
A

Acc: Generic On-Demand Accelerations for Neighbor Discovery in
Mobile Applications

DESHENG ZHANG, University of Minnesota
TIAN HE, University of Minnesota
YUNHUAI LIU, Third Research Institute of Ministry of Public Security, China
YU GU, IBM Research at Austin
FAN YE, Stony Brook University
RAGHU K. GANTI, IBM T.J. Watson Research Center
HUI LEI, IBM T.J. Watson Research Center

As a supporting primitive of many mobile applications, neighbor discovery identifies nearby devices so that
they can exchange information and collaborate in a peer-to-peer manner. To date, discovery schemes trade a
long latency for energy efficiency and require a collaborative duty cycle pattern, and thus they are not suit-
able for interactive mobile applications where a user is unable to configure others’ devices. In this paper, we
propose Acc, which serves as an on-demand generic discovery accelerating middleware for many determinis-
tic neighbor discovery schemes. Acc leverages the discovery capabilities of neighbor devices, supporting both
direct and indirect neighbor discoveries. Further, we present a proactive online rendezvous maintenance
mechanism, which is used to reduce delays for the detection of leaving of neighbors. Our evaluations show
that Acc-assisted discovery schemes reduce latency by a maximum of 51.8%, compared with the schemes
consuming the same amount of energy. More importantly, to prove the real-world value of Acc, we further
present and evaluate a Crowd-Alert application where Acc is employed by taxi drivers to accelerate selection
of a direction with fewer competing taxis and more potential passengers, based on a 280 GB dataset of more
than 14, 000 taxis in Shenzhen, the most crowded city in China.

Categories and Subject Descriptors: C.2.1 [Computer-Communications Networks]: Network Architec-
ture and Design, Wireless Communication

General Terms: Design, Experimentation

Additional Key Words and Phrases: Protocol, Neighbor Discovery, Mobile Applications

ACM Reference Format:
Desheng Zhang, Tian He, Yunhuai Liu, Yu Gu, Fan Ye, Raghu K. Ganti, and Hui Lei 2014. Acc: Generic
On-Demand Accelerations for Neighbor Discovery in Mobile Applications. ACM Trans. Embedd. Comput.
Syst. V, N, Article A (January YYYY), 35 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

This research was supported in part by the US National Science Foundation (NSF) grants CNS-0845994,
CNS-0917097, CNS-1239226, NSFC 61170247, IBM OCR Fund, K. C. Wong Education Foundation of Hong
Kong and Singapore-MIT IDC IDD61000102a. A preliminary work has been presented in ACM SenSys
2012 [Zhang et al. 2012].
Author’s addresses: D. Zhang and T. He, Department of Computer Science and Engineering, University of
Minnesota, USA; Y. Liu, Third Research Institute of Ministry of Public Security, China; Y. Gu, IBM Re-
search, Austin, TX, USA; F. Ye, Department of Electrical and Computer Engineering, Stony Brook Univer-
sity, USA; R. K. Ganti and H. Lei, IBM T.J. Watson Research Center, USA.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

2 D. Zhang et al.

1. INTRODUCTION
Mobile devices, e.g., smartphones and tablets, have become popular recently, enabling
numerous applications [Ganti et al. 2011] [Lane et al. 2010]. The early applications
usually are built on the premise that users check into centralized servers to coordi-
nates with peers [Google 2013] [Foursquare 2013] [Facebook 2013], so they typical-
ly result in excessive updating process, heavy control overhead, long communication
delay, and the exposure of location information on centralized services. In contrast,
new applications are proposed based on direct peer to peer communications [Synerge
2013] [Pietiläinen et al. 2009] [Softonic 2012]. Usually, they rely on data collected in
an opportunistic fashion, which they process and share within a community to mon-
itor large-scale phenomena, e.g., urban environments [Dutta et al. 2009] [Dutta and
Subramanian 2010], user behaviors [Yan et al. 2010] [Yan et al. 2009], transporta-
tion [Biagioni et al. 2011] [Thiagarajan et al. 2010], and social networks [Miluzzo et al.
2011].

Many of these applications require a fast discovery of neighbor devices in a near-
by region [Huang et al. 2005] [Liu et al. 2010] [Liu et al. 2004] [Wikipedia 2013]. For
example, the fast discovery is critical for firefighters to exchange information during
rescue operations [Liu et al. 2010], for players to interact with each other in location-
based games [Wikipedia 2013] [Nintendo 2012] [Sony 2013], and for taxicabs to send
status to other nearby taxicabs to enable a real-time distributed dispatching [Zhang
and He 2012]. This quickly collected neighbor information allows applications to effec-
tively collaborate among participating devices.

On the other hand, in the above applications, radios in the mobile devices are usually
duty cycled between several modes to save energy or bandwidth. For example, sensor
nodes have to alternate their radios between an inactive mode and an active mode to
save energy due to the fact that most sensor nodes are powered by batteries. The duty
cycling scheme prolongs the devices’ lifetime, however, they pose a significant issue for
the neighboring devices to find each other, since the neighboring devices may not enter
the active mode at same time for a long time due to low duty cycles (e.g., 1%), thus
incapable of finding each other by communication in time.

To address this issue, several state-of-the-art discovery protocols for wireless sensor
networks [Tseng et al. 2002] [Zheng et al. 2003] [Dutta and Culler 2008] [Kandhalu
et al. 2010] [Purohit et al. 2011] [Bakht et al. 2012] have been proposed to achieve a
bounded discovery latency. We found, however, that current protocols face two chal-
lenges when directly employed on personal devices.

— First, typical applications of sensor networks are delay tolerant, but in many mo-
bile applications, humans are involved in the loop, and a longer latency, even though
bounded, distracts user’s attention. One could argue that adjusting duty cycles of ex-
isting solutions [Tseng et al. 2002] [Zheng et al. 2003] [Dutta and Culler 2008] [Kand-
halu et al. 2010] [Purohit et al. 2011] can reduce delay in a discovery when so desired.
These schemes, however, require coordinated changes of duty cycle patterns, a re-
quirement only suitable for the networks where a user owns the whole network and
can change all devices’ duty cycles collaboratively, i.e., sensor networks. In personal
device networks, a user may be unable to configure key system parameters (e.g., duty
cycles) of other users’ devices, meaning that accelerated discovery has to be achieved
only by adjusting the duty cycle of a user’s own device.

— Second, many mobile applications (e.g., geo-social networking) running on personal
devices desire a fast discovery only when such a need arises, unlike the sensor net-
work applications where continuous discovery is need to maintain network connectiv-
ity in mobile environments. Thus, we argue that allocating duty cycles continuously
in advance of user demands is wasteful.

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 3

To address the above two challenges, in this paper, we advocate accelerated discovery
by individual users in an on-demand autonomous manner. In particular, we consider
a scenario in which an effective discovery protocol, e.g., Disco [Dutta and Culler 2008],
has already been deployed in networks running with a very low duty cycle. When a
faster discovery is needed by a user, an additional energy budget (in term of additional
active slots) is used to perform an on-demand acceleration.

Our Accelerator is called Acc, which functions based on knowledge collected by an
existing discovery scheme. We aim at a generic middleware design that supports a
wide range of discovery protocols with an arbitrary duty cycle pattern. Technically,
the key novelty of Acc is that it leverages knowledge in the neighbor tables of known
neighbors to maximize the utility of additional on-demand energy (i.e., effectiveness of
additional active slots) in order to accelerate discovery of unknown neighbors, while
also introducing no changes on any device except the discovering one. Specifically, our
contributions are as follows:

— We introduce a transparent accelerating scheme Acc that works with deterministic
discovery protocols to greatly accelerate the discovery process. To our best knowledge,
this is the first work that provides an on-demand generic solution to accelerate a wide
range of deterministic discovery protocols under different duty cycle patterns.

— We propose a concept of spatial-temporal coverage and define a model to quantify the
effectiveness of each slot in the acceleration of discovery. The model is fully distribut-
ed and leverages only information in neighbor tables of known neighbors. It does not
make any assumptions regarding radio or mobility models.

— Based on this coverage, we design an agile online scheduling algorithm to decide
additional active slots under a given energy budget. Comparing our online schedul-
ing to its theoretically optimal Oracle version, we prove that our online scheduling
is competitive by obtaining its competitive ratio ρ, which indicates that our online
scheduling algorithm has bounded performance compared to its Oracle version.

— We present a neighbor verification mechanism and a proactive rendezvous main-
tenance mechanism, which utilizes the online information about common neighbor
reduction as a hint to infer the leaving of a neighbor, and then initiates a binary se-
lection for additional active slots to proactively accelerate the detection process about
the leaving of the neighbor.

— We test Acc at three scales of networks: (i) a small-scale testbed experiment with
11 TelosB devices, (ii) a middle-scale simulation with 100 mobile devices, and (iii) a
large-scale trace driven evaluation with 14,000 vehicles. The results show that Acc-
assisted schemes reduce the latency by 51.8% when consuming the same energy.

— To prove the real-world value of Acc, we propose a Crowd-Alert application to show
how Acc can be employed by taxicab drivers to select a direction with fewer competing
taxis or more potential passengers. We further evaluate Crowd-Alert based on a 280
GB dataset consisting of 6 months of GPS traces of more than 14,000 taxis in Shen-
zhen, which is the most crowded city in China with 17,150 people per KM2 [Sasin
2012]. Our application demonstrates that a smart driver increases the possibility of
picking up a passenger based on an accelerated discovery, which makes drivers to
quickly learn the distributions of potential passengers and competing taxicabs.

The paper is organized as follows. Section 2 introduces related work. Section 3 shows
background. Section 4 provides our motivation. Section 5 proposes Acc design. Section-
s 6 and 7 present our implementation and simulation. Section 8 demonstrates Acc’s
application in a taxi-dispatch system. Section 9 concludes the paper.

4 D. Zhang et al.

2. RELATED WORK
The neighbor discovery in low-power wireless networks has recently been studied in
the literature. In general, neighbor discovery schemes can be divided into three cate-
gories, probabilistic, quorum-based, and deterministic.

Probabilistic. The probabilistic protocols, e.g., Birthday protocol [McGlynn and
Borbash 2001], assign different probabilities for sending, receiving, and sleeping
in individual slots. Due to Birthday Paradox [Mitzenmacher and Upfal 2007], such
probabilistic schemes offer very good performance in the average discovery laten-
cy. But their major limitation is an unbounded worst-case discovery latency, which
leads to a long tail on discovery probabilities over time. Moreover, Birthday protocol
concludes that this discovery scheme aims for the stationary networks, instead of
the mobile networks.

Quorum-Based. The quorum-based discovery protocols address the above un-
bounded latency issue by ensuring overlapping active durations between any pair
of devices within a bounded time. In these schemes, time is divided into m×m con-
tinuous slots as a matrix, and each device selects one row and one column (called
quorums) to become active. Therefore, regardless which row and column a device
chooses to become active, it is guaranteed to have at least two common active slot-
s with other devices. But a main drawback of quorum-based protocols is a global
parameter of m, which forces all devices in the network to have the same duty cy-
cle [Tseng et al. 2002] [Zheng et al. 2003]. Although some work has been proposed
to support asymmetric duty cycle patterns, they can support only two different duty
cycle patterns [Lai et al. 2010]. Again, the quorum-based discovery protocols are
also primarily proposed for stationary networks where energy is the most pressing
concern, not mobility.

Deterministic. The deterministic protocols are most closely related to our
work [Dutta and Culler 2008] [Kandhalu et al. 2010] [Purohit et al. 2011] [Bakht
et al. 2012]. They recently have been proposed to handle the global parameter prob-
lem by letting every device distributedly select one or multiple prime numbers for
itself to represent its duty cycle. Based on the Chinese Remainder Theorem [Niven
and Zuckerman 1991], the devices would have bounded discovery latencies. In Dis-
co [Dutta and Culler 2008], each device selects two prime numbers and generates
its period independently based on these numbers. To improve Disco’s performance,
U-Connect [Kandhalu et al. 2010] proposes an activation pattern using one prime
and has a shorter latency, especially in asynchronous symmetric networks. Further,
WiFlock [Purohit et al. 2011] combines discovery and maintenance using a collab-
orative beaconing mechanism with time synchronization. More recently, Search-
light [Bakht et al. 2012] is proposed to leverage the constant offset between periodic
awake slots to design a simple probing-based approach to ensure discovery.

Summary: Our work presents a different design architecture than the aforemen-
tioned three categories and serves as a middleware for deterministic neighbor dis-
covery schemes. We utilize an existing deterministic discovery protocol (e.g., Disco) to
guarantee a bounded discovery latency by maintaining original active slots. Built up-
on the utilized protocol, our design adds only new active slots in addition to the slots
specified by the utilized discovery protocol. This unique design philosophy allows an
on-demand acceleration without the need for additional coordination among mobile
devices. Another key novelty of this work is that when we add new active slots, we
quantify the effectiveness of each added active slot on both direct and indirect discov-
ery, and the latter part has not been considered in the previous discovery designs.

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 5

3. PRELIMINARIES FOR NEIGHBOR DISCOVERY
In this section, we introduce some background information about how mobile devices
can discover each other in a distributed network without any infrastructure support.

Note that many applications include devices with highly diverse configurations dis-
tributed in a wide geographic area, such as low-cost sensors in the wild. Therefore, it is
very difficult to achieve global time synchronization at fine granularity. The GPS based
synchronization schemes are part of solutions [Liu et al. 2004] [Jun et al. 2006], but
they are typically too energy expensive to be implemented on battery powered mobile
sensors [Elson and Römer 2003] or smartphones [Paek et al. 2010]. Therefore, the de-
vices usually decide their schedules based on a distributed yet coordinated duty cycle
pattern. Specifically, to schedule its discovery, a device S divides time into continuous
fixed-length time slots. Then, based on a specific protocol, S activates its radio and
switches into a discovery mode during a specific set of slots. After that, S broadcasts
one or multiple discovery messages for other devices to discover its existence. At the
same time, S also listens to a wireless channel to receive similar messages from other
devices. Essentially, when neighbor devices have overlapping slots in which they enter
the discovery mode, they are able to discover each other [Dutta and Culler 2008].

Although our Acc can work with a wide range of protocols, for the sake of clari-
ty in this paper we use Disco [Dutta and Culler 2008] as a representative example.
In the evaluation, we will show how Acc works with WiFlock [Purohit et al. 2011],
U-Connect [Kandhalu et al. 2010] and Searchlight [Bakht et al. 2012] as well. Specif-
ically, Disco employs the Chinese Remainder Theorem [Niven and Zuckerman 1991]
to guarantee a discovery latency bound. Though in the real implementation, Disco se-
lects two different primes for a device to solve the issue of two devices having the same
prime, for simplicity we choose only one prime to represent a duty cycle of a device to
show the principle of Disco. For every chosen prime number of slots, the device will en-
ter into its discovery mode for one slot. Consequently, the actual duty cycle is equal to
the reciprocal of this chosen prime number. For example, to achieve an approximately
1% duty cycle, Disco would choose the prime number of 101. The maximal discovery
latency between two devices, according to the Chinese Remainder Theorem, is equal
to the product of two prime numbers chosen by these two devices. Figure 1 shows an
example of asynchronous discoveries among three devices S, A, and B.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9S

0 1 2 3 4 5 6 7 8 9A

0 1 2 3 4 5 6 7B - -

Active SlotsInactive Slots Discovery

Global
Time

-

10

10

10

Fig. 1. Neighbor Discovery Process

In Figure 1, devices S, A, and B start their local timers at global time 0, 0, and 3,
respectively. According to Disco, S discovers devices A and B at global slots 0 and 10,
respectively, based on their duty cycles, i.e., 20% (1

5), 33% (1
3), and 14% (1

7). Note that
existing discovery protocols only assume that the slots at individual devices have equal
lengths [Dutta and Culler 2008]. By sending two messages at the beginning and end
of an active slot, they do not require aligned slots and are robust to clock drift. The
perfect alignment in Figure 1 is for illustrations.

The rationale behind the duty cycling based neighbor discovery is to ensure that the
distributed asynchronous devices have their active slots quickly overlapped. Without
further information, the neighbor discovery protocols have to be cautious about turning
nodes’ radios into active slots, which may waste the energy.

6 D. Zhang et al.

4. MOTIVATION: WHY WE NEED ACC?
Our work is motivated by the observation that current state-of-the-art neighbor dis-
covery schemes suffer from long discovery latencies due to duty cycling for energy effi-
ciency. In many mobile applications, however, neighbor discovery has to be fast enough
to enable crucial responsive user experiences. Unfortunately, for traditional discov-
ery schemes, its design objective is to discover neighbors with a more energy-efficient
method, no matter how long it will take, as long as it is bounded.

We utilize a GPS dataset of 14,000 taxicabs to simulate a real-world mobile network
(the detailed setting is given in Section 8) to investigate the performance of the neigh-
bor discovery protocols. As in Figure 2, we plot results on the cumulative distribution
function (i.e., CDF) of latency for Disco [Dutta and Culler 2008]. As shown by point
X, Disco discovers more than 30% of neighbors after a latency of 3 mins; as shown by
point Y , Disco discovers more than 70% of neighbors after a latency of 6 mins.

0 2 4 6 8 1 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

1 0 5 % Y

Pe
rce

nta
ge

of
Dis

cov
eri

es
(%

)

C u m u l a t i v e D i s c o v e r y T i m e (m i n s)

 D i s c o
 A c c - D i s c o

Z 5 0 %

X

Fig. 2. Motivation
Based on the above evaluation, we find that though such a long discovery latency

ensures the energy saving, it poses a significant challenge for interactive applications
where energy is important but not the most pressing concern. Thus, in these appli-
cations, when needed, an on-demand fast neighbor discovery has to be performed in a
very short period of time before users begin to lose their focus on the application. These
observations consequently lead to a new design philosophy for neighbor discovery: to
perform an on-demand fast discovery within a given additional energy budget, a de-
vice should discover its neighbors as quickly as possible to make applications function
smoothly. Therefore, our design goal of Acc is to more efficiently utilize the addition-
al energy budget to accelerate the discovery process, compared to the current designs
with the same amount of energy.

In Figure 2, to visually show our design objective, we plot the curve of Acc-Disco
where Acc works together with Disco to accelerate the discovery. To make the compari-
son fair, we run Acc-Disco at the same duty cycle with Disco. But in Acc-Disco, the half
of the duty cycle is allocated to Disco for bounded latency and another half of the duty
cycle is allocated to Acc for acceleration purpose. Therefore, Disco and Acc-Disco have
the same total energy budget. The system details are given in Section 8. As shown
by point Z, Acc-Disco discovers more than 70% of neighbors after a latency of 3 mins.
Thus, comparing point Z to X, under the same latency, our Acc assists Disco to achieve
more discoveries by a maximum of 105%; whereas comparing point Z to Y , to discover
the same number of neighbors, our Acc assists Disco to accelerate its discovery process
by a maximum of 50%.

Based on the above observations, our goal is enabling Acc to optimally utilize the ad-
ditional energy budget to reduce the discovery latency for the same number of neigh-
bors, rather than simply assigning this budget to the existing discovery protocols.

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 7

5. ACC DESIGN
In this section, we introduce our detailed design for accelerations of neighbor discovery
in mobile applications.

5.1. Main Idea
As in Figure 3, based on the location of Acc in the whole networking architecture, we
introduce the main idea of Acc as follows.

Existing Neighbor

Disocvery Protocol

Acc Accelerating

Middleware

Energy Efficient Discovery Mode

Applications

On-demand Accelerating Discovery Mode

+

=

Existing Neighbor

Disocvery Protocol

Acc Accelerating

Middleware

Applications

+

=

Original Active Slots

Additional Active Slots

Total Active Slots

Original Active Slots

Additional Active Slots

Total Active Slots

Fig. 3. Acc in the Architecture

In Figure 3, an effective existing discovery protocol, e.g., Disco, has already been in-
stalled in each device. This existing protocol provides the neighbor information to the
upper applications. Our Acc serves as a middleware between the existing neighbor
discovery protocol and applications. Augmented further by Acc, a device runs in one
of two discovery modes: Energy Efficient Discovery Mode, and On-demand Accelerat-
ed Discovery Mode. If a fast discovery is not required, a device S is in the first mode,
and Acc is completely transparent, i.e., a device only turns on the radio at the active
slots (i.e., the black cells) indicated by the existing discovery protocol as in the left of
Figure 3; otherwise, S enters the second mode, concurrently performing Acc and the
underlying discovery protocol for both the acceleration and the bounded latency, i.e.,
turning on the ratio at the active slots indicated by both the existing discovery protocol
and Acc. The detailed operations of a device in these two modes are given as follows.

Energy Efficient Discovery Mode. In this mode, S performs the following two
steps during its original active slots (as specified by the underlying discovery pro-
tocol), and turns off its radio in the rest of slots. (i) At the beginning and end of the
original active slots, S sends a discovery message including its neighbor table, i.e.,
its own duty cycle as well as IDs and duty cycles of its current known neighbors.
(ii) S may receive similar discovery messages from previously unknown or known
neighbors if they also become active in the same slots with S. Therefore, S will col-
lect some activation schedules about some known neighbors, i.e., when the known
neighbors will become active again in future slots. This information is very valu-
able, because when an on-demand accelerating discovery is required, it will help S
to decide how to accelerate the discovery.
On-demand Accelerating Discovery Mode. When an on-demand fast discovery
is required, S enters this mode to accelerate the discovery with an additional ener-
gy budget. In this mode, besides original active slots, S also becomes active during
several additional slots to receive discovery messages. These additional slots are
optimal for discovering more potential neighbors in two ways: direct neighbor dis-
covery by S itself, and indirect neighbor discovery by S’s known neighboring devices.

8 D. Zhang et al.

This indirect discovery is performed by receiving neighbor tables from other devices
in active slots. Figure 4 gives an example of the indirect discovery.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9S

0 1 2 3 4 5 6 7 8 9A

0 1 2 3 4 5 6 7B - -

Active SlotsInactive Slots Discovery

Global
Time

-

10

10

10

Fig. 4. Indirect Discovery
After the discovery of a device A in the global time 0, if S can select one additional
active slot between the global time slot 1 to 10, S would select slot 6 for possible indirect
discoveries via A, since (i) S knows that A will become active in slot 6 after the initial
discovery, and (ii) neighbors discovered by A in slot 3, e.g., B, will be forwarded to S in
Slot 6. So S accelerates the discovery process of B by 4 slots, i.e., from slot 10 to 6.

A natural and key question comes up: how to select additional active slots that are
most effective when the energy budget is given. Before answering this question, we
first explain the operational difference between existing discovery protocols and Acc.
In existing discovery schemes, a discovering device S discovers its neighbors only by
S itself, without any direct collaborations with neighbors already known. Therefore,
when characterizing a potential active slot in terms of discovery, existing schemes may
consider only how many unknown neighbors whom S can directly discover by itself if
S becomes active in this slot. These direct discoveries can accelerate the discovery
process on a certain level, but not significantly. In contrast, our Acc characterizes a
potential active slot based on how many unknown neighbors whom S’s known neigh-
bors will discover can be forwarded to S to achieve indirect discoveries. This indirect
discovery is one of the key features of Acc. Compared to the direct discoveries, these in-
direct discoveries significantly accelerate the discovery process. This is because direct
discoveries increase only linearly, but indirect discoveries may increase geometrically.

We break down the question of how to select additional slots into two sub-questions:
(i) how to evaluate the effectiveness of all potential active slots, and (ii) among these
potential active slots, how to select a subset of active slots to maximize the discov-
ery probability and reduce discovery latency. A potential active slot t is evaluated by
a metric of spatial-temporal coverage, which is considered as a slot gain to quantify
discovery capabilities of all known neighbors becoming active at slot t. These known
neighbors can discover common unknown neighbors for S during the slots that S is not
active and then forward such information to S at slot t. Since the known neighbors of
S will discover their neighbors anyway, Acc supports a transparent acceleration for S
running at the on-demand accelerating discovery mode. This is because no addition-
al marginal cost (e.g., additional activations) is needed for S’s neighbors running at
the energy-efficient discovery mode. We present the slot gain in the second subsection.
Then we explain how to dynamically schedule a subset of active slots that maximize
the total slot gains, given a fixed energy budget (i.e., the number of active slots to be
added). We present this online scheduling algorithm in the third subsection.

5.2. Characterization of Slot Gain
Before presenting the detailed characterization of the slot gain, we first provide some
intuition behind this concept. To discover more unknown neighbors, a discovering de-
vice S should become active at a future slot that has the largest number of potential
unknown neighbors that are also becoming active. Therefore, intuitively, a future slot
with more active unknown neighbors should be assigned to a larger gain.

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 9

But without making further assumptions, S cannot have this information about how
many unknown neighbors will become active in a certain future slot. Alternatively, S
indeed has information collected during the previous discoveries about how many and
which kinds of S’s known neighbors will become active in a certain future slot. These
known neighbors will passively forward their new collected neighbor information to
S to achieve indirect discoveries by sending neighbor tables, if the known neighbors
become active together with S in a future slot. Again intuitively, a future slot with
more active known neighbors should be assigned to a larger gain.

Nevertheless, we observe that not all known neighbors at S are equally valuable
for indirect discoveries. Specifically, S should favor those important known neighbors
exhibiting both temporal diversity and spatial similarity to S. The temporal diversity
indicates that in how many slots a known neighbor is active even though S is not, while
the spatial similarity indicates how likely a neighbor of a known neighbor of S is also
S’s neighbor. Finally, a future slot with more active known neighbors exhibiting both
higher temporal diversity and larger spatial similarity is assigned to a larger gain.

Note that the temporal diversity and spatial similarity of the neighbors indicate
their discovering capability for the discovering devices in terms of the temporal-spatial
coverage. An example of temporal-spatial coverage is given in Figure 5.

Slot t1

(A wakes

up only)
S

S

Slot t2

(B wakes

up only)

Range of A

Range of B

Partial Temporal-Spatial Coverage

Slot t1

(A and B

wake up)
S

S

Slot t2

(C and D

wakes up)

Range of A

Range of D

Fully Temporal-Spatial Coverage

Range of B

Range of C

Fig. 5. Temporal Spatial Coverage
In the left of Figure 5, we show a partial temporal-spatial coverage where the discov-
ering device S has two known neighbors A and B, and their radio ranges are shown in
the figure. Based on their waking up schedules, S is inactive in both slots t1 and t2; A
is active during slot t1 only; B is active during slot t2 only. Thus, A and B can only tem-
porally and spatially cover partial neighborhood of S (i.e., discovering S’s neighbors),
when S is inactive during slots t1 and t2. This is because during t1, A cannot find S’s
active neighbors who are inside S’s range, but outside A’s range; similarly during t2, B
cannot find S’s active neighbors who are inside S’s range, but outside B’s range. How-
ever, in the right of Figure 5, we find a full temporal-spatial coverage for S by known
neighbors A, B, C and D in another setting. During S’s inactive slots t1 and t2, any S’s
unknown active neighbor will be discovered by A, B, C or D. The discovery result will
be forwarded to S, when S makes rendezvous with these neighbors later.

As follows, we introduce the details of how to use the temporal diversity and the
spatial similarity to calculate the slot gain.

5.2.1. Temporal Diversity. The temporal diversity between a pair of devices S and its
known neighbor A is determined by the difference in active slot schedules between
them. The more the difference in active slots, the more likely that via A, S can ear-
ly indirectly discover new neighbors whom S was supposed to later directly discover
during S’s original active slots. For example, Figure 6 shows an example of temporal
diversity.

10 D. Zhang et al.

 A

B

C

Active SlotsInactive Slots

S

Discovery

Global
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

Fig. 6. Example of Temporal Diversity

In Figure 6, whenever A becomes active, S also becomes active, so the temporal diver-
sity between them is limited. Since A can only discover neighbors in the slots where
S also does, there is limited information that A can learn but S cannot. But a device
C frequently becomes active in the slots where S is inactive (e.g., slots 3, 6, 9 and 15).
Given a slot t, the more frequently C becomes active before t, the larger the possibili-
ty that C has more information on the potential neighbors not yet known to S. Thus,
to maximize the possibility that the known neighbors can forward more information
about the unknown potential neighbors to S, Acc attempts to activate S at the slots
where more known neighbors with higher temporal diversities become active.

At current slot t0, to calculate the temporal diversity between two device i and j

at a future slot t, denoted as α(i,j)
t0→t, j utilizes the ratio between the number of non-

overlapping active slots between i and j from the current slot t0 to slot t, and the total
number of slots until slot t. This ratio is given by the following formula.

α
(i,j)
t0→t =

|m(i,i)
t0→t| − |m

(i,j)
t0→t|

t− t0
, (1)

where m(i,j)
t0→t is the common active slot set of i and j from slot t0 to slot t; clearly, if

j = i, then m
(i,i)
t0→t is the total active slot set of i from slot t0 to slot t.

As in Figure 6, we show how to obtain α
(i,j)
t0→t. Assuming devices S, A, B and C first

discover each other at slot 0. At t0 = slot 1, the temporal diversity of slot 6 for A, B and
C to S is α(A,S)

1→6 = 0
5 , α(B,S)

1→6 = 1
5 , and α

(C,S)
1→6 = 2

5 , respectively. Clearly, A has the least
temporal diversity to S, while C has the most temporal diversity to S.

5.2.2. Spatial Similarity. The spatial similarity between a pair of devices S and A is
determined by the spatial closeness between them. In multi-hop networks, not all A’s
neighbors are S’s neighbors. Intuitively, the closer A is to S, the larger the possibility
that more common neighbors exist between them. So, to maximize the possibility that
the potential unknown neighbors forwarded by the known neighbors to S are indeed
S’s neighbors, Acc attempts to activate S at slots where more known neighbors with
larger spatial similarities become active.

At current slot t0, to calculate the spatial similarity between device i and j, denoted
as β(i,j)

t0 , j utilizes the ratio between the number of common known neighbors of i and
itself, and the total number of known neighbors to itself at slot t0. This ratio is given
by the following.

β
(i,j)
t0 =

|n(i,j)
t0 |
|n(j,j)
t0 |

, (2)

where n(i,j)
t0 is the common known neighbor set of i and j at slot t0; clearly if i = j, n(j,j)

t0
is j’s neighbor table at slot t0.

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 11

Figure 7 shows an example about how to obtain β
(i,j)
t0 .

D

C

ID Neighbors

A B,D,E,S

B A,C

C B,S

S
A

S's Neighbor Table

B

E

Radio Range of S

Fig. 7. Example of Spatial Similarity

In Figure 7, at t0 = slot 1, among three discovered neighbors (i.e., A, B, and C), S
shares two, three and two neighbors with A, B and C, respectively, including a neigh-
bor itself. So, for directly discovered neighbors A, B, and C, S calculates β(A,S)

1 = 2
3 ,

β
(B,S)
1 = 3

3 and β
(C,S)
1 = 2

3 . For indirectly discovered neighbors, e.g., D, S calculates
β

(D,S)
1 = 1

3 , since only one (i.e., device A) out of three known neighbors of S has D in its
neighbor table.

5.2.3. Slot Gain Calculation . Based on the above observations, a discovering device S
assigns larger gains to the slots that have more active devices with higher temporal
diversity and larger spatial similarity. At current slot t0, based on Eq. 1 and 2, S cal-
culates the slot gain of slot t, denoted as γ(S)

t0→t, as follows.

γ
(S)
t0→t =

∑
i∈n(S,S)

t0

α
(i,S)
t0→tβ

(i,S)
t0 =

∑
i∈n(S,S)

t0

(|m(i,i)
t0→t| − |m

(i,S)
t0→t|)× |n

(i,S)
t0 |

(t− t0)× |n(S,S)
t0 |

, (3)

where n(S,S)
t0 is the neighbor table of S at slot t0.

Ideally, if S is required to discover all its neighbors becoming active from slot t0 to
t but without being active all the time, then S should select a set of known neighbors
who can cover the entire radio range (i.e., spatial coverage) of S from slot t0 to t (i.e.,
temporal coverage), e.g., the fully temporal-spatial coverage in the right of Figure 5.
The temporal coverage is easy since we select a neighbor subset, if any, that has neigh-
bors continuously becoming active from slot t0 to t. But without further assumptions
regarding a device’s radio model, the spatial coverage is hard to perform. Essentially,
S could use its complete neighbor set to represent its radio area, but S does not know
its complete neighbor set either, but only a partial known neighbor set at a specific
slot. Therefore, we employ S’s partial known neighbor set (i.e., n(S,S)

t0) to represent its
radio area, i.e., the spatial coverage for S is the coverage of S’s known neighbor set.
This strategy performs best in the situation where the partial known neighbor set is
uniformly distributed in the complete neighbor set.

Consequently, the denominator (t − t0) × |n(S,S)
t0 | in the last term of Eq. 3 is the

temporal-spatial coverage should be provided for S to discover all its neighbors becom-
ing active from slot t0 to t; whereas the numerator (|m(i,i)

t0→t| − |m
(i,S)
t0→t|) × |n

(i,S)
t0 | is the

temporal-spatial coverage that a known neighbor i can provide for S. Therefore, the

12 D. Zhang et al.

fraction represents among the total temporal-spatial coverage of S, how much cover-
age can be provided by i who becomes active in slot t. This is the physical meaning of
slot gains.

For example, with the schedule in Figure 6 and the neighbor table in Figure 7, as-
suming that t0 is slot 1, a discovering device S calculates slot 6’s slot gain according to
the follow formula.

γ
(S)
1→6 = α

(A,S)
1→6 β

(A,S)
1 + α

(B,S)
1→6 β

(B,S)
1 + α

(C,S)
1→6 β

(C,S)
1 =

0

5

2

3
+

1

5

3

3
+

2

5

2

3
=

7

15
(4)

5.3. Online Activation Scheduling
In the previous subsection, we present the method to calculate the slot gains for all
the slots based on the neighbor table of a discovering device. According to the obtained
slot gains, in this subsection, we first present our online scheduling algorithm, given an
fixed duty cycle budget B. This online algorithm outputs a slot sequence for additional
activations and updates this sequence consistently based on the latest yet incomplete
neighbor table. Then by comparing this online algorithm to its optimal Oracle version,
we theoretically analyze the proposed algorithm to show its performance via a concept
called competitive ratio.

5.3.1. Scheduling Algorithm. In our scheduling algorithm, a discovering device S decides
an additional active slot sequence AS which includes several additional active slots,
according to three inputs as follows.

(i) Additional Energy Budget B. Given B in terms of additional duty cycles, e.g.,
2
11 beyond what has already been consumed by an underlying discovery scheme,
S performs discoveries in some additional slots. B = 2

11 indicates that on average
every 11 slots, S can additionally become active in 2 slots besides the original active
slots.
(ii) Neighbor Table n(S,S)

t0 in Current Slot t0. After every active slot, n(S,S)
t0 will

be updated based on latest neighbor information collected during this active slot.
With this updated n

(S,S)
t0 , S continues to decide upon following additional active

slots based on the updated slot gains we defined in Eq. 3.
(iii) Next Original Active Slot tN . Taking tN into consideration is because S
should not select additional active slots after tN . This is because all slot gains may
be changed after tN , since S’s neighbor table may be changed after an active slot.
Therefore, selecting additional active slots after tN will lead to a sub-optimal selec-
tion.

The above three inputs provide necessary information for S to decide AS with Algo-
rithm 1 after every active slot.

Algorithm 1 Acc Activation Scheduling

Require: (i) B; (ii) n(S,S)
t0 ; (iii) tN ;

Ensure: Additional active slot sequence AS;
1: Calculating the number, denoted as K, of additional active slots that S can have

before tN , based on B;
2: Updating the slot gains for all remaining slots before tN , according to S’s current

neighbor table n(S,S)
t0 and Eq. 3;

3: Selecting Top-K slots from all remaining slots before tN to update AS as the addi-
tional active slots combined with original active slots;

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 13

Figure 8 gives an example of this algorithm.

2nd Cycle

Original

Active Slots

Inactive

Slots

1st Cycle

Additional

Active Slots

1 2 3 4 5 6 7 8 9 100

11 12 13 14 15 16 17 18 19 20 21

Current

Slot

2nd Cycle

1st Cycle 0

11

Selection of 1

extra active

slot in Slot 3

1 2 3 4 5 6 7 8 9 10

12 13 14 15 16 17 18 19 20 21

Selection of 2

extra active

slot in Slot 1

Fig. 8. Example of Activation Scheduling

Suppose that t0 = 1, the original duty cycle is 1
11 and B is 2

11 , which means in every 11
slots S can activate approximately 2 additional active slots. Suppose that slots 3 and
10 have the top-2 largest gains among all slots before tN = slot 11. Therefore, in the
first round, S selects slots 3 and 10, and puts them into AS. After the activation in slot
3, S updates the slot gains of remaining slots via n

(S,S)
3 . Suppose that now slot 6 has

the largest slot gain, instead of slot 10, so in the second round, S would select slot 6 as
the last additional slot to update AS.

5.3.2. Competitive Analysis of Scheduling Algorithm. We analyze the performance of our on-
line scheduling algorithm by comparing it to its optimal Oracle version. In our online
scheduling, S’s incomplete neighbor table in slot t0, n(S,S)

t0 , is processed piece-by-piece
in a serial fashion to decide AS, because it is consistently updated, whereas the Or-
acle version will have the complete neighbor table N (S,S), not n(S,S)

t0 , to decide AS. In
the appendix, we prove that our online scheduling is competitive by showing that the
performance ratio between it and its Oracle version, denoted as ρ, is bounded by a pa-
rameter R, which is the size ratio between n(S,S)

t0 and N (S,S). The rationale behind this
analysis is that our online scheduling performance is proportional to the size of n(S,S)

t0 .
For example, if R = 1, then our online algorithm is as effective as its Oracle version,
since R = 1 indicates that n(S,S)

t0 = N (S,S).

5.4. Neighbor Verification
In the previous subsection, we introduce how to use online activation scheduling to
accelerate the process of neighbor discovery by indirect discovery. In the scenario of
mobile multi-hop networks, for a discovering device, a neighbor’s neighbor may not be
its neighbor when the discovering device indirectly discovers it. This discovery would
be a false positive. Therefore, we propose a passive neighbor verification technique to
verify whether indirectly-discovered neighbors are actually one-hop neighbors.

In this paper, we define a neighbor of a device S as a device who is continuously in
the communication range of S at least a time period p, which is the discovery latency
bound of an underlying neighbor discovery scheme. Two devices just transitorily were
in communication ranges of each other cannot be seen as neighbors, since they cannot
be discovered by each other. Therefore, a neighbor will be discovered by Acc in advance
or by an underlying protocol eventually. If two devices discover each other and then
move out of communication rages of each other within a time period p, then they are
not considered as neighbors (false position) and will be removed.

During a discovery process, since every device would broadcast its neighbor table
to its neighbors during the discover process, a discovering device would have duty cy-
cle patterns of indirectly-discovered neighbors whether they are one-hop neighbors or

14 D. Zhang et al.

two-hop neighbors. Based on these duty cycle patterns, the discovering device would
know when an indirectly-discovered neighbor will become active and broadcast mes-
sages to its neighbors. Therefore, in our passive neighbor verification, the discovering
device would become active in the active slots of every indirectly-discovered neighbor
and listen to the channel for its messages for a time period of p. If the discovering de-
vice can receive messages from this neighbor for a time period of p, then it indicates
this indirectly-discovered neighbor is an actual one-hop neighbor. In contrast, if the
discovering device cannot receive messages from this neighbors for a time period of p,
then it indicates this indirectly-discovered neighbor is not an actual one-hop neighbor.

Figure 9 gives an example about the neighbor verification process for indirectly dis-
covered neighbors. Assume we have a discovering device S. Based on its direct neigh-

Neighbor Verification

S

Range of A

Range of S

A
B

C

Fig. 9. Neighbor Verification

bor A, the discovering device S indirectly discovers two neighbors, i.e., B and C. B is a
one-hop neighbor of S and C is a two-hop neighbor of S. Based on the duty cycle pat-
terns of B and C, S also becomes active during active slots of B and C, after the initial
indirect discovery of them. During these active slots of B and C, S tries to receive their
messages passively, in addition to its own active slots. Because B is within S’s com-
munication rage and C is out of S’s communication rage, S can receive the message
from B, but not from C. Therefore, S have verified B is a one-hop neighbor and C is a
two-hop neighbor.

5.5. Proactive Online Rendezvous Maintenance
The neighbor discovery is a process to identify neighboring devices so that a device
S can send messages to other devices in its neighborhood. Whereas, the rendezvous
maintenance is a process where S contacts with its discovered neighbors regularly to
verify and maintain the neighboring relationship by timely detecting that the neigh-
bors are still in the neighborhood or not. But such a discovered neighborhood relation-
ship among S and its neighbors is only temporal in mobile applications, because both
the neighbors and S are moving around and will leave the radio ranges of each other
after a period of time. The leaving of a known neighbor A is detected by S through
a failure to receive the discovering message from A in the slot where S and A both
become active, according to the schedule obtained when they first discover each other.
After such a failure, S just drops off A from its neighbor table. The above scheme is the
normal rendezvous for a device S to maintain its neighbor table up to date in existing
protocols where the rendezvous is treated as a “rediscovery” during which a device and
its known neighbors are both in the active slots again.

In this work, we argue that this passively rediscovery based rendezvous takes a
long-time delay to detect the fact that a neighbor A has already leaved S’s ratio range,

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 15

e.g., a detecting delay for two devices with 1% duty may take up to 101×101 slots. Such
a long delay may be acceptable for delay tolerant applications, e.g., sensor networks,
but it is typically not acceptable in the interactive applications where the leaving of
a neighbor should be proactively detected as soon as possible, instead of passively
depending on the rediscovery. In our Acc, we proactively maintain the rendezvous to
reduce the detecting delay in an on-demand method if it is required by users.

The rationale of our online rendezvous maintenance mechanism is as follows. We
divide the rendezvous maintenance into two subobjectives: when to proactively main-
tain the rendezvous and how to proactively maintain the rendezvous. Since our Acc is
designed as a transparent middleware, we do not change the schedule of neighboring
devices. Thus, a naive yet safe method is that right after the discovering device S dis-
covers a neighbor A, S becomes active in every slot where A becomes active to verify if
A is still a neighbor of S or not. This naive method is the quickest method to transpar-
ently detect the leaving of A without the cooperation from A, but this method involves
too much energy consumption for S, since S has to wake up at every active slot of A.

To address this issue, in Acc, S first uses the reduction of the common neighbors of
S and A between two normal rendezvous as a hint to initiate a proactive rendezvous
maintenance regarding to A. After the beginning of the maintenance, S utilizes a bi-
nary selection to find the some active slots of A for the additional wakeups to quickly
detect the fact that A leaves the range of S or not. If A is still in S’s range but the
reduction of the common neighbors continues, S continues to select additional wakeup
slots until A leaves the range of S or the reduction stops. As follows, we give the details
about when and how to process the proactive rendezvous maintenance.

5.5.1. When to initiate proactive online rendezvous maintenance?. After the initial discovery
of A, if the proactive online rendezvous maintenance is required by users, S compares
the common neighbors between itself and A after every normal rediscovery about A.
If S detects a reduction of the common neighbors, S initiates the proactive rendezvous
maintenance regarding A. Figure 10 gives an example about the reduction of the com-
mon neighbors for a discovering device S and its neighbor A.

S

Range of A

First Common Active Slot

Range of S

A
S

Range of A

Range of S

A

Second Common Active Slot

Common

Neighbor

Regular

Neighbor

Fig. 10. Reduction of Common Neighbors

In Figure 10, in the first common active slot, S and A have four common neighbors,
while at the second common active slot, S and A have only two common neighbors (due
to the movements of S and A). The reduction can be obtained by their neighbor tables
they broadcasted in the common active slot. Such a reduction of the common neighbors
indicates that A is leaving the range of S. Thus, S initiates the proactive rendezvous
maintenance regarding to A after the second common active slot. The rationale be-
tween method is the fewer the common neighbors, the farther the distance between S
and A, the more likely A is leaving the range of S.

16 D. Zhang et al.

5.5.2. How to initiate proactive online rendezvous maintenance?. In the rendezvous mainte-
nance regarding to A, S selects some active slots of A for the additional wakeup (before
the next normal common active slot) to reduce the detecting delay for the fact that A
leaves the radio range of S. We utilize a binary selection to choose these slots. Figure 11
gives an example about S selecting additional wakeup slots to detect the leaving of A.

A

Active SlotsInactive Slots

S

Additional Wakeup

Global
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

Fig. 11. Selection of Additional Wakeup for Rendezvous Maintenance

In Figure 11, S detects the reduction of common neighbors between S and A at slot
0, and initiates the proactive online rendezvous maintenance. Further, we assume a
situation where the reduction of common neighbors between S and A is continuously
detected.

— S calculates A’s active slots (i.e., slots 2, 4, 6, 8, 10, 12 and 14) before the next normal
rediscovery at slot 16;

— S utilizes a binary selection to obtain slot 8 as an additional wakeup, which is in the
middle of current slot 0 and the next normal rediscovery at slot 16;

— After waking up at slot 8, S continues to detect the reduction of the common neigh-
bors, so S utilizes the same binary selection again to obtain slot 12 as an additional
wakeup, which is in the middle of current slot 8 and the rediscovery slot 16;

— After waking up at slot 12, S selects slot 14 as an additional wakeup, which is in the
middle of current slot 12 and the normal rediscovery slot 16;

— Similarly, after waking up at slot 14, S selects slot 15 as an additional wakeup, which
is in the middle of current slot 14 and the normal rediscovery slot 16;

— This process continues until no reduction of common neighbors is detected or after A
leaves the radio range of S;

— Finally, S drops off A from its neighbor table, if A leaves the radio range of S.

In the above method, S is based on the online information about the reduction of the
common neighbors to proactively accelerate the rendezvous maintenance. The ratio-
nale behind this method is the fewer the common neighbors, the more likely A leaves
the radio range of S.

Note that even without the above proactive online rendezvous maintenance, our
regular accelerated discovering process by Acc implicitly expedites the delay of the
detection for the fact that a neighbor leaves the ratio range of a discovering device,
This is because a discovering device will wake up more in the active slots of the known
neighbors for the indirect discovery, according to the design of Acc. Thus, if a known
neighbor of S is not broadcasting in the active slot when it is supposed to be, then S
removes this neighbor from the neighbor table, which enables S to more quickly de-
tect the leaving of its neighbors, although the introduced proactive online rendezvous
maintenance can further accelerate the detection.

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 17

Fig. 12. Testbed Setup

Disco
Used by

Disco

Used by

Disco

Base -Disco
Used by

Baseline

Used by

Disco

Acc -Disco
Used by

Acc

Used by

Disco

Additional

Duty Cycle

Original

Duty CycleName

Energy

Fig. 13. Compared Schemes

6. TESTBED EVALUATION
To evaluate Acc in a real world setting, we integrate Acc with two state-of-the-art dis-
covery protocols: Disco [Dutta and Culler 2008] and WiFlock [Purohit et al. 2011]. To
verify whether the accelerated neighbor discovery would perform well on resource-
constrained sensor nodes, we implement the above two schemes employing 11 Telos-
B sensor devices with a 10 KB RAM size on the TinyOS/Mote platform. During the
testbed experiments, we deploy 10 TelosB sensor devices in a one-hop grid network
and utilize a mobile toy car attached with another TelosB as a discovering device, with
a mobility pattern of circling around the grid. This mobile node introduces the relative
mobility between a discovering device and its neighbors, which is to verify the mobility
would not affect the neighbor discovery itself. The testbed is shown in Figure 12.

At individual devices, we set the time slot length to be 25ms for two reasons. (i) For
direct discovery, a smaller slot leads to a faster discovery, but a too-small slot (< 5ms)
leads to the jitters introduced by the TinyOS timer library [Dutta and Culler 2008]. (ii)
For indirect discovery, a bigger slot reduces collisions of messages and enables more ex-
changes of neighbor tables. Based on the above two reasons, we make a tradeoff about
time slot length on 25ms. Note that WiFlock was implemented on modified hardware
to support an extremely small time slot 80µs [Purohit et al. 2011], but in our paper
we implement WiFlock only on a standard hardware to examine the principle of it-
s collaborative beaconing mechanism. In our experiment, all schemes have the same
energy budget (both original and additional) for devices to ensure a fair comparison.
But different schemes use the same energy budget differently in terms of selecting ac-
tive slots. The additional duty cycle budget B for the acceleration is set to be 5%, the
same as the original duty cycle of 5% at every device. The 5% duty cycle is extensively
studied in Disco [Dutta and Culler 2008].

To evaluate the effectiveness of the slot gains we proposed, we also implemented a
Baseline design. This design shares the same scheduling scheme as Acc, but it uses
the number of active devices in a slot t as the slot gain, not considering any temporal
diversity or spatial similarity. So, we implement three versions as shown in Figure 13.
In all three versions, the original duty cycle is controlled by Disco, and the additional
duty cycle is controlled by their own schemes. Similar versions are implemented for
WiFlock.

We evaluate the above schemes by three metrics: (i) the percentage of discoveries
with respect to cumulative discovery time; (ii) the number of discovered devices in
different time intervals; (iii) the average discovery latency in different duty cycles. The
first two metrics are to verify the effect of Acc’s assistance to the existing schemes
in the acceleration of discovery process in the first subsection. The third metric is to

18 D. Zhang et al.

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6 4 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Pe
rce

nta
ge

of
Dis

cov
eri

es
(%

)

C u m u l a t i v e D i s c o v e r y T i m e (s)

 D i s c o
 B a s e - D i s c o
 A c c - D i s c o

Fig. 14. Disco CDF

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6 4 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Pe
rce

nta
ge

of
Dis

cov
eri

es
(%

)

C u m u l a t i v e D i s c o v e r y T i m e (s)

 W i F l o c k
 B a s e - W i F l o c k
 A c c - W i F l o c k

Fig. 15. WiFlock CDF
verify the effect of different duty cycles on the average discovery latency in the second
subsection.

In an experiment, after every 40 slots, i.e., about 1s, the discovering device logs the
number of neighbors it discovered so far. All experiments are repeated 20 times and
the average results are reported.

6.1. Effectiveness in Acceleration of Discovery
Figure 14 plots the acceleration effect of Disco. In Figure 14, we observe that the curve
of Acc-Disco is the above all other curves in every percentage of discoveries. For ex-
ample, to discover 80% of neighbor devices, Acc-Disco, Base-Disco, and Disco spend
around 13s, 22s, and 27s, respectively. Acc-Disco finishes the discovery process faster
than Disco by 51.8%, while both consume the same energy. This is because Disco does
not consider using known neighbors to discover unknown neighbors, which leads to a
longer discovery process in which a device has to find its neighbors one by one. In ad-
dition, we observe that Base-Disco outperforms the original scheme by a maximum of
18.9% when discovering more than 99% of neighbors on average. This is because Base-
Disco selects active slots with more known neighbors becoming active, which proves
the value of taking the known neighbors into consideration. But we also observe that
Acc-Disco still outperforms Base-Disco by nearly 36.6% when discovering more than
99% of neighbors. This suggests that when selecting additional active slots, consider-
ing only the quantity, not the quality, of devices becoming active in slots is not enough
to significantly accelerate discovery. This can also be shown by the fact that Base-Disco
discovers half of devices’ neighbors by 8s, but finishes the whole discovery process at
32s. The above results indicate that Acc-Disco exhibits a significant acceleration, when
compared to other versions.

In Figure 15, we observe the similar results as in Figure 14. Among the three ver-
sions, Acc-WiFlock achieves the highest performance in the percentage of discovered
devices in the most instances of the discovery process. But we also observe that the
performance gain between Acc-WiFlock and other versions of WiFlock is less than that
between Acc-Disco and other versions of Disco. This is because in the collaborative bea-
coning mechanism of WiFlock, WiFlock has already taken neighbor tables into consid-
eration. Different than Acc-WiFlock and Base-WiFlock, however, the neighbor tables
in WiFlock are intended to maintain the membership of a device group to achieve syn-
chronized listening. In Figure 15, we observe that Base-WiFlock outperforms WiFlock
as well. This demonstrates the effectiveness of considering known neighbors for un-
known neighbor discovery. But the fact that Acc-WiFlock outperforms Base-WiFlock
indicates that considering temporal-spatial coverage, instead of only the number of
neighbors, achieves further improvement. This is because by simply measuring the
slot gain as the number of active neighbors, Base-WiFlock increases performance to

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 19

- 1
0
1
2
3
4
5
6
7

3 3 - 4 02 5 - 3 21 7 - 2 41 - 8Nu
mb

er
of

Dis
cov

ere
d D

evi
ces

I n t e r v a l (s)

 D i s c o
 B a s e - D i s c o
 A c c - D i s c o

9 - 1 6

Fig. 16. Disco Distribution

- 1
0
1
2
3
4
5
6
7

3 3 - 4 02 5 - 3 21 7 - 2 41 - 8Nu
mb

er
of

Dis
cov

ere
d D

evi
ces

I n t e r v a l (s)

 W i F l o c k
 B a s e - W i F l o c k
 A c c - W i F l o c k

9 - 1 6

Fig. 17. WiFlock Distribution
a certain level but cannot make a device become active at the most effective slots, as
Acc-WiFlock does.

Figures 16 and 17 plot the number of neighbors discovered in every 8s time window
under the versions of Disco and WiFlock. These two figures provide the distribution of
discovered neighbor numbers in different phases of the discovery process. From Fig-
ures 16 and 17, we observe that both Acc-Disco and Acc-WiFlock discover the largest
number of neighbor devices during the first 8s. In contrast, the other versions discover
relatively uniform numbers of devices over time. The reason for Disco’s uniform dis-
coveries is obvious, since Disco performs a pair-wise discovery where discovering more
neighbors is not helpful for the discovery of the next neighbor. But WiFlock indeed
considers a group-based strategy. One explanation for WiFlock’s uniform discoveries is
that WiFlock’s synchronized listening and one-way discovery mechanism are efficient
only for an existing group of devices to discover a new device, not for a new device to
discover all its neighbors.

From the above four figures, we conclude that when an additional energy budget is
given for an acceleration of the discovery process, considering the number of devices
active in a slot (Baseline) can assist current discovery schemes to a certain level, but
there still is room to improve. By taking different qualities of known neighbors into
consideration, i.e., the temporal diversity or spatial similarity of neighbors, Acc further
accelerates the discovery process.

6.2. Impact of Duty Cycle
Figures 18 and 19 plot the impact of two different original duty cycles on average dis-
covery latencies in both Disco and WiFlock. The average discovery latency is defined as
the time a device takes to discover all its neighbors divided by the number of its neigh-
bors. We observe that the versions with Acc outperform the versions with Baseline and
original schemes by a maximum of 42.1% and 53.8%, respectively. We also observe that
the performance gain between the Acc assisted versions and original versions increas-
es as the duty cycle increases. In Disco, this gain increases from 47.7% to 53.8%, while
in WiFlock it increases from 39% to 47.3%. This indicates that as devices become ac-
tive more frequently, a discovering device can obtain more information from its known
neighbors by considering the temporal diversity or spatial similarity of neighbors. A-
gain, the performance gain between the Acc-assisted version and the original version
in WiFlock is smaller than that in Disco, which is also because of WiFlock’s collabora-
tion beaconing scheme. We observe different trends in the performance gain between
Acc- and Baseline-assisted versions in different protocols. The gain between Acc-Disco
and Base-Disco decreases from 42.1% to 37.9%, while that between Acc-WiFlock and
Base-WiFlock increases from 29.4% to 33.3%. This indicates that the slot gains utilized
by Baseline and Acc have different effects in different protocols.

20 D. Zhang et al.

0

1

2

3

4

5

6

1 0 %5 % D u t y C y c l e

Av
era

ge
Dis

cov
ery

 La
ten

cy
(s) D i s c o

 B a s e - D i s c o
 A c c - D i s c o

Fig. 18. Disco Latency

0

1

2

3

4

5

6

1 0 %5 % D u t y C y c l e

Av
era

ge
Dis

cov
ery

 La
ten

cy
(s) W i F l o c k

 B a s e - W i F l o c k
 A c c - W i F l o c k

Fig. 19. WiFlock Latency

It also shows that the performance gain between Acc- and Base-WiFlock, i.e., 29.4%,
is smaller than the gain in Disco related comparisons, i.e., 42.1%. This result is consis-
tent with the observation that the performance gain between the Acc-assisted and the
original version in WiFlock, i.e., 39%, is smaller than that in Disco, i.e., 47.7%. Note that
even with double duty cycles, the average discovery latency does not reduce significant-
ly in all three protocols. This is because by increasing duty cycles Disco guarantees the
proportionally-reduced worst-case latency, instead of the average latency.

From Figures 18 and 19, we conclude that when devices become more active, Acc
more effectively assists the discovering device to accelerate the discovery process by
leveraging the known neighbors to discover unknown neighbors.

7. SIMULATION EVALUATION
To evaluate Acc serving as an accelerating middleware to support different protocols
in larger-scale networks, we simulate Acc with four discovery protocols, Disco [Dutta
and Culler 2008], U-Connect [Kandhalu et al. 2010], WiFlock [Purohit et al. 2011]
and Searchlight [Bakht et al. 2012]. In our 30-mins simulation, 100 mobile devices are
uniformly deployed in a square area of 200m × 200m. The radio ranges of devices are
set from 20m to 110m, which lead to average device densities from 3.6 to 55.36. We use a
non-trivial pure random waypoint model as a mobility model [Alparslan and Sohraby
2007], with an average velocity 1m/s. In addition to the metrics we investigate in the
testbed experiment, we evaluate the rendezvous maintenance in the last subsection.

Note that in a mobile multi-hop network, neighboring relations are consistently
changing, and it is extremely costly in terms of energy to keep neighbor tables up
to date, i.e., immediately discovering a device when it is in one device’s communica-
tion range. In the evaluation, we define a neighbor of a device A as a device who was
continuously in the communication range of A at least a time period p, which is the
discovery latency bound of an underlying neighbor discovery scheme. Two devices just
transitorily were in communication ranges of each other cannot be seen as neighbors,
since they cannot be discovered by each other. Therefore, a neighbor will be discovered
by Acc in advance or by an underlying protocol eventually. If two devices discover each
other and then move out of communication rages of each other within a time period p,
then they are not considered as neighbors (false position) and will be removed. In our
experiment, all schemes have the same energy budget (both original and additional)
for devices to ensure a fair comparison. But different schemes use the same energy
budget differently in terms of selecting active slots. We test Acc with two metrics, i.e.,
the percentage of discoveries and discovery latency. For both of them, the discovery de-
lay is calculated from the point when a node is within a discovering node’s rage until
it was discovered by the discovering node.

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 21

0 3 0 0 6 0 0 9 0 0 1 2 0 0 1 5 0 0 1 8 0 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Pe
rce

nta
ge

of
Dis

cov
eri

es
(%

)

C u m u l a t i v e D i s c o v e r y T i m e (S l o t s)

 D i s c o
 B a s e - D i s c o
 A c c - D i s c o

Fig. 20. Disco CDF

0 3 0 0 6 0 0 9 0 0 1 2 0 0 1 5 0 0 1 8 0 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Pe
rce

nta
ge

of
Dis

cov
eri

es
(%

)

C u m u l a t i v e D i s c o v e r y T i m e (S l o t s)

 U - C o n n e c t
 B a s e - U - C o n n e c t
 A c c - U - C o n n e c t

Fig. 21. U-Connect CDF

0 3 0 0 6 0 0 9 0 0 1 2 0 0 1 5 0 0 1 8 0 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Pe
rce

nta
ge

of
Dis

cov
eri

es
(%

)

C u m u l a t i v e D i s c o v e r y T i m e (S l o t s)

 W i F l o c k
 B a s e - W i F l o c k
 A c c - W i F l o c k

Fig. 22. WiFlock CDF

0 3 0 0 6 0 0 9 0 0 1 2 0 0 1 5 0 0 1 8 0 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Pe
rce

nta
ge

of
Dis

cov
eri

es
(%

)

C u m u l a t i v e D i s c o v e r y T i m e (S l o t s)

 S e a r c h l i g h t
 B a s e - S e a r c h l i g h t
 A c c - S e a r c h l i g h t

Fig. 23. Searchlight CDF

7.1. Effectiveness in Acceleration of Discovery
In Figure 20, we plot the percentages of discoveries in terms of cumulative discovery
time. From Figure 20, we observe that with the increase of cumulative discovery time,
the percentage of discoveries also increases for all versions of Disco. Nevertheless, Ac-
c-Disco is able to discover neighbors faster than other versions under the same duty
cycle. For example, to discover more than 99% of neighbors, it takes Acc-Disco, Base-
Disco, and Disco around 1000, 1600, and 1700 slots, respectively. If each slot is about
10ms, then Acc-Disco takes a device about 10s to discover more than 99% of neighbors.
This is because some nodes are not neighbors at the beginning of the experiment, but
become neighbors later. These results show a nearly 41.1% performance gain between
Acc-Disco and Disco, which proves the value of taking known neighbors into consider-
ation to discover unknown neighbors. Via a 37.5% performance gain between Acc-Disco
and Base-Disco, we verify the effectiveness of the temporal diversity and spatial simi-
larity as a slot gain.

For percentage of discoveries, some nodes are not neighbors at first place and then
become neighbor due to mobility. We use the cumulative time to track the percentage
of actual neighbors being discovered at certain time.

Similarly, in Figures 21, 22 and 23, we plot the same sets of curves for U-Connect,
WiFlock and Searchlight. We also observe similar performance trends as in Figure 20.
For example, in Figure 21, to discover more than 99% of neighbors, the cumulative dis-
covery time for Acc-U-Connect, Base-U-Connect, and U-Connect is around 850, 1300,
and 1500 slots, respectively. In Figure 22, we still find a performance gain between

22 D. Zhang et al.

0

3 0 0

6 0 0

9 0 0

1 2 0 0

1 5 0 0

D u t y C y c l e 1 3 %9 %5 %1 %

Av

era
ge

Di
sco

ver
y L

ate
nc

y (
Slo

ts)
 D i s c o
 B a s e - D i s c o
 A c c - D i s c o

Fig. 24. Disco Latency

0

3 0 0

6 0 0

9 0 0

1 2 0 0

1 5 0 0

D u t y C y c l e 1 3 %9 %5 %1 %

Av

era
ge

Di
sco

ver
y L

ate
nc

y (
Slo

ts)

 U - C o n n e c t
 B a s e - U - C o n n e c t
 A c c - U - C o n n e c t

Fig. 25. U-Connect Latency

0

3 0 0

6 0 0

9 0 0

1 2 0 0

1 5 0 0

D u t y C y c l e 1 3 %9 %5 %1 %

Av

era
ge

Di
sco

ver
y L

ate
nc

y (
Slo

ts)

 W i F l o c k
 B a s e - W i F l o c k
 A c c - W i F l o c k

Fig. 26. WiFlock Latency

0

3 0 0

6 0 0

9 0 0

1 2 0 0

1 5 0 0

D u t y C y c l e 1 3 %9 %5 %1 %

Av

era
ge

Di
sco

ver
y L

ate
nc

y (
Slo

ts)

 S e a r c h l i g h t
 B a s e - S e a r c h l i g h t
 A c c - S e a r c h l i g h t

Fig. 27. Searchlight Latency

Acc-WiFlock and other versions of WiFlock, although the performance gain of Acc in
WiFlock is smaller than those in Disco and U-Connect. This is also because in Wi-
Flock’s collaboration beaconing scheme, WiFlock already employs the neighbor table
to log the neighbors information (e.g., waking up slots, duty cycle patterns, etc) for
further group maintenance. In Figure 23, we find that a performance gain between Ac-
c-Searchlight and other versions of Searchlight becomes smaller, due to the fact that
Searchlight significantly reduces the worse-case discovery delay.

From results in Figures 20, 21, 22 and 23, we suggest that Acc serves as an acceler-
ating middleware for various schemes to accelerate the discovery process. Specifically,
the performance gain of Acc is bigger in the early stage of the discovery process.

7.2. Impact of Duty Cycle
In this subsection, we investigate the impact of a device’s original duty cycle on the
average discovery latency in Figures 24, 25, 26 and 27.

In all figures, we observe that with the increase of the duty cycle, the average laten-
cies of all versions for all schemes decrease. But at each duty cycle, the versions with
Acc in all four different schemes achieve the smallest latency. For example, when the
duty cycle is set to 5%, the average discovery latencies for Acc-Disco, Base-Disco, and
Disco are around 140, 200, and 380 slots, respectively. Thus, in Disco with Acc’s assis-
tance, the average latency to discover one neighbor drops from 3.8s to 1.4s (at 10ms
slot), a difference of 63.1%. From Figures 24, 25, 26 and 27. we also observe that in
general, as the duty cycle increases, the performance gain between versions with Acc

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 23

0 1 0 2 0 3 0 4 0 5 0 6 00
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0

 D e v i c e D e n s i t y

Av
era

ge
Di

sco
ver

y L
ate

nc
y (

Slo
ts)

 D i s c o
 B a s e - D i s c o
 A c c - D i s c o

Fig. 28. Disco Latency

0 1 0 2 0 3 0 4 0 5 0 6 00
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0

Av
era

ge
Dis

cov
ery

 La
ten

cy
(Sl

ots
)

 D e v i c e D e n s i t y

 U - C o n n e c t
 B a s e - U - C o n n e c t
 A c c - U - C o n n e c t

Fig. 29. U-Connect Latency

0 1 0 2 0 3 0 4 0 5 0 6 00
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0

Av
era

ge
Dis

cov
ery

 La
ten

cy
(Sl

ots
)

 D e v i c e D e n s i t y

 W i F l o c k
 B a s e - W i F l o c k
 A c c - W i F l o c k

Fig. 30. WiFlock Latency

0 1 0 2 0 3 0 4 0 5 0 6 00
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0

Av
era

ge
Dis

cov
ery

 La
ten

cy
(Sl

ots
)

 D e v i c e D e n s i t y

 S e a r c h l i g h t
 B a s e - S e a r c h l i g h t
 A c c - S e a r c h l i g h t

Fig. 31. Searchlight Latency

and original versions also increases. For example, in Figure 24, at 1% duty cycle, the
performance gain between Acc-Disco and Disco is 50.1%, while it increases to 63.1%
when the duty cycle is 5%. This is because with a higher duty cycle, the devices in
the network become active more frequently, leading to more neighborhood information
sharing. Among other three schemes, we find Searchlight has the best performance,
which affirms our observation in the previous subsection.

Based on the above results, we conclude that the higher the duty cycle, the better the
performance gain for Acc assisted scehmes. This is because with a higher duty cycle, a
device can have more active slots which can be used for Acc for acceleration. But such
acceleration effects are limited when the active slots are fewer in a lower duty cycle.

7.3. Impact of Device Density
In this subsection, we investigate the impact of the device density on the average dis-
covery latency of four discovery schemes. The impact of device density on the average
discovery latency is shown in Figures 28, 29, 30 and 31, respectively.

From all four figures, we find that as the device density increases, the average dis-
covery latency increases for all four neighbor discovery protocols. This is due to the
fact that at the higher densities, the devices have more neighbors, leading to more
collisions and thus more time to find all the neighbors. When the average number of
neighbors increases from 3.6 to 55.36, the performance gain between original versions
and the versions assisted with Acc also increases from 22.3% to 52.4% in Figure 28

24 D. Zhang et al.

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 00
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

Pe
rce

nta
ge

(%
)

 D e l a y f o r D e t e c i o n o f L e a v i n g (S l o t s)

 D i s c o
 B a s e - D i s c o
 A c c - D i s c o

Fig. 32. Disco Latency

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 00
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

Pe
rce

nta
ge

(%
)

 D e l a y f o r D e t e c i o n o f L e a v i n g (S l o t s)

 U - C o n n e c t
 B a s e - C o n n e c t
 A c c - C o n n e c t

Fig. 33. U-Connect Latency

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 00
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

Pe
rce

nta
ge

(%
)

 D e l a y f o r D e t e c i o n o f L e a v i n g (S l o t s)

 W i F l o c k
 B a s e - W i F l o c k
 A c c - W i F l o c k

Fig. 34. WiFlock Latency

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 00
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

Pe
rce

nta
ge

(%
)

 D e l a y f o r D e t e c i o n o f L e a v i n g (S l o t s)

 S e a r c h l i g h t
 B a s e - S e a r c h l i g h t
 A c c - S e a r c h l i g h t

Fig. 35. Searchlight Latency

about Disco. This is because more known neighbor devices are able to share neighbor-
hood information with discovering devices, thus accelerating the neighbor discovery
process. We also observe the similar results in Figures 29, 30 and 31. For example, in
Figure 31, when the average number of neighbors increases from 3.6 to 55.36, the av-
erage discovery latency in Acc-Searchlight and Searchlight increases to 290 slots and
to 310 slots, respectively.

Based on the above results, we conclude that the higher the device density, the high-
er the average discovery latency. Note that even though the a bigger network density
can increase the collision among devices, a bigger network density also achieves a more
diverse neighborhood information sharing among already known devices.

7.4. Effectiveness in Proactive Online Rendezvous Maintenance
In this subsection, we investigate the detection delay in the rendezvous maintenance
mechanism in Figures 32, 33, 34 and 35. The legacy protocols, e.g., Disco [Dutta and
Culler 2008], utilize the rediscovery as the rendezvous maintenance. In contrast, Acc
provides an online rendezvous maintenance mechanism for them to make a discovery
device S to wake up at some additional slots to detect the neighbors who are believed
to be leaving the radio range of S. In this paper, we use a metric called the detection
delay to evaluate the performance of online rendezvous maintenance mechanism. It is
given by the time difference from the slot when a neighbor leaves the radio range of S
to the slot when S detects that this neighbor leaves. We use a baseline design called

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 25

Base to show the effectiveness of Acc. The baseline selects additional wakeup slots in
random, whereas Acc utilizes the introduced binary selection. We assume that a fast
maintenance is required by users, and all protocols are under the same duty cycle for
a fair comparison. Due to its proactive online rendezvous maintenance, the protocols
assisted with Acc would have a better performance than the original protocols and
Base assisted protocols.

The distributions of the detection delay about Acc on different protocols are given
Figures 32, 33, 34 and 35, respectively. We find that the Acc assisted protocols have the
lowest average detection delay, which indicates that with the help of Acc, a neighbor
discovery protocol can quickly detect the leaving of a neighbor, thanks to the common
neighbor based maintenance mechanism. Further, Acc assisted protocols have a better
performance than Base assisted protocols, which is because Acc’s binary selection is
more effective than the random selection of Base. Based on the results, we conclude
that Acc’s proactive online rendezvous maintenance mechanism assists existing neigh-
bor discovery to reduce the detection delay of the leaving of neighbors.

8. CROWD-ALERT APPLICATION
In this section, to prove the real-world value of Acc, we propose and evaluate a Crowd-
Alert application with which taxi drivers can quickly navigate optimal directions to
travel to maximize the possibility of picking up passengers by an Acc assisted neighbor
discovery, after they drop off passengers, i.e., a faster neighbor discovery is demanded.

Based on the current setting of taxicab systems in metropolitan areas, every taxi
is installed with a wireless communication interface (WiFi or WiMax) to send its lo-
cations and status (with or without passengers) back to base stations for accounting
purposes. Thus, we envision a taxicab would primarily use its radio in the infrastruc-
ture mode since it has to communicate with a base station frequently for accounting.
Only during gaps between the communications with base stations, a taxi can set its
radio to the ad hoc mode for peer to peer neighbor discovery. So it leads to a duty cycle
between the infrastructure and ad hoc mode not for energy but for radio usage. Based
on broadcasted status of nearby taxis, a taxi driver can obtain the crowd levels, both in
terms of number of taxis and number of passengers in a given area. Taxi drivers who
install this application can form groups of common interest to optimize their profits.
Individual drivers using this application can quickly navigate to areas with a low den-
sity of taxis (and presumably a high passenger density) to maximize pickups (and thus
profits).

Our proposed protocol, Acc, provides a mechanism for distributed discovery of neigh-
bors in an accelerated manner, which we will adapt to the application installed on the
taxi. We will describe our application in further details and evaluate the efficiency of
this scheme in discovering neighbors in a timely fashion.

8.1. Application Background
In our application, every taxicab broadcasts its own status record (i.e., date and time,
availability, direction, GPS coordinates, etc) to its neighboring taxis during the time
it is not communicating with base stations. The broadcast is performed based on a
concrete discovery scheme, e.g., Disco. According to the information collected, when a
taxi becomes available and the driver wants to quickly pick up a passenger (i.e., an
on-demand acceleration is required), the taxi driver can navigate to the optimal di-
rections, as determined by the number of nearby competing taxis and nearby potential
passengers. These two metrics can maximize the probability of picking up the next
nearby passengers.

Generally, the fewer the competing taxis, the higher the probability of picking up
passengers. With distributedly collected status records about neighboring taxis, our

26 D. Zhang et al.

Finding a Route Competing Taxicabs Potential Passengers

Fig. 36. App Screenshot

Crowd-Alert computes the location distribution of competing taxis that also aim to
pick up new passengers. Similarly, the more the potential passengers, the higher the
probability of picking up. Without the active participation of passengers, however, it is
unrealistic to expect to obtain such a distribution based on taxi status records alone.
But we can obtain a cumulative location distribution of passengers that have just en-
tered or exited taxis, i.e., served passengers, by observing the change of the Availability
Bit (from 0 to 1 or from 1 to 0) in two consecutive status records about the same taxi.
Further, we assume that a location distribution of served passengers is an indication
of that of potential passengers, but how to obtain a distribution based on the indica-
tion is outside the scope of this paper. To focus on system levels, we simply utilize the
location distribution of served passengers as that of potential passengers.

Based on the distributions of competing taxis and served passengers, Crowd-Alert
can maximize the possibility of picking up passengers by guiding a taxi to a direction
with fewer competing taxis or more served passengers. A faster discovery achieved by
our Acc can assist a navigating scheme to make a timely decision.

8.2. Application Evaluation
We embed Crowd-Alert function into one of our taxicab-booking app for the taxicab
network in Shenzhen. In Figure 36, we show the app screenshots about finding a route,
checking nearby taxicabs, and potential passengers.

But due to privacy reasons and limited installations, we cannot evaluate Crowd-
Alert based on the data from the app in large scales. Instead, we evaluate the Crowd-
Alert application using a real world dataset collected from taxis in Shenzhen during
6 months. We first introduce the dataset, and then present the evaluation results in
terms of reduction of discovery latency and accelerating the navigation.

8.2.1. Dataset. The dataset consists of 6 months of GPS traces from 14, 453 taxis. The
data is used by the government for the urban transportation pattern search. Each
taxi uploads its records every 15 to 30 seconds, with each record consisting of the
following parameters: (i) Plate Number; (ii) Date and Time; (iii) GPS Coordinates; and
(iv) Availability: whether or not a passenger is in this taxi when the record is uploaded.

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 27

Collection Period 6 Months

Collection Date 01/01/12-06/30/12

Numbe of Taxicabs 14,453

Number of Passengers 98,472,628

Total Travel Distance 594,031,428 (KM)

 Total Fare 2,255,052,932 (CNY)

 Average Travel Distance 6.032 (KM)

Average Fare 22.9 (CNY)

Taxicab Network Summary

Fig. 37. Statistics
Figure 37 summarizes details of the used datasets. Based on the above GPS trace
records, we can obtain a location distribution of competing taxis or served passengers,
as shown in Figures 38 and 39.

Fig. 38. Distribution of Competing Taxis Fig. 39. Distribution of Served Passengers

Figure 38 shows a taxi distribution of an area about 1 square kilometer (GPS Coordi-
nates XXX.538-XXX.547 × XXX.108-XXX.117) based on a 10s uploading window in
the rush hour of one day, i.e., 5PM. Red points indicate the taxis with passengers, and
blue points indicate the taxis without passengers. Figure 39 shows a served passenger
distribution in the same area as in Figure 38 in a two hour uploading time window in
one day, i.e., from 4PM to 6PM. Red points indicate the locations of passengers entering
taxis, and blue points indicate the locations of passengers exiting taxis.

8.2.2. Reduction of Discovery Latency. Before we investigate the effects of Acc’s acceler-
ations on the navigation of taxis, we first perform a trace-driven simulation on the
dataset to verify how Acc accelerates discovery in this taxi network. With a total du-
ty cycle 4

30 , we compare four schemes Disco, U-connect, WiFlock and Searchlight with
and without the assistance of Acc. This duty cycle rate is decided by the fact that a
taxi has to communicate with base stations about accounting 26s per 30s. The rest of
the time can be used for peer to peer neighbor discovery based on the ad hoc mode. We
assume that the taxi is equipped with a radio that has a large communication radius
and a communication range of 3 km is used. A smaller communication radius (e.g.,
100m in a WiFi interface) does not allow our system to fully exploit the quick discovery
scheme in a taxi network. This is because an 100m communication radius is too small
for vehicular networks where even the length of a static taxi is about 5m. Therefore, a

28 D. Zhang et al.

navigation based on such a small communication radius will lead to an extremely low
density of taxis, and may not have any obvious performance difference under various
discovery schemes.

0 2 4 6 8 1 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Pe
rce

nta
ge

of
Dis

cov
eri

es
(%

)

C u m u l a t i v e D i s c o v e r y T i m e (m i n s)

 D i s c o
 A c c - D i s c o

Fig. 40. Disco Latency

0 2 4 6 8 1 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Pe
rce

nta
ge

of
Dis

cov
eri

es
(%

)

C u m u l a t i v e D i s c o v e r y T i m e (m i n s)

 U - C o n n e c t
 A c c - U - C o n n e c t

Fig. 41. U-Connect Latency

From Figure 40, we observe that Acc-Disco is able to discover neighboring taxis
faster than Disco under the same duty cycle. For example, to discover all neighbor-
ing taxis, it takes Acc-Disco and Disco around 7 minutes and 9 minutes, respectively.
These results show a 22.2% performance gain between Acc-Disco and Disco. We also
observe that the performance gain achieves the maximum in the first half of the dis-
covery process where a taxi can detect more than half of its neighboring taxis within 3
minutes. This suggests that Acc can enable Acc-Disco to quickly find the most neigh-
bor taxis in a very short period of time, which can assist a driver to more quickly
drive to the optimal directions. Similarly, in Figures 41, 42 and 43, we plot the same
sets of curves for U-Connect, WiFlock and Searchlight. In Figures 41, 42 and 43, we
also observe similar performance trends between Acc-assisted versions and original
versions. For example, in Figure 41, to discover all neighboring taxis, the cumulative
discovery time for U-Connect and Acc-U-Connect is around 6 minutes and 8 minutes,
respectively, achieving a 25% performance gain. In Figures 42 and 43, we still observe
a performance gain between Acc-WiFlock and WiFlock as well as Acc-Searchlight and
Searchlight.

0 2 4 6 8 1 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Pe
rce

nta
ge

of
Dis

cov
eri

es
(%

)

C u m u l a t i v e D i s c o v e r y T i m e (m i n s)

 W i F l o c k
 A c c - W i F l o c k

Fig. 42. WiFlock Latency

0 2 4 6 8 1 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Pe
rce

nta
ge

of
Dis

cov
eri

es
(%

)

C u m u l a t i v e D i s c o v e r y T i m e (m i n s)

 S e a r c h l i g h t
 A c c - S e a r c h l i g h t

Fig. 43. Searchligh Latency

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 29

0 2 4 6 8 1 0 1 25 0 0
5 5 0
6 0 0
6 5 0
7 0 0
7 5 0
8 0 0
8 5 0
9 0 0
9 5 0

1 0 0 0

De
nsi

ty
of

Co
mp

eti
ng

 Ta
xis

C u m u l a t i v e D r i v i n g T i m e (M i n u t e s)

 G r o u n d T r u t h
 N a v i g a t i n g w i t h D i s c o
 N a v i g a t i n g w i t h A c c - D i s c o
 N a v i g a t i n g w i t h O r a c l e

Fig. 44. Density in One Smart Taxi

0 2 4 6 8 1 0 1 25 0 0
5 5 0
6 0 0
6 5 0
7 0 0
7 5 0
8 0 0
8 5 0
9 0 0
9 5 0

1 0 0 0

 G r o u n d T r u t h
 N a v i g a t i n g w i t h D i s c o
 N a v i g a t i n g w i t h A c c - D i s c o
 N a v i g a t i n g w i t h O r a c l e

De
nsi

ty
of

Co
mp

eti
ng

 Ta
xis

C u m u l a t i v e D r i v i n g T i m e (M i n u t e s)

Fig. 45. Density in 10% Smart Taxis

From the results in Figures 40, 41, 42 and 43, we conclude that Acc can accelerate
various discovery schemes in this taxi network, and may serve as an augmenting layer
to accelerate discovery to quickly navigate taxis to optimal directions.

8.2.3. Acceleration of Navigation. In this section, we evaluate the performance of Acc in
accelerating the navigation for taxis in Crowd-Alert. With a total duty cycle of 4

30 , we
compare 3 navigating results based on different discovery results of discovery schemes.
(i) Navigating with Disco: navigating taxis with the results of Disco;
(ii) Navigating with Acc-Disco: navigating taxis with the results of Acc-Disco;
(iii) Navigating with Oracle: navigating taxis with the results of an Oracle discov-
ery scheme where a taxi can instantly know these two distributions without delay.

Under all navigations, a taxi has the same preferable directions for fewer competing
taxis, more served passengers or a ratio between them. But since the employed discov-
ery schemes are different, a navigation with a faster discovery scheme may achieve
better performance. The performance is characterized by three metrics: competing
taxis density, served passengers density, and a ratio between them. A faster discov-
ery may assist a navigation scheme to quickly navigating taxis to the area with fewer
competing taxis or more served passengers.

To show the difference with or without our application, we also compare the above
3 schemes with Ground Truth without Navigation, where the density is computed
based on original taxi traces without altering the routes of any taxis. Note that given
the density of competing taxis or served passengers, how to select the optimal route
to achieve the optimal density is outside the scope of this paper. We simply let taxis
greedily select 1 out of 4 directions in an intersection according to densities in every
direction and then compute densities of competing taxis or served passengers in its
neighborhood every minute. We compare the performance of Acc under two conditions,
only one smart taxi using navigation strategies and 10% of total taxis using them.
(a) Density of Competing Taxis

We investigate the densities of competing taxis in three different navigating strate-
gies. We report the results of navigating only one taxi or 10% of total taxis to select a
direction with a lower density of competing taxis, using a 3km communication radius,
in Figure 44 and Figure 45, respectively.

Only one smart taxi: We show the situation where one smart driver uses our app
to find the optimal route. In Figure 44, as more driving time is allowed, there exists a
jitter in the density of competing taxis of Ground Truth, which has no tendency toward
consistent increases or decreases, while those of Disco, Acc-Disco and Oracle decrease.
This is because the taxis with Disco, Acc-Disco, and Oracle navigate to a direction with

30 D. Zhang et al.

0 6 1 2 1 8 2 4 3 0 3 6
1 0 0 0

1 2 0 0

1 4 0 0

1 6 0 0

1 8 0 0

2 0 0 0

2 2 0 0

De
nsi

ty
of

Ser
ved

 Pa
sse

ng
ers

C u m u l a t i v e D r i v i n g T i m e (M i n u t e s)

 G r o u n d T r u t h
 N a v i g a t i n g w i t h D i s c o
 N a v i g a t i n g w i t h A c c - D i s c o
 N a v i g t a i n g w i t h O r a c l e

Fig. 46. Density of Passengers

0 6 1 2 1 8 2 4 3 0 3 61

2

3

4

De
nsi

ty
of

Pa
sse

ng
ers

/Ta
xis

C u m u l a t i v e D r i v i n g T i m e (M i n u t e s)

 G r o u n d T r u t h
 N a v i g a t i n g w i t h D i s c o
 N a v i g a t i n g w i t h A c c - D i s c o
 N a v i g t a i n g w i t h O r a c l e

Fig. 47. Density of Passengers/Taxis

fewer competing taxis, so after 3 minutes the density of competing taxis within its
range drops. Compared to Ground Truth, after 12 minutes, under Disco the density
decreases about 16%, while under Acc-Disco the density decreases about 25%, whereas
Oracle outperforms Disco and Acc-Disco in all the cumulative driving times with a
maximal performance gain of 5.1% and 10.1%, respectively. From the above results,
Oracle does not significantly outperform Disco and Acc-Disco. One possible reason for
this phenomenon is that the beginning time and location for this one smart taxi is
the rush hour in a downtown area. Therefore, even though Oracle provides the local
optimal direction to reduce the density of competing taxis, the effect is limited.

10% smart taxis: We show the situation where the taxi drivers from one compa-
ny (accounted for 10% of taxicabs) use our app to find the optimal route. Figure 45
plots results of 10% of total taxis using our application. Compared to the results in
Figure 44, all strategies have better performance, except for Ground Truth, which re-
mains the same. This is because the more the taxis use our applications, the more the
taxis will select the direction with lower taxi density, which in turn will achieve a more
uniform taxis distribution. Comparing Figure 44 to Figure 45, we note that the perfor-
mance gain between navigating with Acc-Disco and Disco increases from 25% to 29%,
indicating that Acc-Disco is more efficient when more taxis use our application.
(b) Density of Served Passengers

We show the effectiveness of Acc to assist navigating scheme to navigate taxis to a
direction with more served passengers in Figure 46. Since the percentage of taxis us-
ing our application is not directly relevant to the density of already served passengers,
we only show the results on the 10% of smart taxis scenario. As in Figure 38 and 39,
the density of served passengers is denser than densities of competing taxis, so we use
a 0.5km radius to compute the density. Figure 46 plots the comparisons of cumulative
densities of the served passengers. With an increase in the cumulative driving time,
the cumulative density of served passengers in a taxi’s neighborhood also generally
increases for all the schemes. The reason for the increases in navigation under Disco,
Acc-Disco or Oracle is obvious, because that is the objective of our application. But
the reason for the increase for Ground Truth is not so obvious. A possible explanation
is that taxi drivers have rich experiences that help them select the area to maximize
the probability of picking up. The location of already served passengers offers a strong
indication to the location of potential passengers. Therefore, even without our applica-
tion, experienced taxi drivers will still go to the area with more served passengers. But
compared with Ground Truth, Disco can assist the taxi drivers in finding the optimal
direction more quickly via discovery. Therefore, there is a performance gain between

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 31

Disco and Ground Truth with a maximum of 10% after 36 minutes. In contrast, the
navigation with Acc-Disco is able to discover neighbors even faster than that with Dis-
co. For example, it outperforms those under Ground Truth and Disco with maximal
gains of 21% and 35%, respectively, but has a worse performance than Oracle. There-
fore, we conclude that with Acc-Disco, a navigation scheme can more quickly guide the
taxi to a direction with a high density of served passengers.
(c) Density of Served Passengers and Competing Taxis

Built upon two previous subsections, we investigate the effectiveness of Acc to assist
navigating schemes lead taxis to a direction with more served passengers and fewer
competing taxis at the same time. Thus, we use a ratio equal to the number of served
passengers and competing taxis as a new metric for the navigation, instead of consid-
ering served passenger and competing taxis, separately. In Figure 47, with an increase
in the cumulative driving time, the ratio between the density of passengers and the
density of competing taxis in a taxi’s neighborhood also generally increases for all the
schemes. Similar to Figure 46, we find that compared to Disco and Ground Truth, Ac-
c-Disco or Oracle always more quickly navigates the taxicabs to a direction with both
more passengers and fewer competing taxis. The performance gains among all four
schemes are similar to those in Figure 47.

9. CONCLUSION
In this work, we analyze, design, implement and evaluate Acc, an augmenting layer
for the acceleration of neighbor discovery in existing deterministic discovery schemes.
Our technical endeavors provide a few valuable insights, which are hoped to be useful
to realize Acc based on-demand neighbor discovery applications in various domain-
s. Specifically, (i) we found that known neighbors can help a device learn unknown
neighbors indirectly, which is the key insight about our on-demand discovery; (ii) we
designed Acc as an independent middleware in the networking architecture, without
merging it into existing neighbor discovery protocols, which makes Acc a transparent
accelerator without the dependence on the above applications or the below neighbor
discovery protocols; (iii) we characterized a slot with a novel concept called temporal-
spatial coverage to indicate the utility of a discovery device to wake up in the slot, and
this characterization is fully distributed and values the slots with neighbors having
higher temporal diversity and larger spatial similarity; (iv) we designed a real-world
taxi application where Acc is used to accelerate the process of taxicab drivers finding
efficient routes, which serves as a real-world example to justify the motivation behind
the design of Acc.

REFERENCES
Denizhan N. Alparslan and Khosrow Sohraby. 2007. Two-dimensional Modeling and Analysis of Generalized

Random Mobility Models for Wireless Ad Hoc Networks. IEEE/ACM Trans. Netw. 15, 3 (June 2007),
616–629. DOI:http://dx.doi.org/10.1109/TNET.2007.893873

Mehedi Bakht, Matt Trower, and Robin Hilary Kravets. 2012. Searchlight: Won’T You Be My Neighbor?. In
Proceedings of the 18th Annual International Conference on Mobile Computing and Networking (Mobi-
com ’12). ACM, New York, NY, USA, 185–196. DOI:http://dx.doi.org/10.1145/2348543.2348568

James Biagioni, Tomas Gerlich, Timothy Merrifield, and Jakob Eriksson. 2011. EasyTracker: Automatic
Transit Tracking, Mapping, and Arrival Time Prediction Using Smartphones. In Proceedings of the 9th
ACM Conference on Embedded Networked Sensor Systems (SenSys ’11). ACM, New York, NY, USA,
68–81. DOI:http://dx.doi.org/10.1145/2070942.2070950

Prabal Dutta, Paul M. Aoki, Neil Kumar, Alan Mainwaring, Chris Myers, Wesley Willett, and Allison
Woodruff. 2009. Common Sense: Participatory Urban Sensing Using a Network of Handheld Air Quality
Monitors. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys
’09). ACM, New York, NY, USA, 349–350. DOI:http://dx.doi.org/10.1145/1644038.1644095

http://dx.doi.org/10.1109/TNET.2007.893873
http://dx.doi.org/10.1145/2348543.2348568
http://dx.doi.org/10.1145/2070942.2070950
http://dx.doi.org/10.1145/1644038.1644095

32 D. Zhang et al.

Prabal Dutta and David Culler. 2008. Practical Asynchronous Neighbor Discovery and Rendezvous for Mo-
bile Sensing Applications. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Sys-
tems (SenSys ’08). ACM, New York, NY, USA, 71–84. DOI:http://dx.doi.org/10.1145/1460412.1460420

Prabal Dutta and Lakshminarayanan Subramanian. 2010. Human-Enabled Microscopic Environmental
Mobile Sensing and Feedback.. In AAAI Spring Symposium: Artificial Intelligence for Development.
AAAI. http://dblp.uni-trier.de/db/conf/aaaiss/aaaiss2010-1.html

Jeremy Elson and Kay Römer. 2003. Wireless Sensor Networks: A New Regime for
Time Synchronization. SIGCOMM Comput. Commun. Rev. 33, 1 (Jan. 2003), 149–154.
DOI:http://dx.doi.org/10.1145/774763.774787

Facebook. 2013. Facebook Places. (2013). http://www.facebook.com/about/location
Foursquare. 2013. Foursquare. (2013). http://www.foursquare.com
Raghu K. Ganti, Fan Ye, and Hui Lei. 2011. Mobile crowdsensing: current state and future challenges. IEEE

Communications Magazine 49, 11 (2011), 32–39.
Google. 2013. Google Latitude. (2013). http://www.google.com/latitude
Jyh-How Huang, Saqib Amjad, and Shivakant Mishra. 2005. CenWits: a sensor-based loosely coupled search

and rescue system using witnesses. In 3rd ACM Conference on Embedded Networked Sensor Systems
(SenSys ’05).

Hyewon Jun, Mostafa H. Ammar, Mark D. Corner, and Ellen W. Zegura. 2006. Hierarchical Power Man-
agement in Disruption Tolerant Networks with Traffic-aware Optimization. In Proceedings of the 2006
SIGCOMM Workshop on Challenged Networks (CHANTS ’06). ACM, New York, NY, USA, 245–252.
DOI:http://dx.doi.org/10.1145/1162654.1162662

Arvind Kandhalu, Karthik Lakshmanan, and Ragunathan (Raj) Rajkumar. 2010. U-connect: A Low-latency
Energy-efficient Asynchronous Neighbor Discovery Protocol. In Proceedings of the 9th ACM/IEEE In-
ternational Conference on Information Processing in Sensor Networks (IPSN ’10). ACM, New York, NY,
USA, 350–361. DOI:http://dx.doi.org/10.1145/1791212.1791253

Shouwen Lai, B. Ravindran, and Hyeonjoong Cho. 2010. Heterogenous Quorum-Based Wake-Up Scheduling
in Wireless Sensor Networks. IEEE Trans. Comput. 59, 11 (2010), 1562–1575.

Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury, and Andrew T. Camp-
bell. 2010. A survey of mobile phone sensing. IEEE Communications Magazine 48, 9 (2010), 140–150.

Hengchang Liu, Jingyuan Li, Zhiheng Xie, Shan Lin, Kamin Whitehouse, John A. Stankovic, and David Siu.
2010. Automatic and Robust Breadcrumb System Deployment for Indoor Firefighter Applications. In
Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services (MobiSys
’10). ACM, New York, NY, USA, 21–34. DOI:http://dx.doi.org/10.1145/1814433.1814438

Ting Liu, Christopher M. Sadler, Pei Zhang, and Margaret Martonosi. 2004. Implementing Software on
Resource-constrained Mobile Sensors: Experiences with Impala and ZebraNet. In Proceedings of the
2Nd International Conference on Mobile Systems, Applications, and Services (MobiSys ’04). ACM, New
York, NY, USA, 256–269. DOI:http://dx.doi.org/10.1145/990064.990095

Michael J. McGlynn and Steven A. Borbash. 2001. Birthday Protocols for Low Energy Deployment and
Flexible Neighbor Discovery in Ad Hoc Wireless Networks. In Proceedings of the 2Nd ACM International
Symposium on Mobile Ad Hoc Networking &Amp; Computing (MobiHoc ’01). ACM, New York, NY, USA,
137–145. DOI:http://dx.doi.org/10.1145/501431.501435

Emiliano Miluzzo, Michela Papandrea, Nicholas D. Lane, Andy M. Sarroff, Silvia Giordano, and An-
drew T. Campbell. 2011. Tapping into the Vibe of the City Using VibN, a Continuous Sens-
ing Application for Smartphones. In Proceedings of 1st International Symposium on From Digi-
tal Footprints to Social and Community Intelligence (SCI ’11). ACM, New York, NY, USA, 13–18.
DOI:http://dx.doi.org/10.1145/2030066.2030071

M. Mitzenmacher and U. Upfal. 2007. Probabilitty and Computing.
Nintendo. 2012. Nintendo 3ds - streetpass. (2012). http://www.nintendo.com/3ds/hardware
H. L. Ivan Niven and Herbert S. Zuckerman. 1991. An Introduction to the Theory of Numbers.
Jeongyeup Paek, Joongheon Kim, and Ramesh Govindan. 2010. Energy-efficient Rate-adaptive GPS-

based Positioning for Smartphones. In Proceedings of the 8th International Conference on Mo-
bile Systems, Applications, and Services (MobiSys ’10). ACM, New York, NY, USA, 299–314.
DOI:http://dx.doi.org/10.1145/1814433.1814463

Anna-Kaisa Pietiläinen, Earl Oliver, Jason LeBrun, George Varghese, and Christophe Diot. 2009.
MobiClique: Middleware for Mobile Social Networking. In Proceedings of the 2Nd ACM
Workshop on Online Social Networks (WOSN ’09). ACM, New York, NY, USA, 49–54.
DOI:http://dx.doi.org/10.1145/1592665.1592678

http://dx.doi.org/10.1145/1460412.1460420
http://dblp.uni-trier.de/db/conf/aaaiss/aaaiss2010-1.html
http://dx.doi.org/10.1145/774763.774787
http://www.facebook.com/about/location
http://www.foursquare.com
http://www.google.com/latitude
http://dx.doi.org/10.1145/1162654.1162662
http://dx.doi.org/10.1145/1791212.1791253
http://dx.doi.org/10.1145/1814433.1814438
http://dx.doi.org/10.1145/990064.990095
http://dx.doi.org/10.1145/501431.501435
http://dx.doi.org/10.1145/2030066.2030071
http://www.nintendo.com/3ds/hardware
http://dx.doi.org/10.1145/1814433.1814463
http://dx.doi.org/10.1145/1592665.1592678

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 33

Aveek Purohit, Bodhi Priyantha, and Jie Liu. 2011. WiFlock: Collaborative group discovery and mainte-
nance in mobile sensor networks. In IPSN. 37–48.

Jasmin Sasin. 2012. Shenzhen Ranks Fifth in the World in Terms of Population Density. (2012). http://www.
shenzhen-standard.com

Softonic. 2012. Bluehoo. (2012). http://www.bluehoo.com
Sony. 2013. PlayStation. (2013). http://us.playstation.com/psvita
Synerge. 2013. Who’ s near me. (2013). http://www.synergetechsolutions.com/whos-nearme.aspx
Arvind Thiagarajan, James Biagioni, Tomas Gerlich, and Jakob Eriksson. 2010. Cooperative Transit Track-

ing Using Smart-phones. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor
Systems (SenSys ’10). ACM, New York, NY, USA, 85–98. DOI:http://dx.doi.org/10.1145/1869983.1869993

Yu-Chee Tseng, Chih-Shun Hsu, and Ten-Yueng Hsieh. 2002. Power-saving protocols for IEEE 802.11-based
multi-hop ad hoc networks. In The Conference on Computer Communications (INFOCOM ’02).

Wikipedia. 2013. Location Based Game. (2013). http://en.wikipedia.org/wiki/Location-based game
Tingxin Yan, Vikas Kumar, and Deepak Ganesan. 2010. CrowdSearch: exploiting crowds for accurate real-

time image search on mobile phones. In MobiSys ’10: Proceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 77–90.

Tingxin Yan, Matt Marzilli, Ryan Holmes, Deepak Ganesan, and Mark Corner. 2009. mCrowd:
A Platform for Mobile Crowdsourcing. In Proceedings of the 7th ACM Conference on Em-
bedded Networked Sensor Systems (SenSys ’09). ACM, New York, NY, USA, 347–348.
DOI:http://dx.doi.org/10.1145/1644038.1644094

Desheng Zhang and Tian He. 2012. pCruise: Reducing Cruising Miles for Taxicab Networks. In RTSS. 85–
94.

Desheng Zhang, Tian He, Yunhuai Liu, Yu Gu, Fan Ye, Raghu K. Ganti, and Hui Lei. 2012. Acc: Generic On-
demand Accelerations for Neighbor Discovery in Mobile Applications. In Proceedings of the 10th ACM
Conference on Embedded Network Sensor Systems (SenSys ’12). ACM, New York, NY, USA, 169–182.
DOI:http://dx.doi.org/10.1145/2426656.2426674

Rong Zheng, Jennifer C. Hou, and Lui Sha. 2003. Asynchronous Wakeup for Ad Hoc Networks. In Pro-
ceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking &Amp; Computing
(MobiHoc ’03). ACM, New York, NY, USA, 35–45. DOI:http://dx.doi.org/10.1145/778415.778420

APPENDIX:Proof of Competitive Ratio
We analyze the performance of our scheduling by comparing it to its Oracle version
having a complete neighbor table N (S,S). In our scheduling, a device S’s neighbor table
of in slot t0, denoted as n(S,S)

t0 , is processed piece-by-piece. This is a classic nature of
online algorithm, which processes its incomplete input piece-by-piece from the start.
Because of this incomplete input, an online algorithm is forced to make sub-optimal de-
cisions. To study this sub-optimality, a competitive analysis is proposed to compare the
relative performance of an online algorithm to its Oracle version that has a complete
input. An online algorithm is competitive if its competitive ratio ρ, an performance ra-
tio between it and its Oracle version, is bounded. To obtain ρ, we utilize qualities of
selected active slots to represent algorithms’ performances, indicating how much new
neighbor information can be collected in these slots. The qualities of these slots can be
represented by slot gains. Therefore, we can analyze ρ, by comparing the slot gains un-
der our online scheduling and its Oracle version, employing different neighbor tables.
In the following, we prove that ρ is bounded by a parameter R, which is the size ratio
between n

(S,S)
t0 and N (S,S).

Assumptions are as follows. (i) In slot t0, a device S has already discovered a portion

of its neighbors in n
(S,S)
t0 . (ii) A parameter R =

|n(S,S)
t0

|
|N(S,S)| < 1 is given, which is the ratio

between the number of neighbors in n(S,S)
t0 and N (S,S). (iii) All the discovered neighbors

are uniformly distributed inN (S,S). (iv) To minimize the effect of duty cycles, duty cycle
patterns for different devices are the same.

http://www.shenzhen-standard.com
http://www.shenzhen-standard.com
http://www.bluehoo.com
http://us.playstation.com/psvita
http://www.synergetechsolutions.com/whos-nearme.aspx
http://dx.doi.org/10.1145/1869983.1869993
http://en.wikipedia.org/wiki/Location-based_game
http://dx.doi.org/10.1145/1644038.1644094
http://dx.doi.org/10.1145/2426656.2426674
http://dx.doi.org/10.1145/778415.778420

34 D. Zhang et al.

Via Eq. 3 and assumption (i), ρ is given by

1

ρ
=
γ

(S)
t0→t(Oracle)

γ
(S)
t0→t(Online)

=

∑
i∈N(S,S) α

(i,S)
t0→tβ

(i,S)
t0∑

j∈n(S,S)
t0

α
(j,S)
t0→tβ̄

(j,S)
t0

, (5)

where α(i,S)
t0→t and α

(j,S)
t0→t is temporal diversity for device i ∈ N (S,S) and j ∈ n

(S,S)
t0 , re-

spectively; β(i,S)
t0 and β̄

(j,S)
t0 is spatial similarity for device i ∈ N (S,S) and j ∈ n

(S,S)
t0 ,

respectively. Eq. 5 can be reorganized as follows.

1

ρ
=

∑
j∈n(S,S)

t0

α
(j,S)
t0→tβ

(j,S)
t0∑

j∈n(S,S)
t0

α
(j,S)
t0→tβ̄

(j,S)
t0

+

∑
i∈n(S,S)

t0

α
(i,S)
t0→tβ

(i,S)
t0∑

j∈n(S,S)
t0

α
(j,S)
t0→tβ̄

(j,S)
t0

. (6)

where n(S,S)
t0 is the complement of n(S,S)

t0 , given N (S,S).
The following is to analyze the first term in Eq. 6. According to Eq. 2 and assumption

(ii), we have

β
(j,S)
t0

β̄
(j,S)
t0

=
|N (j,S)

t0 |/|N (S,S)
t0 |

|n(j,S)
t0 |/|n(S,S)

t0 |
=
|N (j,S)

t0 |
|n(j,S)
t0 |

|n(S,S)
t0 |

|N (S,S)
t0 |

=
R

R′
. (7)

where R′ =
|n(j,S)

t0
|

|N(j,S)
t0

|
< 1. Therefore, the first term in Eq. 6 can be represented as follows.∑

j∈n(S,S)
t0

α
(j,S)
t0→tβ

(j,S)
t0∑

j∈n(S,S)
t0

α
(j,S)
t0→tβ̄

(j,S)
t0

=

R
R′

∑
j∈n(S,S)

t0

α
(j,S)
t0→tβ̄

(j,S)
t0∑

j∈n(S,S)
t0

α
(j,S)
t0→tβ̄

(j,S)
t0

=
R

R′
> 1. (8)

where R > R′ is because due to assumption (iii), not all i ∈ n(j,S)
t0 are neighbors of j.

The following is to analyze the second term of Eq. 6. Due to assumption (iv), ∀i,
j ∈ N (S,S), α(i,S)

t0→t = α
(j,S)
t0→t. Thus, the second term in Eq. 6 can be reorganized as follows.∑

i∈n(S,S)
t0

α
(i,S)
t0→tβ

(i,S)
t0

∑
j∈n(S,S)

t0

α
(j,S)
t0→tβ̄

(j,S)
t0

=

α
(i,S)
t0→t

∑
i∈n(S,S)

t0

β
(i,S)
t0

α
(j,S)
t0→t

∑
j∈n(S,S)

t0

β̄
(j,S)
t0

=

∑
i∈n(S,S)

t0

β
(i,S)
t0

∑
j∈n(S,S)

t0

β̄
(j,S)
t0

(9)

Based on the assumption (iii) that ∀j ∈ n
(S,S)
t0 and ∀i ∈ n

(S,S)
t0 are randomly and

uniformly distributed in N (S,S). Therefore, ∀i, j ∈ N (S,S), β(i,S)
t0 = β

(j,S)
t0 ; ∀i, j ∈ n(S,S)

t0 ,
β̄

(i,S)
t0 = β̄

(j,S)
t0 . So, ∑

i∈n(S,S)
t0

β
(i,S)
t0∑

j∈n(S,S)
t0

β̄
(j,S)
t0

=
|n(S,S)
t0 |β(i,S)

t0

|n(S,S)
t0 |β̄(j,S)

t0

. (10)

Because n(S,S)
t0 ∪ n(S,S)

t0 = N (S,S) and
|n(S,S)

t0
|

|N(S,S)| = R, we have |n(S,S)
t0 | = 1−R

R |n
(S,S)
t0 |. There-

fore Eq. 10 can be rewritten as follows.

|n(S,S)
t0 |β(i,S)

t0

|n(S,S)
t0 |β̄(j,S)

t0

=
1−R
R |n

(S,S)
t0 |β(i,S)

t0

|n(S,S)
t0 |β̄(j,S)

t0

=
1−R
R

β
(i,S)
t0

β̄
(j,S)
t0

. (11)

Acc: Generic On-Demand Accelerations for Neighbor Discovery in Mobile Applications 35

Since i and j are two arbitrary devices in the networks, so based on the analysis of

Eq. 7,
β
(i,S)
t0

β̄
(j,S)
t0

> 1. So, we have

1−R
R

β
(i,S)
t0

β̄
(j,S)
t0

>
1−R
R

=
1

R
− 1. (12)

Based on Eq. 8 we have the first term in Eq. 6; based on Eq. 9, Eq. 10, Eq. 11 and
Eq. 12 we have the second term in Eq. 6. Therefore, Eq. 6 can be rewritten as follows.

1

ρ
=

R

R′
+

1−R
R

β
(i,S)
t0

β̄
(j,S)
t0

> 1 +
1

R
− 1 =

1

R
. (13)

Finally, we have the competitive ratio ρ.

ρ =
γ

(S)
t0→t(Online)

γ
(S)
t0→t(Oracle)

< R. (14)

According to the above analysis, we have obtained the competitive ratio ρ of our online
scheduling algorithm.�

	Introduction
	Related Work
	Preliminaries for Neighbor Discovery
	Motivation: why we need Acc?
	Acc Design
	Main Idea
	Characterization of Slot Gain
	Temporal Diversity
	Spatial Similarity
	Slot Gain Calculation

	Online Activation Scheduling
	Scheduling Algorithm
	Competitive Analysis of Scheduling Algorithm

	Neighbor Verification
	Proactive Online Rendezvous Maintenance
	When to initiate proactive online rendezvous maintenance?
	How to initiate proactive online rendezvous maintenance?

	Testbed Evaluation
	Effectiveness in Acceleration of Discovery
	Impact of Duty Cycle

	Simulation Evaluation
	Effectiveness in Acceleration of Discovery
	Impact of Duty Cycle
	Impact of Device Density
	Effectiveness in Proactive Online Rendezvous Maintenance

	Crowd-Alert Application
	Application Background
	Application Evaluation
	Dataset
	Reduction of Discovery Latency
	Acceleration of Navigation

	Conclusion

