
Statistical En-route Filtering of Injected False Data
in Sensor Networks

Fan Ye, Haiyun Luo, Songwu Lu, Lixia Zhang
UCLA Computer Science Department, Los Angeles, CA 900095-1596

{yefan,hluo,slu,lixia}@cs.ucla.edu

Abstract— In a large-scale sensor network individual sensors
are subject to security compromises. A compromised node can
inject into the network large quantities of bogus sensing reports
which, if undetected, would be forwarded to the data collection
point (i.e. the sink). Such attacks by compromised sensors can
cause not only false alarms but also the depletion of the finite
amount of energy in a battery powered network. In this paper we
present a Statistical En-route Filtering (SEF) mechanism that can
detect and drop such false reports. SEF requires that each sensing
report be validated by multiple keyed message authentication
codes (MACs), each generated by a node that detects the same
event. As the report is forwarded, each node along the way
verifies the correctness of the MACs probabilistically and drops
those with invalid MACs at earliest points. The sink further filters
out remaining false reports that escape the en-route filtering. SEF
exploits the network scale to determine the truthfulness of each
report through collective decision-making by multiple detecting
nodes and collective false-report-detection by multiple forwarding
nodes. Our analysis and simulations show that, with an overhead
of 14 bytes per report, SEF is able to drop 80∼90% injected false
reports by a compromised node within 10 forwarding hops, and
reduce energy consumption by 50% or more in many cases.

I. INTRODUCTION

To serve applications that work in an adverse or even
hostile environment, such as battlefield surveillance and forest
fire monitoring, a sensor network must not only report each
relevant event promptly, but also reject false reports injected
by attackers. In addition to causing false alarms that can
waste real-world response effort, false reports can drain out the
finite amount of energy resource in a battery-powered network.
A few recent research efforts [1], [2], [3] have proposed
mechanisms to provide node and message authentication for
sensor networks to prevent false report injection by an outside
attacker. However these proposed security mechanisms are
rendered ineffective when any single node is compromised.

In a large-scale sensor network, detecting and purging bogus
reports injected by compromised nodes is a great research
challenge. Once a node is compromised, all the security
information stored in that node becomes accessible to the
attacker. The compromised node can successfully authenticate
bogus reports to a neighbor, which has no way to differentiate
such false reports from legitimate ones. Although in theory
one could apply public-key based authentication mechanism
to sensor networks and revoke the key of any compromised
node, in reality the computation and storage constraints of
small sensor nodes make mechanisms based on asymmetric
cryptography, such as the one described in [4], infeasible.

false report

sink

compromised node

Fig. 1. A compromised node injects false reports of non-existent
tanks “appearing” in various locations. Large quantities of such
bogus reports cause false alarms. Considerable amount of energy and
bandwidth could be wasted in delivering false reports. The user may
also be overwhelmed and miss a real event.

In this paper we present a Statistical En-route Filtering
mechanism (SEF). SEF exploits the sheer scale and dense
deployment of large sensor networks. To prevent any single
compromised node from breaking down the entire system, SEF
carefully limits the amount of security information assigned
to any single node, and relies on the collective decisions of
multiple sensors for false report detection. When a sensing
target (henceforth called “stimulus” or “event”) occurs in
the field, multiple surrounding sensors collectively generate a
legitimate report that carries multiple message authentication
codes (MACs). A report with an inadequate number of MACs
will not be delivered. As a sensing report is forwarded towards
the sink over multiple hops, each forwarding node verifies the
correctness of the MACs carried in the report with certain
probability. Once an incorrect MAC is detected, the report
is dropped. The probability of detecting incorrect MACs in-
creases with the number of hops the report travels. Depending
on the path length, there is a non-zero probability that some
reports with incorrect MACs may escape en-route filtering and
be delivered to the sink. In any case the sink will further verify
the correctness of each MAC carried in each report and reject
false ones.

The contribution of this paper is two-fold. First, we propose
a key assignment method designed for en-route detection of
false reports in the presence of compromised nodes. Second,
we devise mechanisms for collective data report generation,
en-route report filtering, and sink verification. To our best
knowledge we believe this is the first effort that addresses false
sensing report detection problems in the presence of compro-

mised sensors. We have evaluated our design through analysis
and simulations. Our results show that SEF is able to detect
and drop 80∼90% injected reports by a compromised node
within 10 forwarding hops, thus reducing energy consumption
by 50% or more in many cases.

The rest of the paper is organized as follows. Section II
presents the design of SEF. Section III discusses the parameter
setting and analyses the effectiveness and energy savings
achieved by SEF, and evaluates the design through simulations.
A number of practical issues and future work are discussed in
Section IV. Section V compares SEF with the related work
and Section VI concludes the paper.

II. STATISTICAL EN-ROUTE FILTERING

A. System Model

We consider a sensor network composed of a large number
of small sensors. Due to cost constraints these sensors are
not equipped with tamper-resistant hardware1. We assume that
the sensor nodes are deployed in a high density, so that each
stimulus, such as a tank, can be detected by multiple sensors.
The detecting sensors collaboratively process the signal and
elect one of the nodes as the Center-of-Stimulus (CoS). The
CoS collects and summarizes the detection results by all
detecting nodes, and produces a synthesized report on behalf
of the group. The report is then forwarded toward the sink,
typically traversing a large number of hops (say, tens or even
longer). The sink is a data collection center equipped with
sufficient computation and storage capabilities.

The same stimulus being detected by multiple sensors is a
necessary condition that enables cross-verification of reported
events in the presence of compromised nodes. If an area is
monitored by a single node only, it would be impossible to
verify whether an event reported by this single node is real or
forged. Only with multiple sensing nodes can we cross-check
the ground truth.

B. Threat Model

We assume that the attacker may know the security mecha-
nisms that are deployed in a sensor network; he may be able
to either compromise a node through the radio communication
channel, or even physically capture a node to obtain the
security information embedded in it. We further assume that
the attack cannot subvert the data collection unit,i.e., the sink
which is under direct control of the user. Node and message
authentications [1], [2], [3] prevent naive impersonation of a
sensor node, however they cannot block the injection of false
sensing reports by compromised sensor nodes.

Besides false data injection, a compromised insider node can
also launch various other attacks. It may cause false negatives,
i.e., events that do occur but not reported to the user, by
stalling the generation of reports for real events or dropping
legitimate reports passing through it. Other disruptions, such
as recording and replaying legitimate reports or injecting false

1Tamper-resistant hardware can prevent the exposure of stored secrets when
a node is captured by attackers [5].

control packets, are also possibilities. We do not address such
attacks in this paper. Instead we focus on developing a solution
to false positives, namely reports about events that do not occur
but are injected by insiders.

C. Overview

The SEF design seeks to achieve the following goals:

• Early detecting and dropping of false data reports:
Identifying false reports allows the user to avoid taking
responses to fabricated events. Although this can be done
either during the data delivery process or at the sink after
the data is delivered, early en-route detection of such
reports can prevent them from reaching the sink, thus
saving energy and bandwidth resources of nodes on data
forwarding paths.

• Low computation and communication overhead: Given
the resource constraints of low-end sensor nodes, we rule
out solutions based on computation-intensive asymmet-
ric cryptography2, and only use more efficient building
blocks such as hash functions.

SEF also strives to scale to large sensor networks and be
resilient against node failures. We will show that by using only
hash computations which are efficient even on low-end sensor
hardware, SEF can detect and en-route drop false reports
injected by an attacker who captures up to a threshold number
of nodes.

SEF consists of three components which work in concert
to detect and filter out forged messages: (1) each legitimate
report carries multiple MACs (in the form of a Bloom filter)
generated by different nodes that detect the same stimulus,
(2) intermediate forwarding nodes detect incorrect MACs and
filter out false reports en-route, and (3) the sink verifies
the correctness of each MAC and eliminates remaining false
reports that elude en-route filtering.

In SEF there is a global key pool. However only the sink
has the knowledge of the entire pool. Each sensor stores a
small number of keys that are drawn in a randomized fashion
from the global key pool before deployment. Once a stimulus
appears in the field, multiple detecting nodes elect a CoS
node that generates the report. Each detecting node produces
a keyed MAC for the report using one of its stored keys. The
CoS node collects the MACs and attaches them to the report in
the form of a Bloom filter. These multiple MACs collectively
act as the proof that a report is legitimate. A report with an
insufficient number of MACs will not be forwarded.

The key assignment procedure should ensure that each node
can only generate part of the proof for a legitimate report.
Only by the joint efforts of multiple detecting nodes can the
complete proof be produced. Therefore to get a forged data
report forwarded a compromised node has to forge MACs to
assemble a seemingly complete proof. At the same time, the
key assignment procedure should also ensure that any two

2It has been reported that encryption/decryption operations based on
asymmetric keys consume two to three orders of magnitudes more energy than
symmetric ones, and that signing a bit can be more expensive than transmitting
a bit [6].

Fig. 2. An example of a global key pool with n = 9 partitions and
4 nodes, each of which has k = 3 keys randomly selected from one
partition. In a real system, k, n may be much larger.

nodes share common keys with a certain probability. When
the report with forged MACs is forwarded by intermediate
nodes, probabilistic key sharing allows them to examine the
correctness of the MACs probabilistically, thus detecting and
dropping false reports en-route.

The sink serves as the final goal-keeper for the system.
When it receives reports about an event, the sink verifies every
MAC carried in the report because it has complete knowledge
of the global key pool. False reports with incorrect MACs that
sneak through en-route filtering will then be detected.

Several questions must be answered to make the above
design work: (a) How should the keys be assigned to each node
to prevent a compromised node from forging the complete
proof while enabling verification by intermediate forwarding
nodes? (b) How are false reports detected and filtered out en-
route by forwarding sensors? (c) How does the sink detect all
the remaining forged reports? And (d) how can one minimize
the size of the extra fields needed to carry the MACs in a
report while maintaining the detection power? The rest of this
section addresses each of these four questions.

D. Key Assignment and Report Generation

There is a pre-generated global pool of N keys {Ki, 0 ≤
i ≤ N−1}, which is divided into n non-overlapping partitions
{Ni, 0 ≤ i ≤ n − 1}. Each partition has m keys (i.e., N =
n × m), and each key has a unique key index. A simple way
to partition the global key pool is as follows:

Ni = {Kj |im ≤ j ≤ (i + 1)m − 1}.
Before a sensor node is deployed, the user randomly selects
one of the n partitions, and randomly chooses k (k < m)
keys from the partition. The sensor node is then loaded with
these keys and the associated key indices (see Figure 2 for an
example).

When a stimulus appears, multiple nodes that detect it
collaborate to process the signal and elect the CoS that sum-
marizes the sensing results and generates a report {LE , t, E}
on behalf of the group, where LE is the location of the
event, t is the time of detection and E is the type of event3.
This collaborative report generation can be carried out by
following the procedure proposed in [7]: Each node broadcasts

3The report might contain other information about the event as well. To
simplify presentation, we only list the above three.

its sensing signal strength within the detecting area. A node
with a weaker signal is suppressed by neighbors which sense
stronger signals. Finally the node with the strongest signal
stands out as the CoS. The CoS then aggregates sensing
results it has heard from other detecting nodes to generate a
report. Notice that the purpose of CoS election is to eliminate
redundant reports and this process should exist even without
SEF.

After the CoS generates the report, it broadcasts the report to
all detecting nodes. Upon receiving the report broadcast from
the CoS, a detecting node A checks to see whether the report
content is consistent with the readings of its own sensing. If
they match within certain error range, pre-defined according
to the sensors’ accuracy and the application’s requirements to
suppress duplicate data report generation, node A randomly
selects one of its k keys, Ki, and generates a MAC

Mi = MAC(Ki, LE ||t||E), (1)

where || denotes stream concatenation and MAC(a, b) com-
putes the MAC Mi of message b using key a. Many crypto-
graphic one-way functions can serve this purpose [8]. Node A
then sends {i,Mi}, the key index and the MAC, to the CoS.

If a detecting node does not receive any report that matches
its own sensor readings, it participates in another round of CoS
election with other detecting nodes. This measure is to handle
scenarios where a compromised node may elect itself as the
CoS and broadcast a fabricated report.

The CoS collects all the {i,Mi}’s from detecting nodes
and sorts the MACs based on the key partitions. We define
MACs generated by keys of the same partition as one category.
From all the received categories CoS selects T of them, where
T ≤ n, then randomly chooses one {i,Mi} tuple from each
category and attaches it to the report. The final report sent out
by the CoS to the sink looks like:

{LE , t, E, i1,Mi1, i2,Mi2, · · · , iT ,MiT
}.

The choice of parameter T is a trade-off between detection
power and overhead. The sink can set a system-wide value for
T so that each report carries exactly T key indices of distinct
partitions and T MACs. A report with less than T MACs or
key indices, or more than one key index in the same partition,
will not be forwarded. A larger T makes forging reports more
difficult, but at the cost of increased overhead. When more than
T categories exist, the CoS can randomly choose T of them. It
is possible that in areas with sparse sensor deployment, CoS
might collect less than T categories. The node deployment
density should be high enough to ensure that such cases rarely
happen. More analysis on setting parameters will be given in
Section III.

E. En-route Filtering

As a result of the randomized key assignment, each forward-
ing node has certain probability to possess one of the keys used
to generate the MACs in a data report, i.e., {Kij

, 1 ≤ j ≤ T},
and is able to verify the correctness of the corresponding
MACs, i.e., {Mij

, 1 ≤ j ≤ T}. A compromised node has keys

1) Check that T {ij , Mij} tuples exist in the packet; drop the
packet otherwise.

2) Check the T key indices {ij , 1 ≤ j ≤ T} belong to T distinct
partitions; drop the packet otherwise.

3) If it has one key K ∈ {Kij , 1 ≤ j ≤ T}, it computes
M = MAC(K, LE ||t||E) as in Equation 1 and see if the
corresponding Mij is the same as M . If so, it sends the packet
to the next hop; if the Mij differs from M , the packet is
dropped,

4) If it does not have any of the keys in {Kij , 1 ≤ j ≤ T}, sends
the packet to the next hop.

Fig. 3. Operations in En-route Filtering

from one partition and can generate MACs of one category
only. Since T MACs of distinct categories and T key indices
of distinct partitions must be present in a legitimate report, the
compromised node has to forge the other T−1 key indices and
corresponding MACs. This explains why the global key pool is
partitioned. Had each node carried keys chosen from the entire
key pool, one compromised node could use T of its keys to
generate multiple MACs, which would be indistinguishable
from those generated by T nodes.

When a node receives a report, it first examines whether
there are T key indices of distinct partitions and T MACs in
the packet. Reports with less than T key indices, or less than
T MACs, or more than one key index in the same partition
are dropped. Then if the node possesses any of the T keys
indicated by the key indices, it re-produces the MAC using its
own key and compares the result with the corresponding MAC
carried in the report. The report is dropped if the attached one
differs from the locally computed one. If they match exactly,
or if this node does not possess any of the T keys, the node
passes the report to the next hop. The pseudo code for en-route
filtering operations is given in Figure 3.

If an attached MAC differs from the one locally produced
by a forwarding node, it is an indication that the report was
not generated with the correct key. Such a MAC is considered
forged, and the report dropped. Notice that a forwarding node
sends the report downstream if it does not have any of the
T keys, because the report can be a legitimate one with
MACs by keys not possessed by this node. This probabilistic
detection may allow a forged MAC to escape the screening of
this node and be forwarded. However with adequate numbers
of forwarding hops, the forged report can be detected and
dropped with high probabilities. Although the detection power
of a single sensor is limited, the collective detection power
grows with the number of forwarding nodes. We will further
analyze the en-route detection power of SEF in Section III.

F. Sink Verification

When the sink receives a report, it can check the correctness
of every Mij

because it has all the keys. Any forged MAC
that eludes the en-route filtering by chance will be caught.
Upon receiving a report, the sink first examines whether the
report carries T key indices of distinct partitions and T MACs
accordingly. It then re-computes each of the T MACs and

1) Check that T {ij , Mij} tuples exist in the packet; reject the
packet otherwise.

2) Check the T key indices {ij , 1 ≤ j ≤ T} belong to T distinct
partitions; reject the packet otherwise.

3) For each K ∈ {Kij , 1 ≤ j ≤ T}, it computes M =

MAC(K, LE ||t||E) as in Equation 1 and compares against
the corresponding Mij in the packet. If there is a mismatch, the
packet is rejected. Only those with MACs that are all correct
are accepted.

Fig. 4. Operations at the Sink

compares the results with the attached ones. If any mismatch
occurs, the report is discarded. The pseudo-code is given in
Figure 4.

Because of its complete knowledge of the key assignment,
the sink serves as the final defense that catches false reports
not filtered out by forwarding nodes. Any forged MAC that
passes en-route filtering can be detected by the sink. Therefore,
SEF can detect bogus reports forged by an attacker with
compromised keys in up to T − 1 partitions.

G. Reducing the MAC Size Using Bloom Filters

In addition to normal packet fields, each report carries T
key indices and T MACs, both of which increase the report
length and energy consumption. The report length may also
be limited due to hardware or software configuration (e.g.,
TinyOS [9] uses packets of 36 bytes or less), or potentially
high error rates. To reduce SEF’s overhead we need to reduce
the number of bytes needed for carrying the MACs. Instead of
a naive reduction of the MAC size which reduces its security
strength, we propose that each report carry a Bloom filter, a
much shorter bit-string, instead of a list of MACs, to reduce
packet size while retaining the false report detecting power.

1) Bloom filters: Bloom Filter is a popular data structure
used for membership queries (i.e., given an element, find
whether it is in a pre-defined set). It represents a set S =
{s1, s2, · · · , sn} using a string of m bits with k independent
hash functions h1, h2, · · · , hk [10]. Each hi maps an item
s uniformly to the range {0, 1, · · · ,m − 1}, each of which
corresponds to a bit in the m-bit string (Note that we use
n,m, k, h for different meanings in this section). Each of the
m bits is initially set to 0.

For each element s ∈ S, we hash it with all the k hash
functions and obtain their values hi(s)(1 ≤ i ≤ k). The bits
corresponding to these values are then set to 1 in the string.
Note that more than one of the kn values may map to the
same bit in the string (see Figure 5 for an example). To find
whether an item s′ ∈ S, the bits hi(s′) are checked. If all of
them are 1, s′ is considered to belong to S; s′ is definitely
not in S if at least one of them is 0.

Bloom filter may yield false positives, i.e., an element is
not in S but its bits hi(s) are collectively marked by elements
in S. If the hash is uniformly random over the m values, the
probability that a bit is 0 after all the n elements are hashed
and their bits marked is (1 − 1

m)kn ≈ e−
kn
m . Therefore, the

(S2)

1

1

1

1

1

0

0
0

0

0
0
0
0

0
0
0

0
0

...

S1

h1

h1S2

S3

S4

S5

h2

h3

h2

h3

bit 0

bit 17

...

(S1)

(S2)

(S1)

(S1)
(S2)

Fig. 5. A Bloom filter that represent n = 5 elements using a string
of m = 18 bits and k = 3 hash functions, each maps any element
to range {0, · · · , 17}. Notice h3(s1) and h1(s2) both map to bit 6.

probability for a false positive (i.e., the k bits of an element
s are already marked) is (1 − (1 − 1

m)kn)k ≈ (1 − e−
kn
m)k.

2) SEF with Bloom Filter: Using the Bloom filter, the CoS
can apply k system-wide hash functions to map the T MACs
(each with b bits) to a m bit string F = b0b1 · · · bm−1, where
we have m < bT to reduce packet size and kT < m to retain
en-route filtering capability. These k functions are known by
every node and the sink. For each bl(0 ≤ l ≤ m−1), we have

bl =
{

1 if ∃ i,j 1 ≤ i ≤ k, 1 ≤ j ≤ T s.t. hi(Mj) = l
0 otherwise

The final report sent by the CoS to the sink is

{LE , t, E, i1, i2, · · · , iT , F}.
Both en-routing filtering and sink verification need mod-

ifications to use the Bloom filter. When a forwarding node
receives the report, it checks whether there are T key indices
of distinct partitions and an m-bit Bloom filter F with at most
kT “1”s. If it has one of the keys, it re-produces the k hash
values and verifies whether the corresponding bits are “1”s.
Specifically,

1) Check that T key indices {ij} and an m-bit string F
exist in the packet, and there are at most kT “1”s in F ;
drop the packet otherwise.

2) Check the T key indices {ij , 1 ≤ j ≤ T} belong to T
distinct partitions; drop the packet otherwise.

3) If it has one key K ∈ {Kij
, 1 ≤ j ≤ T}, it computes

M = MAC(K,LE ||t||E) as in Equation 1. Then it
computes each hi(M) and see if the corresponding bit
is “1” in F . The packet is dropped if at least one of them
is “0”; it is forwarded to the next hop if all of them are
“1”.

4) If it does not have any of the keys in {Kij
, 1 ≤ j ≤ T},

sends the packet to the next hop.

When the sink receives the report, it checks whether there
are T key indices of distinct partitions and a m bit F with
at most kT “1”s in the packet. Then it regenerates the Bloom

filter and accepts the packet only if the attached F is exactly
the same. Specifically, it prepares an m-bit string F ′, with
all bits set to “0”. For each key K ∈ {Kij

, 1 ≤ j ≤ T},
it computes the MAC M and marks the corresponding bits
hi(M), 1 ≤ i ≤ k to “1.” Then it compares F with F ′. Only
if F is identical to F ′, is the packet accepted.

Using the Bloom filter, instead of a list of MACs, greatly
reduces the packet size. As one example, assume that each key
index is 10 bits, each MAC is b = 64 bits, T = 5 key indices
and T = 5 MACs are required for each report. They take 370
bits (about 46 bytes). Using a Bloom filter of k = 5 hash
functions, which maps 5 MACs to an m = 64 bit string, the
total required space is reduced to 30% (only 114 bits, about
14 bytes).

III. PERFORMANCE EVALUATION

In this section we first quantify the effectiveness of en-
route filtering, then compute the Bloom filter’s false positive
probabilities at the sink and a forwarding node (i.e., the proba-
bility that a false report escapes detection). Based on the above
results, we discuss how to choose appropriate parameters to
improve the detecting power of SEF and reduce false positives.
After analyzing the energy savings SEF achieves through
dropping bogus data (Section III-D), we provide simulation
evaluations (Section III-E).

Since SEF relies on the T carried MACs (in the form
of a Bloom filter) to detect false reports, an attacker that
compromises keys in T or more distinct partitions can suc-
cessfully fabricate reports. SEF cannot detect or drop such
forged reports. In the rest of this section, we analyze cases
where the attacker has keys in Nc (0 ≤ Nc ≤ T − 1) distinct
partitions.

A. En-route filtering effectiveness

The attacker cannot generate correct MACs of other T −Nc

distinct categories. To produce seemingly legitimate reports, he
has to forge T−Nc key indices of distinct partitions and T−Nc

MACs. We first compute the probability that a forwarding node
has one of the T − Nc keys, thus being able to detecting an
incorrect MAC and drop the report. We do not consider Bloom
filter here; Section III-B examines the Bloom filter case and
shows the results are almost the same.

If the attacker randomly chooses T − Nc other partitions
and randomly chooses a key index in each partition, then the
probability that a node happens to have one of the T − Nc

keys, denoted by p1, is

p1 =
T − Nc

n
· k

m
=

k(T − Nc)
N

, (2)

where k is the number of keys each node possesses, m is the
number of keys a partition has, and n is the number of key
partitions.

The expected fraction of false reports being detected and
dropped within h hops is

ph = 1 − (1 − p1)h.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

P
or

tio
n

of
 fi

lte
re

d
fa

ls
e

re
po

rt
s

Number of hops traveled

ph02(x)
ph01(x)

ph005(x)

Fig. 6. The portion of dropped false reports as a function of the
number of traveled hops. The three curves are for p1 = 0.2, 0.1, 0.05,
where the attackers has keys in 1, 3, 4 distinct partitions, respectively.
Each report carries T = 5 MACs.

The average number of hops that a forged report traverses is
given as

∞∑
i=1

i(1 − p1)i−1p1 =
1
p1

Figure 6 illustrates how the detected fraction increases as the
number of hops h grows. Consider an example of n = 10
partitions, m = 100 keys per partition, each node stores
k = 50 keys and each packet carries T = 5 MACs. When
Nc = 1, 3, 4, we have p1 = 0.2, 0.1, 0.05, respectively. Figure
6 shows that 90% false reports are dropped within 10 hops if
the attacker has keys in one partition, and 80% are dropped
within 15 hops if two partitions. For the worst case, only one
MAC is incorrect, 80% are dropped in 32 hops and they travel
20 hops on average. These numbers show that SEF turns the
scale into an asset: the longer the data delivery paths, the
higher the accumulated power of en-route filtering.

B. False Positives with Bloom filter

Now we analyze the false positive probability (i.e., a false
report is not detected and finally accepted by the sink) when a
report carries a Bloom filter instead of a list of MACs. This is
important to check whether Bloom filter reduces packet size
by impairing security.

1) False positive at the sink: First, the attacker’s chance
of getting a false packet accepted at the sink is very small. It
knows the kNc hashing results of Nc correct MACs, thus at
most kNc “1”s of a m-bit Bloom filter (Note that more than
one result may map to the same bit). Therefore, it needs to
guess the remaining m − kNc bits of the Bloom filter. If it
guesses each bit randomly, the probability that it guesses all
of them right is given by 1

2m−kNc
.

The attacker may guess the bit pattern more smartly. Since
different hashings may map to the same bit, the k(T − Nc)
hash results of forged MACs map to at least one and at most
k(T − Nc) distinct bit positions. A smarter guess is not to
mark more than k(T −Nc) additional “1”s. The total number

of bit patterns by k(T − Nc) hash results is

B =
k(T−Nc)∑

i=1

(
m

i

)
(3)

Randomly guessing one of them has 1
B chance of success.

As an example, F is 64 bits, k = 5 hash functions are used
and each report has T = 5 MACs. If the attacker has keys
in one partition, the above two ways of guessing have 2−59

and about 2−55 probabilities of cheating the sink successfully.
In the worst case he has keys of Nc = 4 distinct partitions,
the probabilities are 2−44 and about 2−23. In the worst case
and a smart guess, he needs to try 223 · 36 · 8/20000 ≈ 34
hours on average to cause one false report accepted at the sink,
assuming low-end nodes of 20kbps radio and 36 byte packet
size. The vast majority of the false reports, are still detected
and rejected. Furthermore, he cannot use the correctly guessed
Bloom filter for another false report of different content (i.e.,
different LE , t or E) because the MACs depend on the report
content; he has to take another 34 hours to create a different
false alarm.

Note that the above probabilities are not the probability of
successfully guessing the value of a key, whose strength is
decided by its length and independent of the Bloom filter.

2) False positive at forwarding nodes: Realizing that the
sink is difficult to cheat, the compromised node may try to
fool intermediate nodes, hoping to at least waste more energy.
It may mark as many bits as possible, trying to cover all the
marked bits in a correct F . Thus if intermediate nodes find that
the bits they calculate are already marked, they will forward
the message. We will show that this strategy has very limited
effect on reducing the effectiveness of en-route filtering.

Since there are T MACs and each is hashed k times, there
are at most kT “1” bits in a correct F . If more than kT bits are
“1”, an intermediate node can simply drops the report. Thus,
the attacker’s strategy is: mark the (at most) kNc bits of the
Nc correct MACs, then randomly mark other k(T − Nc) bits
as “1”. Now we calculate the probability that a forwarding
node A with one of the T −Nc keys finds all its bits marked,
thus failing to detect such a false report.

Since the hash functions map a MAC to each of the m bits
uniformly, the probability that A’s k bits all fall in the kT
“1”s marked by the compromised node, is

pc = (
kT

m
)k. (4)

Given m (decided by maximum allowed packet size) and T
(decided by maximum allowed packet size, etc.), we seek to
minimize this probability by choosing a good k (the number
of hash functions). By setting the first-order derivative as 0,
we have

∂pc

∂k
= ekln kT

m (ln
kT

m
+ 1) = 0. (5)

Further examination shows that when k = m
Te , pc has the

minimum value e−
m
T e . For example, when m = 64 and T = 5,

then pc ≈ 0.01. Thus the probability of detecting the false
report at a forwarding node is

p1
′ = (1 − pc)p1,

where p1 is the one-hop filtering probability in Equation 2.
Thus by choosing a good k, the one-hop detecting probability
is reduced by merely 1%.

For example, if p1 = 0.2, then we have p1
′ = 0.198. This

implies that 89.0% false reports are filtered out within the
initial 10 hops and they travel 5.05 hops on average. Compared
with the corresponding results of Section III-A, the differences
are almost negligible. Therefore, the en-route filtering power is
not affected much by using a Bloom filter, either. In summary,
Bloom filter greatly reduces the required packet space to carry
verification information while retaining the power of en-route
filtering and sink verification.

C. Parameter Selection

Various parameters must be chosen appropriately to make
SEF effective. We first discuss the choice of k (the number
of keys a node stores), T (the number of distinct MACs each
report carries), n (the number of key partitions), and m (the
number of keys in each partition) in the global key pool.

1) Global key pool parameters: The main impact of global
key pool structure and key assignment is on en-route filtering.
From Equation 2, k/N and T should be large to increase the
one-hop detection probability p1. In practice, k is constrained
by the sensor’s storage. If each key is 64 bits, storing 50 keys
needs 400 bytes. This can take a certain portion of low-end
nodes’ storage. k/N should not be too big, either. Because
each compromised node reveals a portion of the global key
pool. With too big a k/N ratio, a few compromised nodes
can reveal a significant portion of the key pool.

The choice of T is limited by how many bits the packet
can hold. On some low-end nodes, packets cannot be too
long, e.g., more than 36 bytes. T should be decided based
on the available space excluding the report content, headers,
etc. T also affects energy consumption in forwarding. Longer
packets consume more energy. We should choose T such that
it provides sufficient en-route filtering power while still small
enough to conserve energy. We will study its impact on energy
in Section III-D.

The partition number n affects the en-route filtering proba-
bility. A smaller n gives a higher p1 (Equation 2). On the other
hand, n should be larger than T . A larger n makes it more
difficult for the attacker to gather keys from all the partitions.
The absolute numbers of k,m affect the probability that two
nodes have the same set of keys. We should avoid such
cases, where compromising one effectively compromises the
other. The probability for such cases is determined by the the
absolute numbers of k,m, n, given as 1/(n

(
m
k

)
). Larger k,m

lead to smaller probabilities, even though the ratio k/m, thus
the filtering probability p1, remains the same. In practice, a few
thousand keys are sufficient to give very small probabilities of
two nodes carrying the same set of keys.

2) Deployment density: Another factor we must consider
is the node deployment density ρ. Since we require T MACs
from distinct categories for each legitimate report, the number
of detecting nodes for the same stimulus should be large
enough to possess keys from at least T partitions. We can
calculate E[D|n′], the expected number of nodes needed to
collectively possess keys from n′ distinct partitions, as follows
(details are in Appendix):

E[D|n′] = n(
1
n

+
1

n − 1
+ · · · + 1

n − n′ + 1
)

≈ nln(
n

n − n′)

where n is the total number of partitions. Suppose nodes’
sensing radius is rs, the number of nodes detecting the same
stimulus is Nd = ρπr2

s . We should set ρ such at Nd is at
least E[D|T] or larger to ensure sufficient number of detecting
nodes. For example, when n = 10, we find it takes about
7, 12 nodes to collectively possess keys from 5, 7 partitions.
If T = 5, we can set Nd to at least 7, or higher (e.g., 12) to
ensure a sufficient node density.

3) Bloom filter parameters: After the key pool parameters
are decided, the Bloom filter parameters can be set accord-
ingly. The key index length is log2N , thus T key indices
and a m-bit Bloom filter take T log2N + m bits for each
packet. Within the allowed packet size, m should be large
enough to reduce the false positive probabilities, as indicated
by Equations 3 and 4. The number of hash functions k used in
Bloom filter can be chosen based on the analysis of Equation
5 to minimize the attacker’s chance in en-route filtering.

D. Energy Savings

SEF saves energy of sensors along the data delivery paths
through its early detection and dropping of false data reports.
On the other hand, SEF requires that each report carry T key
indices and a Bloom filter, in addition to the normal fields
of a report. Such extra fields incur energy consumption in
transmission, reception and computation.

We use the following model to quantify the energy con-
sumption. Let the length of the Bloom filter and key index
be Ls and Lk, respectively. The length of a normal report
without any extra field is denoted as Lr. Then, the length of
an SEF report becomes L′

r = TLk + Ls + Lr. We normalize
the packet length to Lr and let α = L′

r

Lr
= 1+ Ls

Lr
+ cT , where

c = Lk

Lr
. Let the number of hops a report travels be H , and the

amount of legitimate data traffic and false injected traffic be 1
and β, respectively. Without SEF, every report (including those
forged ones) travels all H hops. With SEF, a false report with
T −Nc forged MACs has probability (1− p1)h−1p1 to travel
exactly h hops 4, where p1 = k(T−Nc)

N . Therefore, the energy
consumed to deliver all the traffic, denoted by e without SEF

4The actual per hop detecting probability should be p′1 = p1(1 − pc).
Since pc is very small (Section III-B), we ignore it in the computation.

e(x,y)
E1(x,y)
E4(x,y)

 0 1 2 3 4 5 6 7 8 9 10
beta

 5

 6

 7

 8

 9

T

 0

 200

 400

 600

 800

 1000

 1200

Energy Consumption

Fig. 7. The energy consumption as a function of the normalized amount
of injected traffic β and the number of carried MACs T . e is the
energy amount without SEF; E1, E4 are the amounts with SEF and the
attacker has keys in 1, 4 distinct partitions, respectively. SEF uses less
energy when the amount of injected traffic exceeds that of legitimate
traffic.

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50 60

E
ne

rg
y

C
on

su
m

pt
io

n

Length of Path

e(x)
E1(x)
E4(x)

Fig. 8. The energy consumption as a function of the length of data
delivery path. Injected traffic is 10 times that of legitimate one; each
SEF report carries 5 MACs. e is the energy amount without SEF;
E1, E4 are the amounts with SEF and the attacker has keys in 1, 4
distinct partitions, respectively.

and E with SEF, will be:

e = H(1 + β) (6)

E = (1 +
Ls

Lr
+ cT)(H + β

1 − (1 − p1)H

p1
) (7)

Figure 7 plots how e and E change as functions of different
T and β, when H = 100, the Bloom filter is Ls = 64 bits,
key index is Lk = 10 bits, original packet size is Lr = 24
bytes, the global key pool has 10 partitions and a node has
50% of the keys in a partition. SEF energy is plotted for two
cases, the attacker has keys in Nc = 1, 4 distinct partitions.

We find that e grows much faster than E, and SEF saves
energy in most cases. For example, when β = 9, if the packet
carries T = 5 MACs and the attacker has keys in one partition,
with SEF more than 90% energy can be saved compared to
the case without SEF. Even with the worst case of Nc =
4, where the one-hop filtering probability p1 is merely 0.05,
still about 70% of the energy can be saved by dropping false
reports. In reality, legitimate traffic happens sporadically, while
an attacker does not constrain how much traffic he injects into
the network. Therefore, the amount of injected traffic can be
orders of magnitude higher than that of legitimate traffic. SEF
saves large amount of energy in such cases. We also find that a
larger T helps further reduce energy by improving the en-route
filtering probability, although the reduction is much smaller
compared to what has already been saved.

To evaluate the impact of path lengths, we also draw e and
E as functions of hop number H , when β = 10, T = 5
(Figure 8). When one compromised node injects traffic, SEF
consumes less energy after about 3 hops. As path length grows,
it saves more energy: at 20 hops SEF saves more than 50%
energy compared to the case without SEF. In the worst case
when there is only one forged MAC in bogus reports, SEF
starts saving energy after about 12 hops. We also find that
SEF adds very little overhead even when the path is too short

to save energy. The above results demonstrate that SEF can
reduce energy consumption significantly in most cases, and
the energy increase when paths are too short is very small.

Another part of overhead comes from the MAC and hash
computations in generating and verifying Bloom filters 5.
In sensor networks, usually computation overhead is much
smaller than that of communication. As one example, measure-
ments [11] show that Mica2 nodes consumes 10mA current
when idling or receiving, 13mA transmitting. Based on the
battery voltage (3V) and data rate (19.2Kbps), we can calculate
that it takes 16.25/12.5 µJ to transmit/receive a byte. If we use
RC5 [12] block cipher for both MAC and hash computation,
each computation takes about 0.5 ms [13] and consumes about
15 µJ. Using the example at the end of Section II and assuming
10 detecting nodes, the 25 hash and the 10 MAC computations
the CoS and detecting nodes perform consume 525 µJ, the 5
hash computations each forwarding node performs to verify
a MAC consumes 75 µJ. The computation overhead over H
hops is 525 + 75H µJ. Plugging et, er into Equation 7, the
communication overhead is about 55000+1100H , more than
one magnitude higher than the computation overhead. Thus
the computation adds only marginal energy consumption and
does not affect previous results on energy comparisons.

E. Simulation Results

We use simulations to further verify our analysis. Due to
space constraint, we only present results for en-route filtering
and energy consumption and Nc = 0, 1 cases. We use a field
size of 200×20m2 where 340 nodes are uniformly distributed.
One stationary sink and one stationary source sit in opposite
ends of the field, with about 100 hops in between. The power
consumptions of transmission and reception are 60mW and
12mW, respectively. The transmission time for a packet is 10

5As explained in Section II-D, CoS election overhead exists for both SEF
and without SEF cases. It is not included in comparison.

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 d

ro
pp

ed
 r

ep
or

ts

Number of traveled hops

"drop_percent_vs_hop-comp0"
"drop_percent_vs_hop-comp1"

Fig. 9. The percentage of dropped false reports grows as the
number of hops increases. The attacker has keys in 0 and 1 partition,
respectively.

"no-spf-energy"
"spf-energy"

0 1 2 3 4 5 6 7 8 9
beta 2

3
4

5
6

7
8

T

0

5

10

15

20

25

30

Energy consumption (Joules)

Fig. 10. The energy consumption as a function of injected traffic ratio
β and the number of MACs T each report carries. The attacker has
keys in one partition. SEF saves energy when the amount of injected
traffic exceeds that of legitimate traffic

ms. The source generates a report every two seconds. We use
a global key pool of 1000 keys, divided into 10 partitions,
with 100 keys in each partition. Each node has 50 keys. The
results are averaged over 10 simulated topologies.

a) En-route filtering: Figure 9 shows the percentage of
dropped false reports as a function of the number of traveled
hops, for 0 and 1 compromised key partition, respectively.
The source generates 1000 bogus reports in each run. When
the attacker mimics wireless transmission to inject traffic,
about 90% false reports are dropped within 10 hops. With one
compromised node, about 80% are dropped within 10 hops.
As the reports travel, more and more are detected and dropped:
Less than 5% reports can go beyond 20 hops and none reaches
the sink - all of them are detected and dropped before they
finish half of the 100 hops. These results are consistent with
the theoretical analysis. They show that SEF turns the network
scale into an asset to achieve greater detection power with a
larger node population.

b) Energy Tradeoff: We use similar parameters as those
in Section III-D and the attacker has keys in one partition. The
source generates 100 reports. The number of forged reports is
100β, where β is the injected traffic ratio. Figure 10 confirms
our previous analysis (Section III-D): by dropping injected

reports en-route, SEF saves energy in most cases.

IV. DISCUSSIONS

A. Other network factors

The SEF design harnesses the advantage of large scale
by accumulating detecting power over data delivery paths:
The more hops sensing reports need to travel through, the
higher the probability that a forged report will be detected
and dropped. Even when reports are forwarded through a
small number of hops, SEF can still bring energy savings by
detecting and dropping significant portions of forged reports.
Given that real events may occur sporadically while forged
reports can potentially be injected through compromised nodes
by attackers at any rate, en-route filtering mechanisms such
as SEF should be considered one of the necessary control
mechanisms in any large scale networks.

SEF can work with almost all of the existing data for-
warding protocols developed for sensor network, such as
Directed Diffusion [14], GRAB [7], and TTDD [15]. Its only
requirements are that each sensor be able to store a small
number of keys and to perform simple hash computations.
SEF can perform well in a harsh environment where nodes
may fail frequently or unexpectedly because the state needed
for false detection, the key indices and MACs, is carried in
reports rather than stored in sensors. Consequently, SEF can
also run in sensor networks with any existing energy conserv-
ing protocols, such as [16], [17], that dynamically turn off
unneeded nodes to minimize the system energy consumption.

B. SEF’s Detection Power

With the current design, SEF can detect forged reports
probabilistically even when the attacker has obtained security
keys in up to T − 1 partitions. This detection power depends
on the conditions that data reports be generated collaboratively
by multiple sensors detecting the same stimulus, and that these
sensors collectively possess keys in at least T partitions. If a
sensor network has areas of low node density, T is necessarily
set to a low value in order to ensure that the above conditions
are met. As a result, the robustness of SEF in defending against
multiple compromised nodes is reduced.

When node density is very high, on the other hand, SEF
with a slight extension may be able to detect forged reports
even when the attacker has obtained keys in more than T ,
but less than n, partitions. When the detecting nodes of a
stimulus collectively possess keys of all the n partitions, they
may choose to let each report carry MACs from a different
set of T categories. If reports for the stimulus is generated
continuously, a small number of successive reports should
collectively carry MACs of all the n categories. The forged
reports injected by the attacker, on the other hand, can only
carry correct MACs generated by using keys in less than
n categories. The sink can accept consistent reports that
collectively used keys in all the n categories and reject those
conflicting reports which have MACs of less than a threshold
Tth (T < Tth ≤ n) of distinct categories. This extension
effectively sets T to the value of n, making SEF capable of

detecting false reports by an attacker holding keys in up to
n − 1 distinct partitions.

SEF’s detection power critically depends on the node de-
ployment density, but does not depend on the details of CoS
election procedure. Although a compromised detecting node
may launch attacks against the CoS election process by always
claiming the maximum signal strength, thus getting elected
as COS, but not sending out a report. We can prevent this
attack by improving the CoS election. We need a mechanism
by which all or majority of the nodes can decide which of
them should be CoS for each report. For example we may
require that for successive reports of a stimulus, the role of
CoS be rotated among all the detecting nodes. Note that a
compromised node cannot produce false positive events even
if it gets itself elected as CoS, as explained earlier in Section
II-D: if other legitimate nodes do not detect any signal, they
will not send MACs to the faulty node to endorse its “events”.

C. Other Types of Insider Attacks

A compromised node near a stimulus may launch false
negative attacks by sending to the CoS incorrect MACs, the
inclusion of which in the report would result in the report
being dropped, thus a real event is not reported. When multiple
nearby nodes are compromised, they can collude to stall the
report generation more easily. As we explained earlier in
Section II-B, this is a false negative event, while SEF is an
effective solution for false positive events only, protecting the
system from false reports.

Currently SEF also does not address the issues of how
to identify compromised nodes or revoke compromised keys.
For identification, neighbor nodes may overhear the channel
to detect unusual activities of compromised nodes such as
high traffic volume and notify the sink. After the nodes are
identified, the user may deploy new nodes and the sink could
flood instructions to revoke compromised keys and propagate
new ones.

In summary, SEF is not designed to address all the attacks
that a compromised node may launch, such as dropping
legitimate reports passing through it, recording and replay-
ing legitimate reports, or injecting false control packets to
disrupt other protocols. Existing techniques can be used to
address some of these issues. [18] points out that one can
use multipath forwarding to effectively alleviate dropping of
legitimate reports. [7], [14] demonstrate that sensors can use
a cache to store the signatures of recently forwarded reports,
thus preventing identical packets from being forwarded again.

V. RELATED WORK

Sensor network security has been studied in recent year in
a number of proposals. Compared with them, SEF addresses
a different problem, detecting and en-route filtering injected
false data. Karlof et al. [18] analyzes attacks against sensor
network routing protocols and points out possible ways of
defense. Wood et al. [19] studies DoS attacks against different
layers of sensor protocol stack and concludes that security
should be considered at the design phase. Sasha et al. [20]

proposes to trade-off overhead and security strength based
on the importance of data. Lin et al. [21] studies how to
reduce energy consumption in cryptographic algorithms using
dynamic voltage scaling. Carman et al. [6] compares the
energy consumptions of different public key algorithms on
various sensor hardware.

SPINS [1] implements symmetric key cryptographic algo-
rithms with delayed key disclosure on Motes to establish
secure communication channels between a base station and
sensors within its range. Basagni et al. [5] uses a single
“mission key” for the entire sensor network assuming that
tamper-resistant hardware is available so that no secret can
be compromised. They do not address the false data injection
problem in the presence of compromised insider nodes.

SEF key assignment bears similarities with [2], [3], which
use probabilistic key sharing to establish trust between neigh-
boring nodes. Chan et al. [3] further trades off the unlikelihood
of large scale attacks for higher strength against smaller ones.
But SEF solves a different problem, and it assigns keys
differently: each node has keys from only one partition of
the global pool. This is to ensure each node can only generate
part of the proof for the truthfulness of a report. Only through
the joint effort of multiple nodes can the complete proof
be generated. Eschenauer et al. [2] does not impose such a
constraint and nodes can choose keys from the whole key pool.
Finally, [2] requires any two nodes have very high probabilities
of sharing keys to build a connected network; the probability
in SEF can be much lower since we exploit the network scale
to make en-route filtering effective.

In principle, the joint generation of MACs by multiple
nodes is similar to [4] where several nodes collectively issue
a certificate for a new node in mobile ad hoc networks.
But [4] uses public key algorithms, which are infeasible on
small sensors of constrained computing, energy and memory
resources. Canetti et al. [22] proposes multiple MACs to
ensure source authentication in multicast so that a group of
less than a threshold number of colluding receivers do not have
all the keys needed to cheat other receivers. SEF has many
data sources but one sink and only the sink has all the keys.
The purpose is to prevent compromised nodes from cheating
the sink. [22] assumes one source but many receivers and the
purpose is to prevent cheating each individual receiver. Also,
packet size is not a big concern in the Internet but it is a
serious issue for low-end sensors.

There is also a rich literature on secure routing in mobile
ad-hoc networks against outsider or insider attacks [23], [24],
[25]. Yang et al. [26] proposes self-organized algorithms and
protocols to secure homogeneous ad-hoc wireless networks,
and Kong et al. [27] for heterogeneous mobile ad-hoc net-
works. SEF works for large-scale sensor networks, whose
communication is usually from many to one and the resources
are severely constrained.

SEF design is also related to intrusion detection [28] and
Internet packet filtering against DoS attacks through forged
source IP addresses [29]. However, these designs either rely
on the network infrastructure that does not exist in a self-

0 1 2 nn−1

1/n 2/n 1

1/n1 (n−2)/n(n−1)/n 2/n

(n−1)/n

Fig. 11. The state transition diagram for t, the number of distinct
key partitions as owned by D nodes. The number in each circle is t;
each arrow denotes the addition of one more node and the number
on the arrow is P (i, j), the probability of state transition from i to
j with one more node.

organized wireless sensor network, or involve complex and
sophisticated mechanisms that are beyond the capabilities of
low-end sensors. SEF only requires that sensor nodes store
tens of keys and perform efficient keyed MAC computations.

VI. CONCLUSION

Sensor networks serving mission-critical applications are
potential targets for malicious attacks. Although a number of
recent research efforts have addressed security issues such as
node authentication, data secrecy and integrity, they provide
no protection against injected false sensing reports once any
single node is compromised.

SEF aims at detecting and dropping such false reports
injected by compromised nodes. It takes advantage of the
large scale and dense deployment of sensor networks. SEF’s
detection and filtering power increases with the deployment
density and the sensor field size. Our analysis and simulation
results show that SEF can effectively detect false reports
even when the attacker has obtained the security keys from a
number of compromised nodes, as long as those keys belong
to a small number of the key pool partitions. It can filter
out 80∼90% false data by a compromised node within 10
forwarding hops.

SEF represents a first step towards building resilient sen-
sor networks that can withstand compromised nodes. SEF
achieves this goal by carefully limiting the amount of security
information assigned to each individual node. On the other
hand, collaborative filtering of false reports requires that
nodes share certain amount of security information. The more
security information each forwarding node possesses, the more
effective the en-route filtering can be, but also the more secret
the attacker can obtain from a compromised node. Our plan
for the next step includes evaluation of the tradeoffs between
these two conflict goals, and gaining further insight on how
to build a sensor network that can be at once resilient against
many compromised nodes as well as effective in detecting
false data reports through collaborative filtering.

VII. APPENDIX

We use the state transition diagram in Figure 11 to compute
E[D|n′], the average number of nodes needed to collectively
possess keys of n′ distinct partitions.

P (i, j) =

i
n when i=j and 0 ≤ i ≤ n
n−i
n when i+1 = j and 0 ≤ i ≤ n − 1

0 other cases

G(i, j) = P (i, i)G(i, j − 1) + P (i, i + 1)G(i + 1, j − 1)
G(i, 0) = i

where P (i, j) is the probability of state transition from i to
j with the addition of one node; state i means the nodes has
keys from i distinct partitions, G(i, j) is the expected number
of t after j more nodes are added to a node set that already
has i partitions.

We can calculate that

E[D|n′] = 1 +
n − 1

n
(1 + 2 · 1

n
+ 3 · 1

n2
+ · · ·)

+ · · · + n − n′ + 1
n

(1 + 2 · n′ − 1
n

+ 3 · (n′ − 1
n

)2 + · · ·)

= n(
1
n

+
1

n − 1
+ · · · + 1

n − n′ + 1
)

REFERENCES

[1] V. Wen, A. Perrig, and R. Szewczyk, “SPINS: Security Suite for Sensor
Networks,” in ACM MOIBCOM, 2001.

[2] L. Eschenauer and V. D. Gligor, “A Key-Management Scheme for
Distributed Sensor Networks,” in ACM CCS, 2002.

[3] H. Chan, A. Perrig, and D. Song, “Random Key Predistribution Schemes
for Sensor Networks,” in IEEE Symposium on Security and Privacy,
2003.

[4] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, “Providing Robust and
Ubiquitous Security Support for Mobile Ad-Hoc Networks,” in IEEE
ICNP, 2001.

[5] S. Basagni, K. Herrin, E. Rosti, and D. Bruschi, “Secure Pebblenets,”
in ACM MOBIHOC, 2001.

[6] D. W. Carman, P. S. Kruus, and B. J. Matt, “Constraints and Approaches
for Distributed Sensor Network Security,” NAI Labs, Tech. Rep. 00-010,
September 2000.

[7] F. Ye, G. Zhong, S. Lu, and L. Zhang, “GRAdient Broadcast: A
Robust Data Delivery Protocol for Large Scale Sens or Networks,” ACM
Wireless Networks (WINET), vol. 11, no. 2, March 2005.

[8] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for
message authentication,” in Crypto, 1996.

[9] “TinyOS Operation System,” http://millennium.berkeley.edu.
[10] B. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable

Errors,” Communications of the ACM, vol. 13, no. 7, 1970.
[11] “Xbow sensor networks,” http://www.xbow.com/.
[12] R. Rivest, “The RC5 Encryption Algorithm,” in Workshop on Fast

Software Encryption, 1995.
[13] C. Karlof, N. Sastry, and D. Wagner, “TinySec: Security for TinyOS,”

www.cs.berkeley.edu/∼nks/tinysec/TinySec.ppt, 2002.
[14] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: A

Scalable and Robust Communication Paradigm for Sensor Networks,”
in ACM MOBICOM, 2000.

[15] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A Two-tier Data
Dissemination Model for Large-scale Wireless Sensor Networks,” in
ACM MOIBCOM, 2002.

[16] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. B. Srivastava, “Optimiz-
ing Sensor Networks In The Energy-Latency-Density Design Space,”
Ieee Transactions On Mobile Computing, vol. 1, no. 1, 2002.

[17] F. Ye, G. Zhong, S. Lu, and L. Zhang, “PEAS: A Robust Energy
Conserving Protocol for Long-lived Sensor Networks,” in ICDCS, 2003.

[18] C. Karlof and D. Wagner, “Secure Routing in Wireless Sensor Networks:
Attacks and Countermeasures,” in IEEE SPNA, 2002.

[19] A. Wood and J. Stankovic, “Denial of Service in Sensor Networks,”
IEEE Computer, October 2002.

[20] S. Slijepsevic, M. Potkonjak, V. Tsiatsis, S. Zimbeck, and M. Srivastava,
“On Communication Security in Wireless Ad-Hoc Sensor Networks,” in
11th IEEE International Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprises, 2002.

[21] L. Yuan and G. Qu, “Design Space Exploration for Energy-Efficient
Secure Sensor Networks,” in IEEE International Conference on
Application-Specific Systems, Architectures and Processors, 2002.

[22] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas,
“Multicast Security: A Taxonomy and Some Efficient Constructions,” in
INFOCOM, 1999.

[23] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A Secure On-demand
Routing Protocol for Ad Hoc Networks,” in ACM MOBICOM, 2002.

[24] Y.-C. Hu, D. B. Johnson, and A. Perrig, “Secure Efficient Distance Vec-
tor Routing in Mobile Wireless Ad Hoc Networks,” in IEEE Workshop
on Mobile Computing Systems and Applications (WMCSA’02), 2002.

[25] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens, “An On-
Demand Routing Protocol Resilient to Byzantine failures,” in ACM
Workshop on Wireless Security (WiSe), 2002.

[26] H. Yang, X. Meng, and S. Lu, “Self-organized Network Layer Security
in Mobile Ad Hoc Networks,” in WiSe, 2002.

[27] J. Kong, H. Luo, K. Xu, D. L. Gu, M. Gerla, and S. Lu, “Adaptive
Security for Multi-layer Ad Hoc Networks,” Wireless Communications
and Mobile Computing, Special Issue on Mobile Ad Hoc Networking,
vol. 2, pp. 533–547, 2002.

[28] W. R. Cheswick and S. M. Bellovin, Firewalls and Internet Security.
Addison-Wesley, 1994.

[29] K. Park and H. Lee, “On the Effectiveness of Route-Based Packet
Filtering for Distributed DoS Attack Prevention in Power-Law Internets,”
in ACM SIGCOMM, 2001.

