each set of
solutions obtained for θθ, r, solve for the other unknowns from relations (4.3a-h,4.11a-c). If the input
image flow parameters are in error due to noise, then there may be no solution for θθ and r which
satisfies all three equations (4.12a-c). In this case we can solve for θθ and r by using only two of these
three equations. If this gives multiple solutions then we select the one which is closest to satisfying
the third equation. In this solution method the solution we obtain could be complex valued. For
example the solution for r obtained by solving a quadratic equation may have a small imaginary
part. In this case we may either ignore the imaginary part or take the magnitude to be the solution.
In general it will be necessary to use some heuristics to deal with noisy input data.

A note on solving polynomial equations in tanθ: while solving a cubic, quadric, or a linear equation in
tanθθ, the coefficient of the highest power of tanθθ may be zero. In this case we can take one of the
solutions for θθ to be ππ/2 and then proceed to solve the next lower order equation in tanθθ. This gives
correct results because we have assumed −ππ/2 < θ ≤≤ ππ/2.
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APPENDIX G

Conditions for multiple interpretations: curved surfaces

In this section we give conditions for the presence of multiple interpretations for the structure and
motion of a moving curved surface. Throughout this section we assume that we are dealing with a
curved surface with non-zero translation parallel to the image plane. The condition for this case in
terms of the image flow parameters is given in Theorem 4 of Appendix B. The number of solutions to
the image flow equations is equal to the number of solutions for r and θθ obtained by solving equa-
tions (4.12a-c). Therefore we analyze equations (4.12a-c) exhaustively to derive the conditions for
multiple interpretations. The following two lemmas are related to the nature of the solution for θθ as
determined by equation (4.12a). The results of these lemmas were known earlier (Waxman,
Kamgar-Parsi, and Subbarao, 1986).

Theorem 1 : The roots of the cubic equation (4.12a) are

(G1)tanθ =
Vx

Vyhhh ,
Zyy

1hhhh (−Zxy±±√√ddddddddZxy
2 −ZxxZyy ) .

Proof : The coefficients of the cubic equation (4.12a) can be respectively expressed in terms of the
structure and motion parameters as

(G2)VxZyy , 2VxZxy−VyZyy , VxZxx−2VyZxy , −VyZxx .

Therefore, equation (4.12a) can be factored as

(G3)(Vx tanθ−Vy) (Zyy tan2θ+2Zxy tanθ+Zxx) = 0 .

The roots of the above equation are given by (G1) g

Lemma 1 : There is one real solution for θθ if the surface is ovoid (i.e. bowl shaped), there are two real
solutions if the surface is cylindrical and there are three real solutions if the surface is a saddle.

Proof : The shape of a surface can be inferred from the sign of the Gaussian curvature (cf. O’Neill,
1966). The Gaussian curvature has the same sign as the expression

(G4)ZxxZyy−Z 2
xy .

If the sign is positive then the surface is ovoid, if it is zero then it is a cylinder (or a plane) and if it is
negative then it is a saddle. From this and the expressions for the solution of θθ given by (G1) the
proof is clear g Although equation (4.12a) may give up to three solutions for θθ, in most cases only one
of them corresponding to the correct physical interpretation satisfies equations (4.12b,c) for some
real value of r. In the following we consider cases where θθ has two or more solutions. Theorem 2 to
Lemma 3d correspond to this case. Theorem 2: For a given set of image flow parameters, the
curved-surface-condition is true, and

(G5a)(vyy−2v 0+vxx = 0) and

(G5b)(uxx−2u 0+uyy = 0)

if and only if one of the following is true :

(G6a)(i) (ZX = ZY = 0) and (Zxx+Zyy+2 = 0)

(G6b)(ii) (Vz = 0) and (Zxx+Zyy+2 = 0)
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(G6c)(iii) (Vz≠≠0) and (Zxx+Zyy+2≠≠0) and

ZX

Vxhhh =
ZY

Vyhhh =
1+(Zxx+Zyy)/2

Vzhhhhhhhhhhhh

(Note: Case (i) implies that the surface is frontal (or specular) and the mean scaled curvature is −1;
Case (ii) implies that there is no translation along the optical axis and the mean scaled curvature is
−1; Case (iii) implies that the direction of translation is parallel to the vector:
(ZX ,ZY ,1+(Zxx+Zyy)/2.)

Proof : From equations (3.11a,b,g,i,j,l) we have

(G7a)vyy−2v 0+vxx = Vy(Zxx+Zyy+2)−2VzZY and

(G7b)uxx−2u 0+uyy = Vx(Zxx+Zyy+2)−2VzZX .

Therefore, conditions (G5a,b) hold if and only if

(G8a)Vy(Zxx+Zyy+2) = 2VzZY and

(G8b)Vx(Zxx+Zyy+2) = 2VzZX .

Now recall that Vx ≠≠ 0 or Vy ≠≠ 0 since r ≠≠ 0. Now consider the logical expression

(G 8a) and (G 8b) and I
L(Zxx+Zyy+2=0) or (Zxx+Zyy+2≠≠0)MO and

(G9)(Vx≠≠0 or Vy≠≠0) and (Vz=0 or Vz≠≠0).

Expanding the above logical expression and simplifying, we get the disjunction of the three clauses
(G6a-c). g

Theorem 3 : Under the conditions of Theorem 2 when either (G6a) or (G6b) is true equations
(4.12b,c) are independent of θθ, i.e. they cannot be used to solve for θθ (nor do they give rise to any con-
straint on θθ ).

Proof : For the cases (G6a,b) we get from equations (4.12b,c) the following constraint on θθ :

(G10)(vyy−2v 0+vxx) cosθ = (uxx−2u 0+uyy) sinθ .

The above constraint is identically true for all values of θθ under the conditions (G5a,b). g If condi-
tions of Theorem 2 are true then we can determine which one of the three conditions (G6a-c) is actu-
ally true in that order by further testing the image flow parameters.

Theorem 4 : Under the conditions of Theorem 2,
(i) case (G6a) is true if and only if a 1 = a 2 = 0,
(ii) case (G6a) is false and case (G6b) is true if and only if

(G11)tanθ =
2ux

a 1±±√√ddddddda1
2 −4uxvyhhhhhhhhhhhhhh .

(iii) cases (G6a,b) are false and (G6c) is true if and only if

(G12)tan2θ = a 1/a 2 .

Proof : Case (i) is obvious from equations (4.3e,f). Case (ii) is easily proved by equating the expres-
sion (4.3c) for Vz to zero. To prove the last case, we solve for θθ from equations (4.12b,c) as follows.
Eliminating the term 2r 2cs from the expressions (4.12b,c) and rearranging terms, we get the follow-
ing constraint on θθ :
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(G14)r I
L(vyy−2v 0+vxx)c−(uxx−2u 0+uyy)sMO

= 2Vz
I
Ls(a 1s+a 2c)−c(a 1c−a 2s)MO .

Under the conditions (G5a,b), the left hand side of equation (G14) is identically zero. Therefore
equating the right hand side to zero we get equation (G12).g Theorem 5 : Under the conditions of
Theorem 2, equations (3.11a-l) can have three solutions if and only if case (G6a) is true (i.e. the sur-
face is frontal and the mean scaled curvature is -1) and the surface is a saddle, i.e.

(G15)Z 2
xy−ZxxZyy>0 .

Proof : In this case, all the values of θθ computed by solving equation (4.12a) are valid since there is
no other extra constraint on θθ (from Theorem 4). Under condition (G15) there are three solutions
for θθ given by relations (G1). For each value of θθ this case results in a unique value for r obtained by
solving (4.12b) or (4.12c) given by

(G16)r = −
2
1hh I

L s

vxxhhh+
c

uyyhhh
M
N
O
.

Therefore, there are three solutions in this case. g Theorem 6 : Under the conditions of Theorem 2
suppose that case (G6a) is false. Then equations (3.11a-l) can have up to two solutions if case (G6b) is
true (i.e. translation along the optical axis is zero and the mean scaled curvature is −1) and the two
solutions of equation (G11) are also the roots of the the cubic equation (4.12a).

Proof : In this case equations (4.12a) and (G11) are the only constraints on θθ. For each solution com-
mon to these equations we get a unique value for r obtained by solving equations (4.12b,c) given by
relation (G16). Therefore there can be up to two solutions for the image flow equations (3.11a-l). g

Lemma 2 : Under the conditions stated in Theorem 6 the structure parameters of the surface satisfy
(G6b and) the following constraint:

(G17)
ZX

ZYhhh =
Zyy

1hhhh (−Zxy±±√√ddddddddZxy
2 −ZxxZyy ) .

Proof : Substituting for terms on the right hand side of equation (G11) in terms of the structure and
motion parameters (from relations (3.11c-f) and (4.2a)) we can show that the two solutions for θθ are

(G18)tanθ =
Vx

Vyhhh ,
ZX

ZYhhh .

Since these are also the roots of the cubic equation (4.12a), from Theorem 1 we conclude that the
structure parameters are related as in (G17). g As can be seen from the expressions for the two roots
in relation (G18), the solution for θθ becomes unique when VxZY = VyZX , i.e. the translation vector
(Vx , Vy , Vz), the surface normal (ZX , ZY , −1) and the optical axis (the Z-axis) all lie in a plane.
Theorem 7 : Under conditions of Theorem 2 if the cases (G6a,b) are false and the two solutions of
equation (G12) for θθ are also the roots of the cubic equation (4.12a) then up to four solutions are pos-
sible for the image flow equations (3.11a-l).

Proof : Here the common solutions of the equations (4.12a) and (G12) are the valid solutions for θθ.
Using the trigonometric identity

(G19)tan2θ =
1−tan2θ

2tanθhhhhhhh

we can show that the solutions of equation (G12) are
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(G20)tanθ =
a 1

−a 2±±√√dddddda 2
1+a 2

2hhhhhhhhhhhhhh .

Expressing the terms on the right hand side of equation (G20) in terms of the structure and motion
parameters (using relations (3.11c-f) and (4.2a,b)), the two roots for θθ in this case can be shown to be

(G21)tanθ =
Vx

Vyhhh , −
Vy

Vxhhh
I
J
L
OR

ZX

ZYhhh , −
ZY

ZXhhh
M
J
O
.

Note that the two roots are such that their absolute difference is equal to ππ/2 radians. For each of
the above two roots we may solve for r from either (4.12b) or (4.12c). In this case equations (4.12b)
and (4.12c) are identical and can be written as

(G22)r 2+
2
1hh

I
J
L s

vxxhhh+
c

uyyhhh
M
J
O
r−Vz 2cs

a 1hhhh = 0 .

Equation (G22) gives up to two solutions for r for each θθ. Therefore up to four solutions are possible
in this case. g

Lemma 3a : Under the conditions stated in Theorem 7 the structure parameters satisfy (G6c and) the
following constraint:

(G23)−
ZY

ZXhhh =
Zyy

1hhhh (−Zxy±±√√ddddddddZxy
2 −ZxxZyy ) .

Proof : Since the two roots for θθ given by (G21) are also the roots of the cubic equation (4.12a), from
Theorem 1 we see that relation (G23) should be true of the structure parameters. g As pointed out in
Appendix D (see the discussion at the begining of the section titled ‘‘Relations between the two
interpretations’’ in Appendix D), the image flow equations always have one solution which
corresponds to the actual shape and motion of the surface in the physical world. Here also we use the
notation described in Appendix D to give the relation between the correct and the spurious solutions.
Also, for the case considered in Theorem 7 and other cases (considered later) where the translation
vector, the surface normal, and the optical axis all lie in a plane, we will define a quantity k such that

(G24)ZX = kc and ZY = ks .

Lemma 3b : Under the conditions stated in Theorem 7, the spurious solutions are related to the actual
shape and motion parameters by

(G25a,b)θ1 = θ0±±ππ/2 , r 1 = −Vz 0k 0 ,

and r 2 and r 3 are the roots of the quadratic equation

(G25c)r 2+
2
1hh

I
J
L ±±c 0

s 0Zxx 0hhhhhh+
+
h

s 0

c 0Zyy 0hhhhhhh
M
J
O
r+(Vz 0r 0k 0) = 0 .

Proof : Relation (G25a) is easily derived from the two solutions for θθ given by (G21) (note that tanθ0
= Vy /Vx ). In order to derive (G25b), in equation (G22) we substitute s←s 0 and c←c 0 , and substi-
tute for all the image motion parameters in terms of r 0 and θ0 (using relations (4.3a,b),(3.11i,j),
(3.11e,f) and (G24)). Then using relation (G6c) we can derive

(G26)r 2+(Vz 0k 0−r 0)r−(Vz 0r 0k 0) = 0 .

The two roots of the above quadratic equation are r 0 and −Vz 0k 0 . Hence the relation (G25b). To
derive relation (G25c) we first substitute s←s 1 , c←c 1 in relation (G22). Then, as before, we sub-
stitute for all the image motion parameters and θ1 in terms of r 0 and θ0 to get relation (G25c). g
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Lemma 3c : Under the conditions stated in Theorem 7, for θ=θ0 the solution for r is unique when the
direction of translation is parallel to the surface normal.

Proof : In this case the solutions for r are the roots of the quadratic equation (G26) which are r 0 and
−Vz 0k 0 . Using relations (4.3a,b) and (G24) we can easily show that these two roots are equal when
the translation vector (Vx ,Vy ,Vz) is parallel to the surface normal vector (ZX ,ZY ,−1). g

Lemma 3d : Under the conditions stated in Theorem 7, the spurious solution for θθ given by relation
(G25a) is a valid solution if and only if the roots of the quadratic equation (G25c) are real. g Using
relations (G6c), (G23) and the condition that the roots of the quadratic equation (G25c) be real we
have constructed an algorithm to generate numerical examples which result in up to four solutions
for the image flow equations. One such example is given in Chapter 7 (Example 3). In Section G2.4
we have seen one case where multiple interpretations arise because of multiple solutions for both θθ
and r. Next we consider another case of multiple interpretations characterized by a unique solution
for θθ but two solutions for r. Theorem 8 : Suppose that the curved-surface-condition is true and
(G5a,b) are false. Then a solution for θθ (obtained by solving equation (4.12a)) gives two solutions for
r (and consequently for the image flow equations (3.11a-l)) if and only if the following conditions are
true of θθ :

(G27a,b)tanθ =
uxx−2u 0+uyy

vyy−2v 0+vxxhhhhhhhhhhh and tan2θ =
a 2

a 1hhh

Proof : We will first prove the only if part. For a given θθ we solve for r by solving the two quadratic
equations (4.12b,c) (each of which may yield up to two roots) and take the root(s) common to both as
the solution. If there is no common root or the roots are complex then the given θθ is not a valid solu-
tion. If there is one common root then the solution for r is unique. If both roots are (real and) com-
mon then the coefficients of the two quadratic equations have to be proportional (i.e. the two qua-
dratic equations become linearly dependent). Equating the ratios of the corresponding coefficients of
the two equations (4.12b,c) we have

(G28)
2cs
2cshhhh =

uyys−(vyy−2v 0)c

vxxc−(uxx−2u 0)shhhhhhhhhhhhhh =
c(a 1c−a 2s)

s(a 1s+a 2c)hhhhhhhhhhh = 1 .

Therefore, equating the numerator and the denominator of the second term in equation (G28) we get
condition (G27a) and equating the numerator and the denominator of the third term we get condi-
tion (G27b). The if part can be similarly proved. g Note that the equality of the numerator and the
denominator of the third term in equation (G28) together with (4.3a,b) and (4.3e,f) implies

(G29)tanθ = Vy /Vx = ZY/ZX .

Equation (G29) implies that the translation vector (Vx , Vy , Vz), the surface normal (ZX , ZY , −1)
and the optical axis (the Z-axis) all lie in a common plane. Also note that we can check that there is
no θθ for which there are two solutions by first solving for θθ from equation (G27a) and checking for
the validity of (G27b) (or, the right hand sides of equations (G27a) and (G27b) can be directly related
by using the relation (G19) between tanθθ and tan2θθ ). In this case, the condition for the solution for r
to be unique can be derived as follows: since equations (4.12b) and (4.12c) are linearly dependent, we
add them to get the following equation:

(G30)r 2+
4
1hh

I
J
L s

vxx−vyy+2v 0hhhhhhhhhhh+
c

uyy−uxx+2u 0hhhhhhhhhhh
M
J
O
r−Vz 2cs

a 1hhhh = 0 .

In terms of the actual structure and motion parameters, the above equation can be shown to reduce
to equation (G26) whose roots are r 0 and −Vz 0k 0 . When these two roots are equal we can show
that the translation vector is parallel to the surface normal (see Lemma 3c). Theorem 9 : Suppose
that the curved-surface-condition is true, (G5a,b) are false, and there is no θθ which satisfies (G27a,b)
(i.e. the translation vector and the surface normal do not lie in a plane) then there exists a unique
solution for the image flow equations (3.11a-l).
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Proof : To prove this, we simply observe that there is always one solution for θθ computed by solving
equation (4.12a) which corresponds to tanθ = Vy /Vx and this θθ and the corresponding r computed
from, say, (4.12b) always satisfies the constraint equation (4.12c). Multiple solutions are ruled out
due to the previous theorems. g
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APPENDIX H

Solving for θθ when the direction of V changes

Equating the right hand sides of the two equations (5.10a,b), substituting for Vz and ΩΩZ in terms of
θθ using relations (4.3c,d), and simplifying, we get the following equation for θθ:

(H1)(b 1 + b 2 cos2θ + b 3 sin2θ + b 4 cosθ sinθ)

(b 5 cos3θ + b 6 cos2θ sinθ + b 7 cosθ sin2θ + b 8 sin3θ) +

(c 1 + c 2 cos2θ + c 3 sin2θ + c 4 cosθ sinθ)

(c 5 cos3θ + c 6 cos2θ sinθ + c 7 cosθ sin2θ + c 8 sin3θ) = 0

where bi and ci are constants given by

(H2a-d)b 1 = ut , b 2 = u 0 ux + a 1 v 0 , b 3 = u 0 ux , b 4 = − a 2 v 0

(H2e-h)b 5 = − vx , b 6 = a 2 − 2 vy , b 7 = 2 a 1 + uy , b 8 = − 2 ux

(H3a-d)c 1 = vt , c 2 = v 0 vy , c 3 = v 0 vy + a 1 u 0 , c 4 = a 2 u 0

(H3e-h)c 5 = 2 vy , c 6 = − vx − 2 a 1 , c 7 = a 2 + 2 ux and c 8 = uy .

Now, multiplying b 1 , c 1 in relation (H1) by cos2θ+sin2θ and simplying, equation (H1) can be
further reduced to

(H4)d 1tan5θ+d 2tan4θ+d 3tan3θ+d 4tan2θ+d 5tanθ+d 6 = 0

where

(H5a)d 1 = (b 1+b 3)b 8+(c 1+c 3)c 8 ,

(H5b)d 2 = b 4b 8+(b 1+b 3)b 7+c 4c 8+(c 1+c 3)c 7 ,

(H5c)d 3 = (b 1+b 2)b 8+b 4b 7+(b 1+b 3)b 6+(c 1+c 2)c 8+c 4c 7+(c 1+c 3)c 6 ,

(H5d)d 4 = (b 1+b 2)b 7+b 4b 6+(b 1+b 3)b 5+(c 1+c 2)c 7+c 4c 6+(c 1+c 3)c 5 ,

(H5e)d 5 = (b 1+b 2)b 6+b 4b 5+(c 1+c 2)c 6+c 4c 5 , and

(H5f)d 6 = (b 1+b 2)b 5+(c 1+c 2)c 5 .

In this case, there are two special situations which deserve mention. In both these cases, the orienta-
tion of the surface patch is indeterminate as there is no translation parallel to the image plane. For
brevity, the two situations are summarized below:

(H6a)[ (ut = −u 0 ux) and (vt = −v 0 vy) and (ux = vy) and (uy = −vx) and

(ux ≠≠ 0 or uy ≠≠ 0) ] → [ (Vx = Vy = 0) and (ZX , ZY are indeterminate) ]

(H6b)[ (ut = −u 0 ux) and (vt = −v 0 vy) and (ux = vy) and (uy = −vx) and
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(ux = 0) and (uy = 0) ] → [ ( (Vx = Vy = 0) and (ZX , ZY are indeterminate) )

or ( (ZX = ZY = 0) and (Vx , Vy are indeterminate) ) ]
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APPENDIX I

Solving for r and θθ when the camera tracks a point

Differentiating equation (3.1a) twice with respect to time t yields

(I1)x
..

=
Z
X
..
hh − 2

Z
X
.

hh
Z
Z
.

hh +
Z
Xhh

I
J
L
2

Z 2

Z
. 2

hhh −
Z
Z
..
hh

M
J
O

.

In the above expression, X
.
, Y

.
and Z

.
are given by relations (3.2a-c) and X

..
, Y

..
and Z

..
are easily

derived from these. For example,

(I2)X
..

= − ΩΩY Z
.

+ ΩΩZ Y
.

.

From these, we express x
..

in terms of only VV, ΩΩΩΩ, X, Y and Z and evaluate it at the image origin, i.e.
(X, Y, Z) = (0, 0, Z 0) where Z 0 > 0 . Denoting x

..
evaluated at the image origin by u

.
we can

derive

(I3)u
.

= ΩΩZ (ΩΩX − Vy) − Vz (ΩΩY + Vx) − Vx Vz .

Using relations (3.11a,b) the above equation can be reexpressed as

(I4)u
.

= v 0 ΩΩZ + u 0 Vz − Vx Vz

or

(I5a)Vx = (u 0 Vz + v 0 ΩΩZ − u
.
) / Vz .

Similarly, starting from equation (3.1b) and following steps similar to those above, we can derive

(I5b)Vy = (v 0 Vz − u 0 ΩΩZ − v
.
) / Vz .

In equations (I5a,b) we substitute for all unknowns in terms of r and θθ from (4.3a-d) and eliminate r
and solve for θθ to get relation (5.13). Relation (5.14) which gives the solution for r is easily obtained
from relations (I5a,b) and (4.3a,b).
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APPENDIX J

Surface deformation parameters

We have chosen to describe the deformation of a small surface patch in 3D space in terms of the
deformation of a small volume element embedding the surface patch (Figure 19). To a first approxi-
mation, the deformation parameters of a small volume element are given by the components of its
velocity gradient tensor. The physical interpretation of the velocity gradient tensor shows that an
arbitrary time variation of a small surface patch can be expressed as the combined effect of a pure
translation, a pure rotation, a pure accleration and a deformation (see the last part of this Appendix).
Also, the velocity gradient tensor representation gives explicit conditions for rigid motion, pure
translation, etc.. Consider a Cartesian coordinate system with axes x 1 , x 2 and x 3 . The gradient
tensor of a velocity vector vv = (v 1 , v 2 , v 3) can be written as the sum of symmetric and antisym-
metric parts,

(J1a)∂∂x j

∂∂vihhhh =
2
1hh

I
K
L ∂∂x j

∂∂vihhhh +
∂∂xi

∂∂v jhhhh
M
N
O
+

2
1hh

I
K
L ∂∂x j

∂∂vihhhh −
∂∂xi

∂∂v jhhhh
M
N
O

(J1b)= eij + ωωij i, j = 1, 2, 3 .

It can be shown that the three independent parameters of the antisymmetric tensor ωωij correspond
to the components of a rigid body rotation, and, if the motion is a rigid one (composed of a transla-
tion plus a rotation), all the components of the symmetric tensor eij will vanish. For this reason the
tensor eij is called the deformation or rate of strain tensor and its vanishing is necessary and sufficient
for the motion to be without deformation, that is, rigid. A component eii of this tensor gives the rate
of longitudinal strain of an element parallel to the xi axis. A component eij , i ≠≠ j, represents one-
half the rate of decrease of the angle between two segments originally parallel to the xi and x j axes
respectively. For a more detailed treatment of these topics, see Aris (1962). From our discussions
above, the interpretation of the motion and deformation parameters aij in equations (6.1a-c) with
respect to (X, Y, Z, t) = (0, 0, Z 0 , 0) can be summarized as follows:

(J2a)(a 10 , a 20 , a 30) : rigid body translation

(J2b)
2
1hh (a 23 − a 32 , a 31 − a 13 , a 12 − a 21) : rigid body rotation

(J2c)(a
.

10 , a
.

20 , a
.

30) : rigid body acceleration

(J2d)(a 11 , a 22 , a 33) : measures stretching

(J2e)
2
1hh (a 12 + a 21 , a 23 + a 32 , a 31 + a 13) : measures shear .

It is interesting to note that an arbitrarily time-varying surface patch can be described, to a first
approximation, in terms of a rigid translation plus a rigid rotation plus a rigid acceleration plus a
deformation.
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Figure 1. Ullman’s (1979) two cylinder experiment which demonstrates the percep-
tion of three-dimensional shape and motion from visual motion. Positions of about
100 ponts lying on the surfaces of two coaxial cylinders were stored in a computer’s
memory. The orthographic projections of these points on a frontal plane were com-
puted and displayed on a CRT screen. (The outlines of the cylinders were not
presented in the actual display.) Although the density of dots in the projected image
increased at the edges of each cylinder, in the combined image of the two cylinders
the dot pattern was complex and was ineffective in revealing the two cylinders.
However when a changing projection of the dots was presented corresponding to a
rotation of the two cylinders, the shape and motion of the cylinders were immedi-
ately percieved. Since each instantaneous view contained no shape information,
visual motion alone was sufficient to recover both shape and motion of the cylinders.
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Figure 2. The domain of visual intensity stimulus function I.
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Figure 3. Image flow (also referred to as optical flow) can be defined as the velocity
field obtained by projecting the instantaneous three-dimensional velocities of points
on visible surfaces in the scene on to the image screen. In the above diagram, P is a
point on a visible surface and p is its image. If UU is the instantaneous velocity of P in
the world, then its projection vv on the image plane is the velocity of p. Thus image
flow describes the motion of images of geometric points in the scene.
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Figure 4. (a) A scene consisting of a sphere in front of a cone with background at
infinity. (b) The instantaneous image flow associated with a general rigid body
motion of the camera. (These pictures were generated using the image flow
software developed by Sinha and Waxman, 1984.)
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Figure 5. The optical flow equation constrains at each point only the component of
image velocity at that point normal to the iso-intensity contour passing through that
point. Therefore the observed motion of brightness patterns determine only the
normal displacement of iso-intensity contours. Their tangential displacement
remains undetermined.
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Figure 6. Aperture problem. The motion of a brightness pattern in a small observa-
tion window (aperture) cannot be determined uniquely. C : An iso-intensity contour
in the first image frame. C ′: the iso-intensity contour in the second image frame
which corresponds to C in the first frame. vvn: normal displacement of intensity pat-
tern. vv 1 , vv 2 , vvn : possible displacements of the brightness pattern.
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Figure 7. A pin-hole camera.
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Figure 8. Camera model and coordinate systems (after Longuet-Higgins and
Prazdny, 1980). OXYZ is a Cartesian coordinate system fixed to the camera. O is the
focus and the positive Z axis is the direction of view. The image plane is located at
unit distance from O along the direction of view. oxy is the image coordinate system
with its origin at (0,0,1). A point P at (X,Y,Z) in the world produces an image p at
(x,y) on the image plane where x=X/Z and y=Y /Z. The instantaneous relative rigid
body motion of the camera with respect to a surface S is given by the translation
vector (VX ,VY ,VZ) and the rotation vector (ΩΩX ,ΩΩY ,ΩΩZ). If UU is the instantaneous
relative three-dimensional velocity of the point P (on surface S) then the image velo-
city of point p is vv where vv is the projection of UU on the image plane.
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Figure 9. Analysis of image flow in a field of view not along the optical axis. The
observed original image sequence in the field of view is first projected onto a plane
perpendicular to the field of view. The image flow parameters are computed from
this projected image sequence. The scene parameters (in a coordinate system
rotated with respect to the original axes) are then obtained by solving the image flow
equations.
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Figure 10. The relation of translation parameters to r and θθ.
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Figure 11. (a) A divergent image flow field. (b) The effect of divergent image flow on
an image neighborhood.
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Figure 12. (a) A rotational image flow field. (b) The effect of rotational image flow on
an image neighborhood.
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Figure 13. (a) A shear image flow field. (b) The effect of shear image flow on an
image neighborhood.
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Figure 14. The relation of the bounds on velocity of approach Vz to the differential
invariants of image flow. A similar diagram can be drawn for angular velocity ΩΩZ

where ‘divergence’ is replaced by ‘-curl’.
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Figure 15. The surface gradient vector, k 0 and θ0 .
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Figure 16. The 3D geometry of a general case of motion.
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Figure 17. A specular saddle surface. The tangent plane to the surface is frontal
(i.e. perpendicular to the direction of view or parallel to the image plane) and the
surface itself is saddle shaped.
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Figure 18. An object undergoing uniform translation with respect to an external
reference frame and spinning uniformly about an axis fixed with respect to itself.
The individual components of translation with respect to a coordinate system fixed
to the object change continuously due to rotation, but the magnitude of translation
remains the change.
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Figure 19. A surface element embedded in a volume element. Analytic deformation
of the surface element can be described in terms of an analytic deformation of the
embedding volume element.

Figure 20. A scheme for resolving the two-fold ambiguity of interpretation for
planar surfaces.
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