Data Stream Processing Infrastructure for Intelligent
Transport Systems

Eric Bouillet, Mark Feblowitz, Zhen Liu, Anand Ranganathan, Anton Riabov, Schuman Shao, Don Schlosnagle, Fan Ye
IBM T. J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532, USA

Email: {ericbou, mfeb, zhenl, arangana, riabov, smshao, daschlos, fanye} @us.ibm.com

Abstract— Intelligence Transportation Systems are critical to
improve the efficiency of modern transportation. A system that is
flexible and powerful enough to handle diverse demands from a
large user base, is still elusive. Studies have shown that developing
and integrating the various components constitute a significant
portion of the capital cost and complexity of such systems.

In this paper, we present a stream processing infrastructure
we call System S. System S enables the deployment of large
scale applications. It supports a mechanism for sharing multi-
party data sources, software components, and even intermediate
results allowing a reduction in the cost of software integration,
and ownership.

We experiment the stream processing infrastructure with a
Fleet Management Center, and demonstrate how the infrastruc-
ture can be used to address unique issues in traffic management.

I. INTRODUCTION

The rapid growth of transportation demands and the slow
increase in transportation capacity have created severe traffic
congestions and incurred great economic costs. Intelligent
transportation systems that can utilize various kinds of data
sources such as vehicle sensors, traffic cameras hold the
potential to alleviate the dire situation. Building a powerful and
flexible traffic management system, however, is a tremendous
challenge.

Traffic data come from many heterogeneous sources as
streams, in different forms, content and quality. They can be
noisy and bursty, with limited availability guarantees. Both
spatial and temporal analysis is needed to correlated data
from sources in large geographic areas or time periods. The
demands of analytical results, come from many user groups,
such as drivers, highway patrol, department of transportation.
They pose not only large numbers of simultaneous queries,
but also queries of significantly different nature.

It is not surprising that building and maintaining an intel-
ligent transportation system incurs significant cost and com-
plexity. Studies [3] have shown that developing and integrating
software components that access and analyze data streams
from heterogeneous sources consumes almost half of the total
capital cost in a Fleet Management Center. Various software
components, each of which accessing a different type of data
source, or analyze data of different content, quality, may
come from different vendors, not necessarily developed for
interoperability. Composing them together to satisfy diverse
user requirements, is even more difficult.

We conclude from this study that software development and
integration play a major part of Intelligent Transport Systems

(ITS). It is thus important that we make these software artifacts
as reusable and modular as possible. We must be able to
compose them effectively in different applications that answer
different kinds of queries. Such a system requires standard
and reusable mechanisms for interfacing the data with the
outside world. In order to facilitate growth and incorporation
of new technologies, the system must enable the creation and
deployment of new applications without disrupting existing
ones. Furthermore, new applications should be able to reuse
intermediate derived streams produced by existing applications
in order to minimize duplicate or redundant processing of
data. The system must also provide a consistent security and
privacy enforcement mechanism for the use of derived data, in
order to insure that confidential information is not leaked or
compromised across the applications. The system must allow
location-sensitive applications to adapt to the current locations
of the entities they are tracking or assisting. In addition, the
system must adapt to the to the addition of new data sources, to
the quality of the data produced by the sources, and to changes
in system resources consumed by different applications.

In this paper, we propose System S, an infrastructure that
supports the large scale deployment of stream processing
applications on the fly. These applications ingest data from
many heterogeneous data sources. Applications in System S
consist of many interconnected modular, reusable software
components (called Processing Elements), each of which
takes data of certain content and format and perform various
analysis. Together they produce the highly summarized end
results needed by users. The system incorporates components
for managing data sources and system resources, and sharing
derived securely streams between applications.

We make several contributions in this paper. We propose
a data stream processing architecture as an execution context
for ITS applications. This greatly reduces system integration
costs for transportation systems. We incorporate mechanisms
to manage different data sources, and to adapt applications
to location-sensitive requirements. Finally, we build a Fleet
Management applications in the streaming processing system
to demonstrate the flexibility and power of our approach.

The rest of the paper is organized as follows. We give an
overview of the system in Section II. Sections III IV explain
how application adaptation and data source management are
accomplished. We illustrate a fleet management application in
V and conclude in Section VI.

_ | sensor network

App E = i
| SnkPE|
» D
L DSM | [— SPC/IMN _) et
i | 1 i l i }
% -
Ry W UV Sl
Users

Fig. 1. System S

II. SYSTEM OVERVIEW AND EXAMPLES

We have implemented our approach within a stream pro-
cessing system referred to as System S. A sample configu-
ration of System S with a deployed application is shown on
Figure 1. The system is centered around a Stream Processing
Core (SPC) [1], a scalable distributed middleware for stream
processing. The SPC jointly with other system components
deploys application workflows to multiple processors, and
manages PEs and streams.

The SPC consists of a large cluster of dedicated proces-
sors and an execution context upon which stream processing
applications are deployed. Each stream processing application
consists of a processing graph, which is a directed acyclic
graph of stream processing components, namely data sources
and processing elements (PEs).

Data sources deliver streaming primal data into the system
and PEs perform various types of operations on streaming
data - filtration, annotation, transformation, stream join, etc.
PEs are individually deployable and reusable software com-
ponents and are interconnected by multi-access (single-writer,
multiple-reader) streams. PEs and data stream instances in SPC
are statically assigned individual security and privacy labels,
inherited in part from the applications’ effective user IDs,
and the PE classes. SPC connects PEs to the data streams
only if their respective security and privacy labels allow it.
If necessary the labels can be adjusted using “downgrader”
PEs that sanitize sensitive information (e.g. remove identifying
information, etc). Applications can tap onto past or present
(real-time) data. Past data is stored by the system and can be
processed like a stream.

End-users interact with System S by specifying stream
queries that describe the data of interest to them. We refer
to System S queries using the name inquiries, to distinguish
them from traditional SQL queries, because of the application
to mostly streaming and unstructured data, because inquiries
can span long time frames, and because they are satisfied by
a diverse collection of stream-based processing algorithms.
Inquiries are pursued by assembling and deploying processing
graphs of interconnected PEs that can produce the data of
interest. These processing graphs may be assembled manually
or automatically. In this paper, we demonstrate System S’s
ability to support Intelligent Transport System oriented ap-
plications using processing graphs that have been assembled
manually by an application developer or administrator and
that can be parameterized for different use-cases. In [2] we
describe an ontology-based application composer for System
S that automatically composes the processing graph for an

inquiry using detailed descriptions of data sources and PEs in
ontologies along with Al planning algorithms. We shall not
go into the details of the automatic composition here.

PEs can be co-deployed on the same processing node
(hardware) and can also be replicated across multiple nodes.
Data can be processed serially, from one PE to another (linear
graphs), but parallelizable tasks can be performed more effi-
ciently by streaming data to concurrently operating distributed
PEs. These aspects of the PEs’ lifecycle management and
resource allocation, are carried out by Job Manager (JMN), an
integral system component of System S. JMN receives requests
to deploy PEs with their flowgraph specifications in the
form of Job Description Language (JDL). JMN interprets the
JDL, computes the adequate resource allocation with respect
to resource availability, and QoS constraints and priorities
specified in the JDL, and deploys the PEs in SPC. In addition
JMN provides the API to monitor and terminate deployed PEs.

Another component of System S is the Data Source Man-
ager (DSM) which manages and activates data sources based
on requests and feedbacks from applications and users. DSM
provides a virtualization of the data source from the applica-
tion perspective, allowing application developer (or automatic
composer) to focus on instrumenting the data analytics inde-
pendently of how the data is brought into the system.

Each data source delivers primal data into System S by way
of a SourcePE. The SourcePE (denoted by “S” in Figure 1),
a special type of PE that also runs in the SPC, serves the sole
function of bringing data from an external source into the
system. SourcePEs encapsulate the drivers, and other source
dependent configuration setup to access a the broad variety of
external sources. The data is packaged into internally stream-
able and processable Stream Data Objects (SDOs). SDOs are
lightweight data containers that carry data from SourcePEs to
PEs, from PEs to other PEs, and eventually to SinkPEs (the
dual of SourcePEs, denoted by “D” in Figure 1) that function
to deliver SDO data as inquiry results for use outside of the
SPC (e.g., to an end user, to a data store, etc.). Source PEs
and Sink PEs allow the mechanisms for interfacing with the
outside world to be reusable. The same Source and Sink PEs
can be reused with different parameters for bringing in data
from similar data sources and for pushing out results in similar
manners.

For purposes of illustration, consider as a simplified ex-
ample an inquiry requesting traffic congestion reports for a
particular roadway intersection. Such an inquiry may draw
audio data from a sound sensor data source and apply an Audio
Pattern Analysis PE, which examines the data for alignment
to known audio patterns to determine the level of congestion
at the intersection (isolating the lower thread in Figure 2).
In order to improve the accuracy of such an assessment, the
application may use a Video source, extracting images from
the video stream and examining them for alignment to visual
patterns of congestion at an intersection (the upper thread).
The end result would then be achieved by joining feeds from
the two analytic chains.

This simple workflow can be extended further, by including
additional PEs and data sources. In fact, it describes a small
part of an application domain we call Fleet Management

Roadway

Intersection

Nﬁ Intersection mez Traffic
Video e gler Image Pattern .
Camera R Analysis Intersection
Traffic
Congestion

Roadside Join
Sound

Sensor

Intersection
Traffic Audio
Pattern Analysis

]
]
]
]
|
]
]
]
]
]
]
]
1
]
]
]
]
]
I

S W -

\
LS

el 2Va > s

Y
Data Sources ~ Source Processing Elements Core Processing Elements

Fig. 2. A Stream Processing Graph Example

Center service (FMC), and we will be using this domain to
illustrate our approach throughout the paper. Applications in
FMC provide vehicle routing services based on the analysis
of real-time data obtained from sensors. In FMC, routes
for a delivery truck are set at the beginning of the shift,
informed by any known traffic conditions at the time of
departure. The standing inquiry established for each vehicle
watches for changes in traffic conditions that warrant route
replanning to provide an updated route. The routes are based
on a collection of destinations and the current location of
the vehicle (determined by a GPS transmitter in the vehicle).
Accompanying the standing, vehicle-specific routing inquiries
are inquiries that examine streaming data from multiple sen-
sors and other sources and update the roadway and traffic
conditions, with special focus on corridors covering known
vehicle destinations.

An important feature of our infrastructure is the ability to
reuse intermediate streams across different applications. Once
an application (or processing graph) is built and deployed in
response to a users query, the set of intermediate streams
produced in this processing graph are added to the set of
data sources that are managed by the DSM component. These
intermediate streams are called derived streams. Subsequent
applications that are deployed can make use of these derived
streams. The main advantage of this feature is to allow shar-
ing of common processing across applications and avoiding
unnecessary duplicate computation.

III. APPLICATION ADAPTATION

In our system, a processing graph that is constructed and
deployed in response to a user’s inquiry is static through its
lifetime. It is not easy to reconfigure the processing graph
dynamically, since that would involve deploying additional
PEs, stopping existing PEs, and changing the set of con-
nections between different PEs and sources. Performing such
operations dynamically would take some time, and would
mean that the application will be down for that period of time.
Besides, our model of sharing streams and components across
different applications makes it difficult to do such dynamic
reconfiguration.

However, most fleet-management applications do need some
amount of adaptation at runtime. These applications often
provide location-sensitive services to moving vehicles and
would need to tap onto data from different sources depending
on the current location of the vehicle.

In order to deal with these kinds of applications, we use a
two-step approach, where application-independent intermedi-
ate information is produced in the first step, and actual results

that satisfy a user’s inquiry are produced in the second step.
The key aspect of this process is to identify relevant inter-
mediate information that can be obtained in an application-
independent manner. This identification of useful intermediate
information is done by a human who is designing the system.

In the FMC domain, for instance, traffic information about
different locations may be useful to different kinds of appli-
cations (required by different users) and is hence identified as
relevant information for a wide class of applications. Hence,
inquiries that ask for traffic information at various locations
are deployed, and the results are stored in an intermediate
Road Conditions Database. In the second step, processing
graphs corresponding to users’ inquiries are constructed and
deployed; these processing graphs use the intermediate useful
information stored in the database. For example, inquiries that
ask for the best route to a destination can use the current and
past traffic information in the Road Condition Database. The
two-step approach allows processing graphs of different ap-
plications to remain static. Applications get relevant location-
dependent useful information from the database, which in turn
stores the current and past values of the information extracted
from the sources.

At the same time, not all the information produced by
all the sensors are required by some application. In order to
minimize the volume of data extracted from different sensors,
and the processing performed on this data, our system em-
ploys a feedback mechanism to determine which sources are
required by any application at any point of time. Applications
provide their current requirements for the intermediate useful
information they need, and the DSM (Data Source Manager)
component decides which sets of sources should be activated
or deactivated at any point of time, using a combination of
description-logic and location-based reasoning. A source must
be active at some point of time if there exists at least one
application that requires derived information from that source
at that point of time. Otherwise, the source may be deactivated,
by deactivating the source PE, which causes data from the
source to stop flowing into the system.

IV. DATA SOURCE MANAGEMENT

The Data Source Manager (DSM) component provides a
repository with services for managing external data sources
that are available to the system, as well as derived streams
produced by applications within the system. The information
stored in the repository consists of the system descriptions
of the data sources, such as their access methods, and other
metadata such as the semantics of the data produced by the
source and its quality and rate. Applications express their
requirements for a data source in the form of a semantic query.
DSM executes the query on its repository to determines the
list of potential data sources suitable for the application. Data
sources are connected using Source PEs that are configured
accordingly. After deployment the various applications can
refine the desired data source semantic descriptions, e.g. limit
their interest to sensors located in certain areas, and DSM
use this information to activate or deactivate the data sources
accordingly. The main tasks of the DSM include managing

information about all sources, deploying source PEs to con-
nect external sources, pro-actively discovering new sources,
monitoring the availability and quality of existing sources,
and activating or deactivating sources depending on current
application needs. DSM simplifies the task of integrating of
a large variety of heterogeneous data sources in the system,
which typically account for a non-negligible portion of the
capital cost of operating such a system.

V. APPLICATION TO FLEET MANAGEMENT SERVICES

In this section we illustrate the capabilities of the system to
support an Intelligent Transport System application. We use
a Fleet Management Center application we have implemented
for System S, and demonstrate how an existing application can
be further upgraded to include other services.

Figure 3 depicts a number of processing graphs for the
FMC inquiries. The upper section depicts the route update
inquiries, and the lower section depicts the location condition
update inquiries. In the route update section are the various
PEs - analytic modules that receive the streaming data and
perform functions such as generating the K best potential
travel corridors, deciding on routes based on vehicle size and,
where available, traffic conditions, and fusion of potentially
conflicting condition reports. The two main results of these
inquiries are route updates for the vehicles and updates to the
list of currently active locations, which guide the focus of the
condition-assessment inquiries (in the lower part of the graph).

The lower section contains an inquiry per known data source
(weather sensor networks in this example), drawing data from
the source, processing the data to determine conditions, and
updating a Location Conditions store, the sole recipient of
condition inquiries’ result data. This data is retained for some
limited duration and triggers rerouting in the upper inquiries.
Other data sources might include non-sensor data sources such
as local radio weather report sources or traffic incident report
sources. But these are secondary sources, drawn from other
service providers, possibly providing stale reports. For rapidly
changing conditions, it would be better to draw data from
directly accessible sensors or sensor networks, using such
devices as traffic surveillance cameras, in-road vehicle sensors,
wireless sensors capable of sensing temperature, barometric
pressure and humidity, infrared remote temperature detec-
tors (to detect road surface temperatures), and even roadside
microphones (to analyze traffic noises). In more permanent
installations where power consumption is not a factor, each of
these can produce high volumes of streaming data, which can
be processed by many stream processing applications deployed
in the system, to dynamically process the signals into usable
results. There are a few non-sensor sources, providing informa-
tion not limited to a single geographic area; these may deliver
weather updates that span a wide range. There are many more
sensors, though, since the scope of the data is limited by
the sensor’s range: a traffic camera at street intersection can
only deliver data within the camera’s (possibly fixed) range.
Many sensors covering anticipated travel corridors must be
be deployed, and activated by DSM when respective travel
corridors are active, with their data processed by separate
stream-interconnected PEs, in response to inquiries.

GPS
protocol
extraction

Map
¢ vehicle
position

Vehicle
Route
Decider

Potential
Corridor
EHEEN L

DSM ¢
L/ psm |
B '\ Agent
V' i |

Condition
Update

I
‘&(Weather . Weather /
Aggregator |~ | Summarizer |

Fleet Management Center Application

_.- activate

Map el
“|Condition

Fig. 3.

A. Fleet Management Center Architecture Overview

The FMC application depicted in Figure 3 consists of the
following PEs:

Vehicle LOC: are source PEs that receive raw GPS data of
current vehicle locations.

GPS Protocol Extraction: translates GPS data from Vehicle
LOC, into a form that is suitable to other PEs.

Vehicle DEST: are source PEs that retrieve current vehicle
destinations from a database or user console.

Potential Corridor Generation: joins vehicles LOC with
respective DEST coordinates and generates corridors that
might be traversed by vehicles. The corridors are stored locally
in the location list database for use by other PEs.

Vehicle Route Decider: computes shortest routes from a
vehicle’s current location to all its assigned destinations.

DSM Agent: translates the location list into semantic
queries for the DSM connection management which in turns
activate the appropriate source PEs to satisfy the requests.
There is one specialized DSM agent per modality, e.g. weather,
traffic report.

Sensor Network Gateway PE: is a source PE specialized
to query sensor gateways. DSM connection management dy-
namically reallocate source PEs in response to requests from
the DSM agent.

Weather Aggregator and Weather Summarizer: extracts
weather data, and analyze its content to estimate the impact
on traffic delays.

Condition update: persist weather related location condi-
tion to a Road Condition database.

The application also includes sink PEs (map vehicle posi-
tion, view route, and map condition) that present the results
of the user inquiry to a user interface.

Note that in practice we would further decompose the ap-
plication and distribute the load into smaller PE elements. For
example we can partition the area covered by the vehicle fleet
into sub-regions, each handled by a separate instance of the
application presented above. A regular expression based filter
formulated in the JDL can be applied on the PE input ports
so that the respective instances receive only SDOs that are

vehicle
position

i View
Route

Vehicle Lat-long [
LoC.1 88 conversion vehicle
. position

§ Vehicle

e Route ;
Vehicle 2 | Decider NS View
DEST.1 Route
Vehicle Gl prGDIZioI fap)
Loc.2 extraction w

Vehicle W
DEST.2
Location
List

Fig. 4. Incremental deployment of new route computations applications to

serve different fleets
Sensor

Weather Weather |
Aggregator Summarizer
network

Roadwork Road work RO T
o—d samde condition q ..
reports aggregator] Condition
summarizer

Fig. 5. Incremental deployment of new modalities to improve the route-
condition analysis

Location
conditions

Condition
Update

] Sensor
network

relevant to their assigned sub-region. Also the Vehicle Route
Decider is normally a two-staged process with street-level
(intra-city) routing, and highway (inter-city) level routing. The
two stages are more efficiently implemented in separate PEs,
with dedicated PEs for each city. System S encourages and
facilitates such decomposition practices.

B. Incremental Application Deployment

The location list and the location condition databases pro-
vide a separation between the PEs that update the database,
and PEs that read their data. This separation allows the PE
in the top part of Figure 3, which update the corridors, to be
deployed independently of the PEs in the lower part, which
are responsible for updating the location conditions. As shown
in Figure 4, several route selection PEs can be deployed in
parallel to handle fleets of vehicles that have different routing
requirements. Similarly, diverse applications can be deployed
to update the location conditions with new modalities that
corroborate, or improve the accuracy of the location condition
as shown in Figure 5.

w

C. Data Stream Reuse

Derived data streams from existing applications can also be
registered in DSM and reused to support other applications.
Reuse is allowed within the limits of the respective application
security and privacy constraints, which are enforced by SPC.
For instance if the vehicles managed by the FMC application
are shuttle vans, we can extend the application to dispatch vans
to pick new customers along their assigned route as illustrated
in Figure 6. In this example, the application uses a PE that
takes customer pickup and drop-off street addresses in input,
a PE that converts the addresses in lat-long coordinates, and a
PE that matches the coordinates to the routes (derived stream
of the original FMC application), currently assigned to the
vans. The PE selects the van that is the best match for this
customer and modifies its route to include the customer.

Custome>—>{ Lzt }
conversion

Map
customer

9 Select Van

q for p>q Notify Van

d Customer

Q Map
p

Vehicle

Route
Decider

ya

s Generation ¢

Location
List

Fig. 6. Deployment of new applications reusing streams from an existing
application

Location
conditions

VI. CONCLUSION

In this paper we describe System S, a stream processing
platform, and demonstrate how it can be leveraged for the
deployment of large-scale Intelligent Transport Service ap-
plications. System S provides a reliable infrastructure with
efficient resource management and secure data transmission.
System S addresses several of the challenges faced in the
implementation of ITS applications. In particular it promotes
the paradigm for reusable and modular software components
that can be composed in different applications to answer
different kinds of queries; it provides reusable components for
interfacing the data with the outside world; and it provides the
mechanisms for managing concurrent applications, and share
derived streams across applications. We illustrates System S
using a Fleet Management Center application, and show how
it is used to compose and extend such an application.

REFERENCES

[1] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and C. Venka-
tramani. Design, implementation, and evaluation of the linear road
benchmark on the stream processing core. In SIGMOD’06, June 2006.

[2] A. Riabov and Z. Liu. Planning for stream processing systems. In
AAAI0S5, July 2005.

[3] US Department of Transportation. Intelligent
services benefits costs and lessons learned
http://www.itscosts.its.dot.gov/its/benecost.nsf, 2005.

transport
databases.

