
MECA: Mobile Edge Capture and Analysis Middleware for
Social Sensing Applications

Fan Ye, Raghu Ganti, Raheleh Dimaghani, Keith Grueneberg, Seraphin Calo
IBM T. J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532
{fanye, rganti, rbdilmag, kgruen, scalo}@us.ibm.com

ABSTRACT
In this paper, we propose and develop MECA, a common
middleware infrastructure for data collection from mobile
devices in an efficient, flexible, and scalable manner. It pro-
vides a high level abstraction of phenomenon such that ap-
plications can express diverse data needs in a declarative
fashion. MECA coordinates the data collection and primi-
tive processing activities, so that data can be shared among
applications. It addresses the inefficiency issues in the cur-
rent vertical integration approach. We showcase the benefits
of MECA by means of a disaster management application.

1. INTRODUCTION
The past decade has seen the rise of social networks such

as Facebook, Twitter, FourSquare, and Google+ and the
emergence of smartphones equipped with sensors and Inter-
net connectivity capabilities. The marriage of these tech-
nologies, smartphones and social networks, will result in
novel applications that leverage the data collection capabili-
ties of large numbers of smartphones by crowdsourcing. For
example, real-time traffic monitoring for Google maps is en-
abled through individuals sharing their location and speed
information from their smartphones. We believe that this
integration will be a significant driver for social networking
applications for disaster management. For example, the re-
cent BP oil spill can be monitored by individuals by sharing
pictures of the spill through Twitter or Facebook. A chemi-
cal spill or the air quality (using an air quality sensor) can be
monitored in a similar fashion [7, 2]. Such information can
be aggregated, processed, and then consumed by individuals
(e.g., Do not go through Main Street as it is flooded) or by
decision makers and/or public agencies (e.g., Main Street is
flooded and ten people are trapped, send disaster response
teams promptly to Main street).

Existing approaches to such applications have largely been
based on vertical integration. Each application needs its own
software agent running on the devices collecting data spe-
cific to the application’s purpose, and a backend module for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

aggregating and processing the collected data to generate
the desired results. Such a vertical approach aims to opti-
mize the performance of a single application. However, with
the proliferation of such applications, great inefficiency and
even conflicts may arise for both the software agents and the
backend modules. Many times, these applications need the
same type of raw data, and access the same physical sen-
sor. The software agents compete for access, and collect the
same data again and again. Such uncoordinated collection
activities should be avoided. For applications in the same
domain (e.g., traffic and transportation related), they also
repeat common primitive processing of the raw data to ex-
tract information of higher semantic content. For example,
the raw time series of acceleration can be processed to detect
the existence of potholes [6].

In this paper, we propose MECA (Mobile Edge Capture
and Analytics), a common middleware for data collection
from mobile devices that addresses such issues. MECA is in-
tended to support a diverse variety of data and information
needs from many different applications. It provides a high
level abstraction of phenomenon, such that applications can
easily express their data and information needs in a declar-
ative fashion. MECA is able to identify common data and
information needs across different applications. It ensures
that the same kind of primitive processing of raw data is
done only once, and the results are shared among these ap-
plications. Thus it avoids the redundancy and conflicts in
the vertical approach.

MECA uses a configurable framework to select and con-
figure devices based on the requirements from many appli-
cations. A common software agent capable of collecting dif-
ferent types of data runs on the devices. It receives instruc-
tions from MECA and sends back the desired data. MECA
conducts optional primitive processing on the raw data to
extract higher level information, and passes back the “half-
cooked”data to applications. We have developed the MECA
prototype, and we will showcase its benefits and capabil-
ities by means of a disaster management application that
provides services for both individuals and authorities in a
chemical spill scenario.

We will present the high level abstractions and architec-
ture of MECA in detail in Section 2. Then we describe
the application for disaster response in Section 3. We dis-
cuss related work in Section 4 and state our conclusions in
Section 5.

2. MECA ARCHITECTURE

2.1 High Level Abstractions

Figure 1: The three-layer architecture and compo-
nents in MECA.

MECA provides a common infrastructure to collect real
time data for different kinds of applications simultaneously.
The middleware exposes a high level abstraction to applica-
tions, such that they can express their data needs in a declar-
ative fashion using phenomenon collection specifications. A
phenomenon is essentially the occurrence of a certain kind
of event at a particular location and time. For example, the
detection of a pothole on a road at a certain location and
time, is a phenomenon. It is intended to provide information
at semantic levels higher than the raw data as captured by
device sensors directly.

Such a high level abstraction is motivated by two observa-
tions. First, the raw data generated by physical sensors on
devices usually are high volume and not directly consumable
by applications. For example, a public facility maintenance
application may need to detect potholes on a road so that
proper repairs can be done on time. We know that pot-
holes can be detected from the 3-axis acceleration data from
smartphones [7] carried by drivers. However, certain pro-
cessing on the raw time series data has to be performed to
identify the location of potential potholes. It is shown that
such processing can be done on devices to improve the se-
mantic level of information, and greatly reduce the volume
of data. Second, different applications, especially those in
the same domain, may have common information needs. For
example, the raw GPS samples from passengers and drivers
can be aggregated to identify their commuting trajectories,
which are useful for both real time traffic alerts, and long
term urban road network planning. To avoid duplicate ef-
forts in these applications, it is more efficient to share the
data collection and primitive processing inside MECA and
have the two applications tapping the same stream of tra-
jectory data.

A phenomenon collection specification consists of three
parts: the type of the phenomenon needed, the geographic
scope, and the time window in which data should be col-
lected. Each type of phenomenon has a clear definition of
the data structure and semantics. For each type, there is at
least one edge analytic that can transform certain kinds of
raw data into the phenomenon. These analytics are dynam-
ically invoked by MECA when needed. The collection of
available analytics, thus phenomenon types, are extensible.
Once a new edge analytic is added to the analytics library,
the phenomenon type it produces will be made available to
applications.

2.2 Architecture Components
The MECA architecture (shown in Figure 1) consists of

three different logical layers: phenomena, edge and data.
The phenomena layer usually resides at the backend (e.g., a
data center). It is responsible for receiving phenomenon col-
lection specifications from applications, for coordinating the
overall data collection according to the stated policies, and
for sending back the phenomenon data to applications. The
edge layer resides on the network edge (e.g., base stations in
cellular networks). Its main function is to receive collection
requirements from the phenomena layer, manage the data
collection among a subset of local devices, and run edge an-
alytics for primitive data processing. The data layer is on
devices. It is a software agent running on devices, receiving
data collecting instructions from the edge node, producing
data and sending them back to the edge.

The modules inside each layer are shown in Figure 1. The
phenomena layer has three components: the Collection Task
Manager (CTM), the Backend Metadata Manager (BMM),
and the Backend Data Manager (BDM). The CTM exposes
an interface to applications to receive their phenomenon
collection specifications. Upon receiving a specification, it
queries the BMM, which maintains metadata about edge
nodes, including which phenomenon types are available, and
the respective geographic scope. It then selects appropriate
edge nodes, sends the specification to them so that they can
start data collection from devices. The CTM creates and
maintains the state information for each collection task, such
as which edge nodes are involved. When a task finishes ei-
ther due to the end of the time window or termination by
the application, the states are cleared. The BDM is respon-
sible for receiving and aggregating data from edge nodes,
such that data intended for one collection task can flow con-
tinuously to the application.

The edge layer is responsible for the data collection from a
set of local devices, and for running edge analytics for primi-
tive processing required by the specified phenomena. It con-
sists of several components: the Edge Task Manager (ETM),
which maintains the state information about collection tasks
at the network edge (e.g., which sensing activities on which
devices are involved for which task), and coordinates the
device activities and edge processing; the Edge Metadata
Manager (EMM), which maintains registration and status
information about devices, such as their locations and en-
ergy levels; the Edge Analytics Library, which maintains
a collection of edge analytics for the ETM to invoke; the
Edge Analytics Runtime Platform, which is a container in
which to deploy edge analytics; and, the Edge Data Man-
ager (EDM) is in charge of aggregating data from different
devices intended for the same collection task, and send the
data to the Backend Data Manager for further aggregation.

Upon receiving a specification from the phenomena layer,
the ETM first queries the EMM to identify which edge an-
alytics can produce the required phenomena, and which de-
vices can produce the raw data needed. Then based on the
locations, energy levels, and the cost of data collection and
processing, a subset of devices are chosen, and data collec-
tion instructions are sent to them. If an edge analytic is
required for primitive processing, the ETM invokes the an-
alytic from the library, and runs it on the platform.

The data layer is the software agent running on devices.
Its main purposes are two-fold: receive configuration and
collection instructions from the edge, and send back data

generated by physical sensors. Each device needs to register
itself with a certain edge node (e.g., physically closest) to
make itself available for data collection. It reports the types
of raw data it is capable of producing, and periodically up-
dates the edge node about its location and energy level such
that the edge node can make a proper selection and config-
uration determination when a collection task arrives.

The raw data from devices will be sent to the EDM for
aggregation. If an edge analytic was invoked, it will take
the aggregated data and transform them into the desired
phenomenon. Such phenomena are passed to the BDM at
the backend, and eventually sent back to applications.

MECA facilitates sharing of both the raw and phenomenon
data across applications. When the same kind of phenomenon
data is requested multiple times at one edge node, the ex-
isting collection and processing activities will be reused as
much as possible. Raw data from a device, or phenomenon
data from an edge analytic, will be sent to the EDM and
shared by multiple applications.

MECA seeks to strike a balance between efficiency, flex-
ibility and complexity. The phenomenon abstraction is in-
tended to provide primitive processing that improves the
efficiency, but not to substitute for the more complex pro-
cessing unique to each application. Depending on its goal,
each application may have distinct algorithms and proce-
dures to further process the data to obtain the final results.
Such processing should be carried out by applications, not
MECA. To support a wide range of applications, MECA
does not preclude the collection of raw data. The primitive
processing of raw data depends on the availability of edge
analytics that transform raw data into“half-cooked”data. If
no edge analytics are available to perform certain primitive
processing required by an application, it can still request
raw data from MECA and conduct the processing itself at
the application level.

3. A DISASTER MANAGEMENT APPLICA-
TION

In this section, we will describe a disaster management
application that provides services for both individuals and
authorities in a chemical spill scenario. The application uses
the data and information collected by the MECA prototype.
It demonstrates the benefits of MECA compared to existing
vertical approaches.

• High level abstraction of phenomena collection specifi-
cation. The application does not need to interact di-
rectly with any of the mobile devices. Unlike the ver-
tical approach, it does not need to be concerned about
the dynamic changes such as device mobility and re-
source variations. MECA handles all those dynamics
and makes them transparent to the application. The
application only needs to send phenomenon collection
specifications about the phenomenon types, geograph-
ical scopes and time durations to MECA.

• Concurrent collection of phenomenon and data of dif-
ferent types. The application provides an alert ser-
vice to individuals when they get too close to a danger
zone, and warning services for authorities such as the
fire department to track the movements of fire fight-
ers. These services require phenomenon and raw data
of different types, which are collected by MECA simul-
taneously.

• Intelligent and efficient processing at the network edge.
MECA has edge analytics that conduct primitive pro-
cessing on the raw data collected. The resulting phe-
nomenon data has much less volume, and carries higher
level semantics that are more easily consumable by the
application.

• Metadata and policy driven device selection and con-
figuration. MECA maintains the metadata of devices
such as their locations, and data collection capabilities.
There are also policies regarding how devices should be
chosen and configured based on their resource levels.
MECA selects and configures a subset of devices based
on the metadata and policies.

Figure 2: Sending Alert Messages with MECA

We have developed a disaster management application us-
ing data collected from mobile devices. It illustrates the
benefits of MECA for social networks in both natural dis-
aster and terrorist attack scenarios. The application sends
alert messages to individuals who have subscribed to the
system to receive notifications of nearby dangers. Examples
include approaching a downed power line, a chemical spill,
or radioactive contamination. It also enables the authori-
ties to track the status of emergency response personnel: if
a person does not move for a long period of time, or move
very slowly, it may indicate an injury or difficulty that needs
attention.

In a chemical spill scenario, an individual notices haz-
ardous material and calls to report the incident. A dis-
patcher receives the call and collects information such as
the type of emergency, location and time when first noticed
and informs first responders. Police, HAZMAT, firefighters,
and a medical team are among the responders sent to the
area. Police or firefighters are usually first to arrive and
the first thing they do is to isolated the high-risk area, also
known as a “hot zone” from so-called “cold-zone” (e.g., the

safe area). A small area separates these two zones which is
referred to as a “warm zone.”

In Figure 2, we present the hot zone and warm zone as
concentric circles; the former as the inner circle and the lat-
ter as the outer circle. Everyone who enters the hot zone is
contaminated and has to go through decontamination pro-
cess to enter the cold zone. Other responders including the
medical team cannot enter the hot zone until it is declared
safe by special forces. The fire captain and other team lead-
ers need to keep their team members safe and away from
the hot zone. If a person enters the warm zone, an alert
message is sent to warn that person from potential danger
of chemical exposure.

After special forces including HAZMAT clean the area
and safely separate contaminated people, they declare the
area safe. Hence other first responders including the medi-
cal team and firefighters can enter the area. From this point
forward, it is critical for team leaders to monitor the move-
ment mode of their team members in the response if non-
movement or slow motion are detected.

The context of this application determines the types of
phenomenon that are needed from the MECA middleware.
The two phenomena of interest in this scenario and pro-
cessed from different data types are: entering a zone of in-
terest which utilizes location data from GPS, and a move-
ment mode phenomenon utilizing acceleration data. Deci-
sion makers or individuals each specify the phenomenon of
interest at a given location and within a time window. They
input the phenomenon collection specifications through a
user-friendly template by identifying the phenomenon of in-
terest in a rectangular geographical area and a certain time
duration.

MECA processes the specifications, and identifies edge
nodes that are capable of producing these two phenomenon
types and whose responsible collection areas overlap with
the specified geographical scopes. A subset of suitable edge
nodes are selected and the phenomena layer forwards the
collection specifications to them. These edge nodes in turn
identifies that there exist edge analytics that can produce the
movement mode and approaching zone phenomenon, which
further require the acceleration and GPS location data from
devices as raw data input. Thus the edge nodes instruct
these devices for relevant data collection. Finally the data
are processed and the phenomena sent to the application,
which generates danger zone alerts and movement mode
warnings for individuals and authorities.

4. RELATED WORK
Applications that rely on sensor data collection and shar-

ing from mobile devices within a large community are termed
as participatory/opportunistic sensing [1] applications. Ex-
amples of these applications are CommonSense [2], Car-
Tel [6], Nericell [7], BikeNet [3], and GreenGPS [4]. Com-
monSense uses specialized air quality sensing hardware inte-
grated with a smartphone and enables pollution monitoring
at scale by processing data collected and shared from in-
dividuals. CarTel and Nericell collect GPS, acceleration,
and microphone sensor data to provide services for traf-
fic monitoring applications. GreenGPS collects fuel con-
sumption data from vehicles using smartphones to compute
fuel-optimal routes. BikeNet provides a biking quality map
through shared data collected by individuals. These appli-
cations are largely based on the vertical integration model

where application specific device agents and backend soft-
ware are developed. When there is a multitude of such
applications, their co-existence on the same set of under-
lying devices is problematic. Inefficiencies and conflicts are
inevitable. An in-depth analysis and summary of the draw-
backs of such vertical approaches can be found in [5].

5. CONCLUSION
We have presented MECA, a common infrastructure for

the simultaneous collection of diverse data and information
from mobile devices for different applications. MECA pro-
vides a high level abstraction to applications such that they
can express their data and information needs in a declara-
tive way using phenomenon collection specifications. MECA
translates the specifications into the selection and configu-
ration of edge nodes and devices for proper raw data col-
lection and edge analytics processing. Thus applications do
not need to interact directly with devices and can be built
more easily by focusing on application specific logic.

MECA enables the sharing of data and phenomena com-
monly required by different applications. It improves the
bandwidth utilization and energy efficiency by collecting the
same raw data and conducting the same primitive process-
ing only once. MECA avoids duplicate data collection and
redundant primitive processing by identifying such common-
alities and reusing the data across applications.

We illustrate the benefits of MECA in a disaster manage-
ment application where the location and acceleration data
collected from mobile devices are used to help individuals
avoid danger zones, and authorities track the status of emer-
gency response personnel.

6. ACKNOWLEDGMENTS
We thank Doug Freimuth for the valuable discussions and

suggestions; we are also grateful for the insightful feedbacks
and guidance from Dinesh Verma which are indispensable
for this project.

7. REFERENCES
[1] J. Burke et al. Participatory sensing. Workshop on

World-Sensor-Web, co-located with ACM SenSys, 2006.

[2] P. Dutta et al. Demo abstract: Common sense:
Participatory urban sensing using a network of
handheld air quality monitors. In Proc. of ACM
SenSys, pages 349–350, 2009.

[3] S. B. Eisenman et al. The bikenet mobile sensing
system for cyclist experience mapping. In Proc. of
SenSys, November 2007.

[4] R. Ganti, N. Pham, H. Ahmadi, S. Nangia, and
T. Abdelzaher. Greengps: A participatory sensing
fuel-efficient maps application. In Proc. of MobiSys,
pages 151–164, 2010.

[5] R. Ganti, F. Ye, and H. Lei. Mobile crowdsensing:
Current state and future challenges. IEEE
Communications Magazine, 49(11):32–39, 2011.

[6] B. Hull et al. Cartel: a distributed mobile sensor
computing system. In Proc. of SenSys, pages 125–138,
2006.

[7] P. Mohan, V. Padmanabhan, and R. Ramjee. Nericell:
Rich monitoring of road and traffic conditions using
mobile smartphones. In Proc. of ACM SenSys, pages
323–336, 2008.

