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Abstract—Scalable, fine-grained access control for Internet-of-Things is needed in enterprise environments, where tens of thousands
of users need to access smart objects which have a similar or larger order of magnitude. Existing solutions offer all-or-nothing access,
or require all access to go through a cloud backend, greatly impeding access granularity, robustness and scale. In this paper, we
propose Heracles, an IoT access control system which achieves robust, fine-grained access control and responsive execution at
enterprise scale. Heracles adopts a capability-based approach using secure, unforgeable tokens that describe the authorizations of
users, to either individuals or collections of objects in single or bulk operations. It has a 3-tier architecture to provide centralized policy
and distributed execution desired in enterprise environments. Extensive analysis and performance evaluation on a testbed prove that
Heracles achieves fine-grained access control and responsive execution at enterprise scale. Compared with systems using access
control list, Heracles eliminates or reduces by 10x–100x the updating overhead under frequent changes of subject memberships and
policies. Besides, Heracles achieves responsive execution: it takes 0.57 second to access 18 objects which are scattered 1–9 hops
away, and execution on a 1-hop or 2-hop object needs only 0.07 or 0.13 second respectively.
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1 INTRODUCTION

A CCESS control is a fundamental requirement on
Internet-of-Things [1], critical for not only convenience

(e.g., lights), but also safety of people and physical assets
(e.g., door locks). Most existing smart home products [2]
offer coarse grained all-or-nothing access: family members
have full rights while others have nothing. This is far from
sufficient, especially in an enterprise environment where
tens of thousands of subjects (i.e., employees) need to ac-
cess smart objects which have a similar or larger order of
magnitude (e.g., a university campus with tens of buildings
each embedded with thousands of IoT devices).

The access control in such enterprise environments must
be fine-grained. Given the same object, different subjects
may have different access rights, or even different degrees
of freedom invoking the same function of the object. The
available access rights may also depend on the context (e.g.,
time of the day). For example, only executives may access
the door lock, lights, projectors in a VIP meeting room;
managers may occupy a conference room for up to half a
day, while non-managers can use it for at most two hours.
A janitor may enter all these rooms for cleaning before 9
AM, but with no access to IT equipment.

To ease management, many existing solutions [3], [4], [5]
use a fully centralized strategy, at the expense of weaker
availability and responsiveness. To operate an object, a
subject sends a command to the cloud first, which authenti-
cates the subject and confirms that she has sufficient rights,
and then notifies the object to execute the command. This
strategy places the cloud in the center of the access control
loop. It ensures security since the cloud is well protected.
However, upon loss of connectivity, nothing is accessible.
Besides, the back-and-forth travel to the cloud may add
significant latency, adversely impacting responsiveness thus
user experience.

What is truly desirable is centralized policy while dis-

tributed execution. The policy regarding which subjects have
what access rights, to what degrees, under what contexts,
should be centrally managed. Thus it is convenient to
add/remove an employee by changing a few records in a
database at the (well-protected) backend, without making
changes at a huge amount of objects one by one. The access
to objects, however, should be distributed. When invoking a
permitted function on an object, a subject should be able to
do so via direct connectivity to the object, without detouring
to other entities including the backend. This will ensure both
availability and responsiveness of command execution.

Unfortunately, such access control for enterprise envi-
ronments has not been studied in existing work. In this
paper, we propose Heracles, an access control system that
achieves fine-grained access control, centralized policy and
distributed execution at enterprise scale. Heracles adopts
a capability based approach where a subject requests from
the backend secure, unforgeable tokens depicting her access
rights to certain objects. Once a token is obtained, the access
no longer involves the backend. The subject includes the
token in her commands to the target object, which checks
the token and the commands before executing the invoked
functions. Our contributions are as follows:

• We design a 3-tier IoT access control architecture
for enterprise environments, consisting of the back-
end, resource-rich objects and resource-constrained
objects. It supports fine-grained degrees of function
invocation, convenient centralized policy manage-
ment and robust, responsive distributed command
execution (i.e. access) at enterprise scale.

• We quantitatively analyze Heracles and an alter-
native approach of access control list (ACL) based
distributed execution. Heracles is much more effi-
cient and scalable under frequent changes of policies
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and subject memberships, a common phenomenon in
enterprise environments. It eliminates or reduces by
10x–100x the updating overhead in many situations.

• We offer solutions to two features desired by enter-
prise IoT: 1) an attribute-based access strategy for
efficient bulk operation which controls a category of
objects using a single command; 2) a delegation-
based strategy to improve the responsiveness of
resource-constrained objects during execution.

• We implement our design, and conduct extensive
analysis and experiments on a testbed consisting of
a mixture of 18 resource-rich objects and extra con-
strained objects. The results show that Heracles has
secure access control, scalable updating, and agile
responsiveness: it takes only 0.57 seconds to access
18 objects which are scattered 1–9 hops away from
a subject, and execution on a 1-hop or 2-hop object
needs only 0.07 or 0.13 second respectively.

2 MODELS AND ASSUMPTIONS

Node Type. The network consists of three types of nodes:
backend servers, subject devices, and objects. The backend
is well protected and run by human administrators. It
maintains the profiles of registered subjects (possibly their
devices) and objects; it also stores and updates access rights.

A subject is a person who uses a subject device (e.g.,
smartphone) to interact with objects. We assume the subject
device has communication interfaces (e.g., WiFi radios),
Internet connectivity to the backend, and reasonable com-
puting/storage resources (e.g., > 2GHz CPU, tens of GBs of
storage are common among smartphones). An object is an
IoT device, or a “Thing”. Objects have different amounts of
resources: many are small ones with constrained hardware
(e.g., Mica2, Arduino class: smoke/presence/fire detectors,
light bulbs), while medium or large ones have space and
power for moderate hardware (e.g., Raspberry Pi class:
surveillance cameras, coffer makers, air conditioners, wall
outlets). In the 3-tier architecture, small ones are member
objects, medium/large ones are leader objects, and they are
assigned different responsibilities. Besides, a target is the
object that a subject attempts to operate, and it can be
either a leader or a member one. Subject devices and objects
together constitute a ground network.

We assume the backend, subject devices and objects are
roughly time synchronized (e.g., within tens of seconds).
We also assume the backend, subject devices and leader
objects have enough computing resources to run public-
key cryptographic algorithms (e.g., ECDSA, ECDH), while
member objects may be able to run them only occasionally.
Objects may have diverse communication interfaces, e.g.,
besides WiFi and Bluetooth, many IoT devices use ZigBee,
Z-Wave, etc. We focus on security design above the network
layer, and assume network connectivity exists among all
nodes (e.g., via bridging devices with multiple radios), so
does multi-hop routing [6], [7] in the ground network.

We assume objects are largely static once installed, thus
the topology of the ground network is stable except occa-
sional deployment changes such as addition/removal of
objects. A subject device is moving with its owner, thus
mobile, but the movement speed is usually slow (e.g., a

person walking around). We assume many objects, espe-
cially leader ones, have enough energy (e.g., door locks,
light bulbs, air conditioners and surveillance cameras are all
wall-powered). We do not study energy-saving techniques
(e.g., duty cycling) in this paper, but they can be applied
orthogonally to battery-powered objects.

Network Scale. We present unique enterprise-scale IoT
properties that distinguish enterprise IoT from home-scale
IoT, especially on typical scales of several aspects, where
10i, i ∈ Z denotes an order of magnitude. E.g., 100 means
several and 103 means thousands. They are intended to
provide a rough sense, and not to be interpreted literally;
actual systems may have smaller or larger scales.

1) huge subject/object amounts. An enterprise may have
104 ∼ 105 subjects (e.g., Google has 98K employees). Ac-
cording to our field study (Section 10), even a 2-story build-
ing may have ∼2K objects, and there can be many more
stories/buildings in a university campus or big company.
Thus an enterprise can easily have about 104 ∼ 105 objects
in total. Note that in reality a subject has access rights to
only a fraction of all the objects, of which the number is
denoted as N , around 102 ∼ 103.

2) heterogeneous subjects/objects. Subjects can be classified
to different categories based on their various attributes (e.g.,
departments, groups, positions), so are objects, based on
device types, installation locations, etc. A subject usually be-
longs to k (100 ∼ 101) subject categories; a subject category
may have access rights to c ( 100 ∼ 101) object categories,
with n (101 ∼ 102) objects in each (e.g., “all the devices in
Room X”: 101; “the lights on the 2nd floor”: 102). A subject
category has m (101 ∼ 102) subjects. E.g., “the students in
Class A”: 101; “the employees in Department B”: 102.

3) possibly frequent subject churns. In enterprises, em-
ployee entry/exit or promotion/demotion/rotation happen
all the time. They may affect the access rights for subject
individuals/categories. Such changes must be effectuated
quickly and efficiently on related objects. Otherwise autho-
rized users will fail to access new services timely, while
unauthorized users continue to have access to services they
are no longer eligible for. E.g., once a subject leaves the
enterprise, all the N (102 ∼ 103) objects she could access
should stop accepting and executing her commands.

Data Caching & Discovery. We assume a data caching
and discovery mechanism like PDS [8] exists. Indepen-
dent data entities (e.g., public key certificates) protected by
public-key signatures, are widely propagated and cached in
the ground network. Due to multiple copies of an entity
cached in different nodes, the entity can be discovered with
higher robustness and responsiveness.

3 DESIGN GOALS

Fine-Grained Access Control. The system should be able to
specify under what contexts a subject is allowed to invoke
on an object what functions with what parameters. This
comes from the heterogeneous subjects/objects property. Coarse
grained all-or-nothing access control works fine for homes,
where family members are granted full access rights while
strangers nothing. In enterprise environments, however,
subjects are heterogeneous (e.g., in departments, positions),
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thus have diverse responsibilities and access rights. This
makes fine access control granularity necessary.

Three security goals should be achieved: authenticity is
to ensure a party is indeed the claimed one; integrity is to
ensure messages are not forged or altered by adversaries;
freshness is that messages received are generated recently,
and this prevents replay attacks where adversaries simply
record and replay a previously sent legitimate message.

Centralized Management. The editing of node profile
and access right information should be conducted at a
single point (i.e. the backend), including adding/removing
a subject/object, a category of subjects/objects sharing cer-
tain characteristics, and adding/removing a policy which
describes which subject (category) has what access rights to
which object (category). This centralized strategy makes the
system easy to manage: the administrator does not need to
make changes in a large amount of nodes one by one.

Robust & Responsive Execution. If the backend must
be involved when subjects execute commands on objects,
a total loss of access can happen upon a backend machine
failure or a loss of the connection. Despite dedicated main-
tenance, such failures still occur occasionally in enterprise
environments. We need distributed execution such that ac-
cess is still available upon such failures. Besides, the latency
from command issuing by subjects to execution by objects
should be small for positive user experience.

Scalable Updating. Any change made on the backend
(e.g., policy, subject addition or removal) must be quickly
propagated and effectuated on the affected objects, to ensure
valid commands are accepted and invalid ones rejected. The
overhead is naturally small in smart homes, but large in
enterprises due to the huge subject/object amounts property
and the frequent subject churns property, which may lead
to more updating failures and delays, compromising the
system. The updating must be fast and efficient to make
the system secure and scalable.

Non-Goals. We discuss strategies to alleviate the harm of
node compromise and denial-of-service attacks which waste
system resources by dumping many invalid messages, but
complete solutions are out of the scope. Physical level jam-
ming, attacks targeting routing or confidentiality/privacy
are not our research topics, neither is trust management.

4 SYSTEM OVERVIEW

There are four main interactions in the system (Fig. 1). We
first present the design concerning leader objects only, and
introduce that for member objects in Section 7.

1) Commission. To join the system, a subject/object must
be registered at the backend out-of-band (e.g., manually by
a human administrator), which signs and issues it a private
key, a public key certificate (CERT) and a profile (PROF).
The subject/object makes its CERT/PROF propagated and
cached by nearby objects in the ground network.

2) Discover. The subject device proactively discovers [8]
nearby objects by querying their CERTs/PROFs. PROFs
contain human-readable descriptions so the subject gains
knowledge of which objects provide what functions.

3) Request. The subject sends a signed request (REQ)
to the backend, asking for a ticket (TKT)—a token she
can use later to invoke certain functions on certain objects.

Backend
• Subject info
• Object info
• Access rights

Subject

Admin
❶ commission

❸ request

❹ execute
❷ discover

Object 1

Object 2

Object 3

connectivity
interaction

Fig. 1. The backend run by the administrator maintains the profiles and
access rights of registered subjects and objects. A subject discovers
objects in proximity (e.g., within 2 hops), and requests a ticket describing
her access rights to the objects she is interested in operating. She
then sends a command to operate the target (e.g., air conditioner); the
command carries the ticket to prove its operation authorization.

The backend verifies the REQ, examines the access right
database, and issues her a signed TKT which carries the
requested capabilities and will get expired after some time.

4) Execute. The subject operates the target by sending
a command (CMD), which carries a TKT proving the au-
thorization for its operation. It may be forwarded [6], [7]
towards the target by multiple objects. The target checks
that the CMD is legitimate and then executes the function
specified by the CMD; otherwise it rejects the CMD. A
response (RES) is sent back to the subject.

5 INTERACTIONS AMONG NODES

Before presenting the details in the four interactions, we
comment a bit more on the backend. It maintains the profiles
stating the attributes of every registered subject/object, and
subjects’ fine-grained access rights to objects.

Fine-Grained Access Constraints. Given the same ob-
ject, different subjects may be allowed for different func-
tions, or different parameters, time ranges, invocation
counts, etc. for the same function. A regular employee can
set the thermostat within a normal temperature range, but a
repair technician may set extreme temperatures for testing.
A janitor may open all locked doors before 8 AM for clean-
ing, but loses access during business hours. An external
UPS driver may get a one-time access token to raise the
storage door once to slip in packages. Formally, a constraint
is expressed as (type : ∪item), with type indicating what to
constrain (e.g. parameters) and a union of items together
specifying allowed values. An item here is either a set
(denoted as {x, y, ...}, e.g., parameter set {“on”, “off”}) or
an interval (denoted as [x y], e.g., time range [9 17]).

5.1 Commission

A subject must first register at the backend out-of-band.
Certain proofs (e.g., government/company issued IDs) may
be needed. Then the backend assigns her an ID, a private
key, a signed public key certificate (CERT), a signed profile
(PROF), together with the backend’s public key (Kpub

Admin).
Also, the backend adds the subject’s access rights to its
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S ! Backend : [IDS , {O, {F,C}}, LIFE, T ]SIGS

Backend ! S : [IDTKT , IDAR, IDS , {O, {F,C}}, LIFE]SIGAdmin
<latexit sha1_base64="GwK1Lz/WUlltXMY4Xr+xepUMsQE="></latexit><latexit sha1_base64="GwK1Lz/WUlltXMY4Xr+xepUMsQE="></latexit><latexit sha1_base64="GwK1Lz/WUlltXMY4Xr+xepUMsQE=">AAACvHicbVFbb9MwGHXCbZTLCjzuxaJC4iGqEoTE2MO0CxtUIDFIu02qo8hx3Naq7US2M1RZ6Y+EJ/4NThshWPtJlo7O8Xe+W1Zypk0Y/vb8O3fv3X+w87Dz6PGTp7vdZ88vdVEpQkek4IW6zrCmnEk6Msxwel0qikXG6VU2P230qxuqNCvk0CxKmgg8lWzCCDaOSru/UEanTFqsFF7UltcdJLCZEcxtXEOk2HRmnFb8gH/5kxqTOZX5ARwPPqRxsET2a4DseXCKalQHyy+D87NgOUziwcc0hgh1NjK3+8b12tEOPw+dTYOOv6/B9iKrCvY4F0y6tp1vO0Xa7YX9cBVwE0Qt6IE2LtLuT5QXpBJUGsKx1uMoLE3i3AwjnDrvStPStY6ndOygxILqxK6WX8NXjsnhpFDuSQNX7L8ZFgutFyJzP5tJ9W2tIbdp48pM9hPLZFkZKsm60KTi0BSwuSTMmaLE8IUDmCjmeoVkhhUmxt2745YQ3R55E1y+6UdhP/r2tnd00q5jB+yBl+A1iMA7cAQ+gQswAsR776XezGP+oZ/7c1+sv/pem/MC/Bf+zR8kONjo</latexit>

Fig. 2. Subject sends a REQ to Backend and receives a TKT.

database. After loading such data into her devices (e.g.,
smartphone, tablet), the subject publicizes her CERT/PROF
in the ground network so they are widely cached and can
be easily retrieved [8], [9] by other nodes.

An object follows a similar process. Its PROF describes: i)
which: information like ID, human-readable name, type (e.g.,
door lock), make/model, version, etc.; ii) where: information
about its location, e.g., “Light Engineering Building, Floor 2,
Room 217” would distinguish those devices in a particular
room/building; iii) functions: the allowed operations and
associated parameters. E.g., a lamp’s functions may include
“set brightness”, with an integer between 1–100.

The content of PROF can be structured (e.g., in
JSON, XML) such that it can be queried. One option
for the human-readable name is a hierarchical one
embedding the object’s location, e.g., /StonyBrookUniver-
sity/LightEngineeringBuilding/Floor2/Room217/Light1.
Such names can optionally be used to route [7] a command
to the target for command execution (Section 5.4).

5.2 Discover

The subject device discovers nearby objects by querying
their CERTs/PROFs. PROFs contain descriptions so both
the human user and her device gain knowledge of which
nearby objects provide what functions. Our design does not
enforce any particular discovery mechanism, either an IP-
based or a data-centric one works. Data-centric caching and
discovery [8], [9] may be preferred for their data acquisition
speed and robustness.

5.3 Request

The subject sends a request (REQ) to the backend, asking
for a token she can use to invoke certain functions on
certain objects. The backend verifies her REQ, examines the
access right database to ensure she does have those rights,
and sends back a signed ticket (TKT) which describes the
requested capabilities.

ID-based & Attribute-based Ticket. Heracles offers both
ID-based TKTs and attribute-based TKTs, preferred in differ-
ent situations to achieve better flexibility or reduce message
overhead. An ID-based TKT specifies a set of objects by
enumerating their IDs, while an attribute-based one uses
attribute predicates to describe categories of objects sharing
certain characteristics (e.g., {type = lamp ∧ floor = 2}
means all the lamps on the 2nd floor). An attribute-based
TKT is used to achieve efficient bulk operation (i.e., one
command controls a large group of objects), which will be
introduced in detail in Section 6.

Subject S sends a REQ (Fig. 2) including: 1) IDS : a
unique identity number of S ; 2) O: the object to which
S requests her access rights, which is either an object (spec-
ified by its identity IDO) or object category (specified by
predicate AttrO). {...} denotes a set so multiple object or
object categories can be included; 3) F : an O’s function to

S ! T arget : [IDCMD, TKT, O, F, P, T ]SIGS

T arget ! S : [IDCMD, State, Data, T ]SIGTarget
<latexit sha1_base64="xobAvFFiBZMKcrFPlReaaC4piGI="></latexit><latexit sha1_base64="xobAvFFiBZMKcrFPlReaaC4piGI="></latexit><latexit sha1_base64="xobAvFFiBZMKcrFPlReaaC4piGI="></latexit>

Fig. 3. Subject sends a CMD to T arget object and receives a RES.

which S requests her access rights; 4) C: a set of constraints
(e.g., parameters) on F ; 5) LIFE: the lifetime by which the
TKT expires; 6) T : a timestamp for REQ’s freshness. Note
that F , C and LIFE are optional in a REQ: if they are left
empty, the backend can decide what functions, constraints
and lifetime to include in the TKT based on certain rules.

Timestamp T is included for defending against replay
attacks. Given the maximum time synchronization error e,
the backend keeps the hash codes of all the REQs received
in the recent time window e. A REQ is considered fresh if
the difference between T and the backend’s local time is
less than e, and its hash code is not seen in the window. The
backend has enough computing/storage resources for that.
Other anti-replay mechanisms include: challenge-response,
which requires a two-round handshake, significantly in-
creasing the latency; monotonic counters, which require a
counter for each subject-object pair, and are much easier to
predict than nonces. Thus we choose the combination of
timestamps and hash codes for freshness. [...]SIGX denotes
the plaintext in brackets followed by a public-key signature
generated by entity X for the content in brackets. SIGS and
SIGAdmin protect the authenticity and the integrity of REQ
and TKT so they cannot be forged or altered.

Every TKT has an identity IDTKT such that it can
be referenced later in command execution (Section 5.4) or
ticket revocation (Section 5.5). This improves efficiency and
responsiveness. Each access right stored in the backend
database also has an identity IDAR, carried by every TKT
generated based on this access right. This ID is required for
an attribute-based TKT but not for an ID-based one. IDAR

is used for efficiently referencing and revoking all the TKTs
generated based on the access right (Section 6).

5.4 Execute
The subject sends a command (CMD) to the target to invoke
some function. The CMD might be relayed by multiple
objects towards the target using a routing protocol [6], [7].
The target verifies the CMD and if legitimate, it carries out
the invoked function; otherwise it rejects the CMD. In both
cases a response (RES) is sent back.

ID-based & Attribute-based Command. An ID-based
CMD carries an ID-based TKT and specifies target objects
with ID enumeration, while an attribute-based one carries
an attribute-based TKT and targets object categories using
predicates. An attribute-based CMD is used for bulk opera-
tion, which will be introduced in detail in Section 6.

Subject S sends a CMD (Fig. 3) including: 1) IDCMD : a
random, unique identity number of this CMD; 2) O: the
target, expressed as either IDO or AttrO ; 3) F , P : the
functions and parameters that S attempts to invoke on O; 4)
TKT : the ticket (Fig. 2) proving the authority of S to invoke
F , P on O; 5) T : a timestamp for CMD’s or RES’s freshness;
6) State, Data: execution error code and return data.

When an object receives a CMD, it will find out if it
is a target by comparing its ID (if the CMD is ID-based)
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Backend ! O : [{IDTKT , LIFE}, T ]SIGAdmin
<latexit sha1_base64="ysdJ5D0v3JwuD5Q4vsvf+ZZ6C0o="></latexit><latexit sha1_base64="ysdJ5D0v3JwuD5Q4vsvf+ZZ6C0o="></latexit><latexit sha1_base64="ysdJ5D0v3JwuD5Q4vsvf+ZZ6C0o="></latexit>

Fig. 4. Backend sends a REV (the 1st form) toObject, telling it to revoke
the ticket with identity IDTKT .

or attributes (if attribute-based, and recall that an object
knows its attributes from its PROF) with the CMD’s O.
The command execution is asynchronous so a subject device
does not block on any single CMD. Here the same IDCMD

is used in CMD and RES so the subject device knows which
RES corresponds to which CMD, and may take further
actions for those CMDs getting no RESs (e.g., retransmis-
sion). The operation part (O,F, P ) must be a subset of the
access rights depicted by TKT to pass authorization check
conducted by the target.

The freshness of CMD/RES is protected in a similar way
to REQ. But here IDCMD effectively serves as a nonce and
is kept in the recent time window e. As long as the time syn-
chronization protocol can achieve a reasonably small e (e.g.,
tens of seconds), the number of remembered IDCMDs will
not be many. SIGS and SIGTarget protect the authenticity
and the integrity of CMD and RES.

5.5 Ticket Revocation

A subject may lose authorization she once had (e.g., being
discharged, moved to a different position). Thus issued
TKTs carrying unexpired access rights must be revoked.

To this end, the backend must keep all the TKTs it has
issued before their expiration times. Given any change in
access rights, it must examine and identify those carrying
invalid but unexpired authorizations. It generates a signed
ticket revocation message (REV), which can have two forms.
The first form includes the IDs and expiration times of all
the TKTs to be revoked. The REV is publicized and widely
cached among nodes. Objects will add the IDs, expiration
times of revoked TKTs to their local ticket revocation lists
(TRL). Upon expiration (actually slightly later, at least e
after expiration) a revoked TKT’s ID will be removed from
the TRL. To avoid whole-network propagation of a REV
affecting only a few TKTs and objects, the backend may
send the REV to those objects and their vicinity only. Any
CMD referencing a TKT whose ID is in the TRL will become
invalid. The second form is for attribute-based TKTs only,
and details can be found in Section 6.

6 BULK OPERATION

Bulk operation uses a single command (CMD) to operate a
possibly large group of objects with common characteristics.
It is common in enterprise IoT. E.g., a student uses one CMD
to turn off all the devices in her lab when leaving work, or
a manager uses one CMD to trigger all the alarms in the
building he is in charge of to notify people to evacuate, or
a janitor turns off all the lights on a floor when finishing a
night tour. An attribute-based CMD achieves the goal, using
two attribute predicates: 1) In the ticket (TKT) referenced by
the CMD, one predicate O specifies the object category to
which the subject has access rights; 2) In the CMD, the other
predicate O specifies the object category that the subject
attempts to operate, i.e., the targets.

Backend ! O : [{IDAR, LIFE}, T ]SIGAdmin
<latexit sha1_base64="Mx2Pf5PhYfz4/g8bS/k6SrJF+xA=">AAACUXicbVFNa9tAEB2rH3GdtnHSYy9LTKCHYKRSaMjJcfplKCRN7MRgCbNajeTFq5XYXbUYof7EHNJT/0cuObR07YjSJB1YeLw383b2bZgLro3r/mw4Dx4+erzWfNJaf/rs+UZ7c+tMZ4ViOGKZyNQ4pBoFlzgy3Agc5wppGgo8D+eHS/38KyrNMzk0ixyDlCaSx5xRY6lpe+aHmHBZUqXooipF1fJTamaMirJfUTZHGRFf8WRmbEf2jfxVj6p9MvHLwbtpeXBS7X4efHjvV7vfh8Hp4KOlopRL62XHa+tpu+N23VWR+8CrQQfqOp62L/0oY0WK0jBBtZ54bm4C62Y4E2i9C4253ZAmOLFQ0hR1UK4SqciOZSISZ8oeaciK/XeipKnWizS0ncsH6bvakvyfNilMvBeUXOaFQcluLooLQUxGlvGSiCtkRiwsoExxuythM6ooM/YTWjYE7+6T74Oz113P7Xpf3nR6/TqOJryEbXgFHryFHnyCYxgBgwu4gl/wu/Gjce2A49y0Oo165gXcKmf9D1tAtTY=</latexit><latexit sha1_base64="Mx2Pf5PhYfz4/g8bS/k6SrJF+xA="></latexit><latexit sha1_base64="Mx2Pf5PhYfz4/g8bS/k6SrJF+xA="></latexit>

Fig. 5. Backend sends a REV (the 2nd form) toObject, telling it to revoke
all the tickets carrying the access right with identity IDAR.

A primitive predicate is a triple (attribute, operator,
value), and possible operators in our system include: =
, 6=, <,>,≤,≥,∈. A complex predicate consists of multiple
primitive ones combined in logic AND ∧, OR ∨, NOT ¬,
etc. A simple form is to use logic AND only. E.g., “all
windows in Room 217” can be expressed by {type =
window ∧ room = 217}. We implement this design and
the support for other forms can be added if necessary.

A bulk operation CMD can be propagated among peer
devices directly. This is suitable when targets are within a
small or medium scope, e.g., one or a few rooms, floors.
Such a CMD is forwarded by an object to its neighboring ob-
jects, hop by hop till the CMD reaches every possible target.
This P2P strategy does not rely on backend connectivity, and
achieves better execution robustness and responsiveness.
When target objects are spread over large areas (e.g., in
another building), hop-by-hop routing may be slow or even
unavailable. In such cases the CMD can be sent via the
backend directly to the destination or its vicinity, and then
propagated among peers.

Message Overhead. An ID-based CMD can also be used
for bulk operation if its TKT enumerates all the target IDs,
but it will be short and efficient only when small numbers
of objects are included. Since its size grows linearly as more
object IDs are enumerated, the TKT may become too large,
incurring large overhead and long latency in operation.
Besides, to operate a newly added object, a new TKT must
be requested to include that object’s ID.

On the contrary, an attribute-based one’s length only
increases with the number of object categories specified,
regardless of how many objects inside. Also, it can be used
to access new, previously unknown objects. E.g., to access a
newly installed light, if ID-based, the subject has to request
a new ticket that covers the light’s ID; however, if she holds
an attribute-based TKT specifying her rights of “operating
lights”, she does not need to request another ticket.

Ticket Revocation. An attribute-based TKT can be re-
voked by both forms of revocation messages (REV): when
the number of TKTs to be revoked is small, we use the first
form (Section 5.5) referencing IDTKT s; when an attribute-
based access right is removed from the backend, the number
of affected TKTs may be large (e..g, ∼103) because the
access right may have been requested by many subjects in
a category, thus enumerating IDTKT s is inefficient. In this
case IDAR is referenced to efficiently revoke all the TKTs
carrying the access right.

7 LEADER AND MEMBER BINDING

Due to the abundance of medium or large objects (i.e. leader
objects, as defined in Section 2) with sufficient power and
resources in enterprise environments, we leverage them to
create a hierarchical structure where leader objects form the
“backbone” while member objects associate with them as
“leaves”. The leaders will handle those frequent, compute
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Fig. 6.Member and Leader establish a shared secret and generate a
BIND.

or energy intensive responsibilities (e.g., public-key crypto-
graphic operations, message forwarding) on behalf of their
members. A member depends on its leader(s) to receive and
verify commands from subjects, and forward responses back
to them. This design allows us to leverage more powerful
Things to serve less capable ones. The interactions are:

Commission. A member object follows almost the same
registration process at the backend as a leader one does,
except that its name in the profile (PROF) may not reflect
its location. The reason is a member object, usually small
and free of wired power supply, has a higher chance of
being moved. Thus it is better not to carry its location in
its PROF such that the backend does not have to issue a
new PROF often. Instead, we obtain its location by checking
which leader it is using.

Bind. Each member object must “bind” to at least one
leader object. A member object broadcasts messages seeking
leaders from one-hop neighbors, and leader objects that are
willing to accept more members will respond. The member
object chooses one or multiple as its pre-leader(s) (e.g., based
on RSSI) and starts to establish a shared secret and gen-
erate a binding notification (BIND). The BIND reveals the
member object’s location: it tells which leader(s) the member
object associates with, thus should be used as the destina-
tion when sending commands to operate the member. Its
format is [[IDBIND, L,M,LIFE, V ]SIGM ]SIGL, where
IDBIND, L, M , LIFE, V denote the BIND’s ID, leader’s
ID, member’s ID, BIND’s expiration time and version num-
ber. An unexpired BIND will be overridden by another
BIND with the same L and M but a higher version. It is
generated and signed by the member, then sent to, signed
and publicized by the leader. This nested double signing
prevents a leader or member from unilaterally publicizing a
forged bilateral relationship.

Our message flow of shared secret establishment and
BIND generation is given in Fig. 6, and it is inspired by
the design of TLS handshake [10]. ECC-based TLS supports
multiple key exchange algorithms, with many parameters
configurable (e.g., elliptic curves, point formats). By fixing
the key exchange algorithm at ephemeral ECDH and other
parameters (e.g., curve is secp224r1), we reduce the number
of messages to three, while generating BIND meanwhile.

L ! M : [IDCMD, F, P, T ]MACL,M

M ! L : [IDCMD, State, Data, T ]MACL,M
<latexit sha1_base64="Q6bMjuWhpEkKc38Gsl4+p+1ysyA="></latexit><latexit sha1_base64="Q6bMjuWhpEkKc38Gsl4+p+1ysyA="></latexit><latexit sha1_base64="Q6bMjuWhpEkKc38Gsl4+p+1ysyA="></latexit>

Fig. 7. Leader sends an adapted CMD to Member and receives an
adapted RES.

Member object M starts by sending a nonce NM . After
receiving it, leader object L generates a key exchange mes-
sage EXCHL = NL, P

pub
L , (NM , NL, P

pub
L )SIGL, where

NL and P pub
L denote the leader’s nonce and key exchange

material (an ECDH public parameter generated by L, Step
l1). NM , NL are used in challenge-response, for freshness.
SIGX(...) is a signature signed by entity X for the content
in parentheses. SIGL is generated (Step l2) to authenticate
the ECDH key exchange material. L’s public key certificate
CERTL and EXCHL are sent toM.

After receiving them, M first verifies the signature in
CERTL (Step m2). If valid, it uses L’s public key to verify
SIGL in EXCHL (Step m3). If valid, it generates and
signs a BIND (Step m4). Also, it generates EXCHM =
P pub
M , (∗)SIGM , where P pub

M denotes the member’s key
exchange material and ∗ denotes all the messages sent and
received so far. (∗)SIGM is generated (Step m5) to protect
authenticity and integrity. Note that the P pub

M used here is
generated beforehand (Step m1) to speed up the binding
process. CERTM , BINDM , EXCHM are all sent to L, and
M starts computing the ECDH shared secret.

Similarly, L verifies the signature in CERTM , and then
(∗)SIGM . After that it verifies the signature of BINDM ,
and if valid, it appends its own signature to make it doubly
signed. At last, it starts computing the ECDH shared secret.
Now both the member and the leader have the shared secret,
and they use a key derivation function (e.g., HKDF [11]) to
convert the secret to a session key for their future conver-
sations. Member objects launch this handshake periodically
(e.g., a few times a day) or when their leaders change, to
update session keys and binding relationships.

Discover & Request. A leader publicizes its members’
CERTs/PROFs in the ground network. Then discovering a
member object and requesting a ticket (TKT) for it becomes
exactly the same as dealing with a leader object.

Execute. When a leader receives a command (CMD), it
will find out if it or its member is a target by comparing
their IDs (if the CMD is ID-based) or attributes (if attribute-
based) with the CMD’s O. If the target is its member, it
will check if the CMD is legitimate and if so, send to the
member an adapted CMD (Fig. 7) with the same IDCMD ,
F , P , T , protected by a message authentication code (MAC)
generated from their session key. The MAC ensures au-
thenticity and integrity, and the freshness check is done
similarly. The leader replaces the public-key signature with
a MAC because it has sufficient resources/power to finish
such compute/energy intensive tasks at reasonable speed
but its members do not. In this way a member only needs to
verify MACs, which incurs much less time and energy.

8 SECURITY ANALYSIS

Threat Model. We assume the backend is trustworthy and
well-protected. Also, communication between the backend
and subject/object devices is secure.
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We assume breaking the cryptographic algorithms (e.g.,
ECDSA, ECDH) are computationally infeasible when long
enough keys are used (e.g., 128-bit). Attackers can capture,
inject, modify and replay messages sent over the communi-
cation channel. Sources. Attackers may be external—they are
not registered at the backend thus have no backend-signed
public keys, or internal ones that are registered but go rogue.
Roles. Attackers may behave passively as eavesdroppers, or
actively to impersonate subjects or objects and interact with
benign nodes. Targets. Attackers may target authenticity,
integrity, freshness, and availability.

Like TLS and many other algorithms, the security of ours
is on the premise that secret information is kept to its owner,
and is computationally infeasible to compromise, and can-
not be obtained from sources outside of the channel. How-
ever, in reality it can, e.g., attackers have military computing
resources, or they leverage malware or social engineering
to steal private keys from users/devices. Resisting those
attacks is out of the scope. Our analysis below shows that: 1)
our system resists well to attacks from external adversaries
that target authenticity, integrity and freshness; 2) it does
not address attacks from internal adversaries or DoS, but
we discuss strategies which possibly alleviate the harm.

Discover. External leader, member objects may pose as
benign ones by propagating profiles (PROF), waiting for
subjects to discover and later execute commands (CMD) on
them. Because they do not have properly signed PROFs, it
is easy to detect and drop them. Internal ones, however, are
able to entice subjects to operate them, thus collecting infor-
mation about the subjects’ locations, operation behaviors,
etc. Such privacy issues are beyond the scope.

Bind. An external leader object may cajole benign mem-
ber objects into choosing it as their leader and then ma-
nipulate them. But it has no private key or public key
certificate (CERT) assigned by the administrator, and cannot
accomplish the handshake for shared secret establishment
and binding notification (BIND) generation. For the same
reason, an external member object will fail in finding a
leader. To the contrary, a malicious internal leader object is
able to recruit benign members. A member object can have
multiple leaders (only one is active at a time) and change
the active one from time to time, reducing the probability of
accepting malicious CMDs. Similarly, a malicious internal
member object can associate with benign leaders, but it
cannot cause much harm beyond itself. Besides, a malicious
internal leader object may publicize fake BINDs, but our
double signing strategy foils that.

Request. An external subject device cannot succeed in
requesting tickets (TKT) due to the lack of a valid private
key thus valid signatures. A replayed request will fail due
to the protection of timestamp and hash code. A malicious
internal subject device can sign properly, thus request TKTs
successfully. We may use extra mechanisms (e.g., operation
behavior analysis) on the backend to detect compromised
subject devices. Once detected, the subject device will not
be issued any new TKT by the backend, and the TKTs it has
obtained will be revoked.

Execute. An external subject device’s forged/altered
CMDs will not get accepted by leader objects due to the pro-
tection of signatures, neither will its replayed ones because
we have timestamp and nonce jointly for resistance. The

node may keep sending invalid CMDs to waste resources of
benign nodes. To mitigate this harm, we may ask interme-
diate relaying nodes to examine CMD integrity/freshness
(originally such checks are conducted by the target only).
This en-route check drops an invalid CMD before it travels
far, reducing the attack range.

An external node may mimic a leader object. Its CMDs to
member objects will be found illegitimate for either wrong
message authentication codes or being obsolete. As for DoS
attacks, the malicious leader object may send large amounts
of invalid CMDs to member objects around, attempting
to drain their batteries. A member object may regard be-
ing awakened too often as abnormality and report it to
the administrator, who will take further countermeasures.
Similarly, an external member object will fail in making
its forged/altered/replayed responses (RES) accepted by a
leader object. Note that usually a leader object has sufficient
energy from wired power supply and does not have the
dead battery problem, but a similar detection strategy can
be applied to notify the administrator.

A malicious internal subject device could get its CMDs
executed, attacking authenticity and integrity successfully.
Faced with such situations, the backend can issue subject
devices TKTs of constrained access rights and short lifetimes
to alleviate the damage to some degree. The attacker, though
having compromised the subject’s identity, can only exert
the access rights offered by the TKTs stored in the device.
Thus the less capable the TKTs are, the less harm the attacker
can do. The attacker may try requesting more TKTs, but as
mentioned, the backend may detect and reject it.

If a leader object gets compromised, all of its members
will be indirectly compromised and execute the attacker’s
CMDs. But as mentioned, a member object may keep
switching from one leader to another, reducing the amount
of malicious CMDs it receives. As for a malicious internal
member object, it is under control of the attacker. Possibly,
its leader may detect its abnormality, e.g, finding it does not
follow a legitimate CMD, and then inform the administrator.

9 UPDATING OVERHEAD ANALYSIS

When the administrator adds/removes a subject/object in-
dividual/category, or edits a policy, the change needs to
be immediately synchronized to the affected objects on the
ground. Otherwise authorized users will fail to access new
services timely, while unauthorized users continue to have
access to services they are no longer eligible for. We define
updating overhead as the number of objects that need to
be notified immediately. We conduct quantitative analysis
and find that compared with an ACL based strategy, our
capability based design is able to: i) eliminate the updating
overhead when adding a subject, policy or subject/object
category; ii) reduce the overhead by 10x–100x when remov-
ing a subject or ID-based policy; iii) reduce the overhead
slightly in other cases. As a result, Heracles achieves efficient
updating, thus scalable and secure enterprise IoT access
control. We outline how ACL and Heracles work differently
before presenting overhead comparison:

ACL. In an ACL based system, each object stores an
access control list [12] specifying by which subjects it can be
accessed, and what functions (i.e. access rights) are allowed.
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TABLE 1
The number of affected objects when adding/removing a subject/object/policy. Compared to an ACL based strategy, Heracles reduces updating

overhead: to 0 ; by 10x–100x ; slightly , depending on which updating operation the administrator performs.

Add 1 Subject Rmv 1 Subject Add 1 Object Rmv 1 Object Add 1 Policy Rmv 1 Policy
ACL, ID N (102 ∼ 103) N (102 ∼ 103) 1 1 1 1
Heracles, ID 0 θN ≈ [0.01, 0.1]N 1 1 0 θ ≈ [0.01, 0.1]
ACL, attribute 0 kcn (102 ∼ 103) 1 1 n (101 ∼ 102) n (101 ∼ 102)
Heracles, attribute 0 ηkcn ≈ [0.01, 0.1]kcn 1 1 0 Θn < n

TABLE 2
The number of affected objects when adding/removing a subject/object category.

Add 1 SubjectCateg Rmv 1 SubjectCateg Add 1 ObjectCateg Rmv 1 ObjectCateg
ACL, attribute cn (101 ∼ 103) cn (101 ∼ 103) n (101 ∼ 102) n (101 ∼ 102)
Heracles, attribute 0 Θcn < cn 0 Θn < n

An ID-based ACL specifies subjects by enumerating their
IDs, e.g., the access right part is {IDS , {F,C}}, where IDS ,
F , C are a subject’s identity, allowed functions, constraints.
To execute a command (CMD) on an object, a subject needs
to prove her identity (e.g., using her signature), and the
object will accept it only if her ID is in the list and the func-
tions/constraints match. An attribute-based ACL describes
subject categories using predicates, i.e., {AttrS , {F,C}}.
And in command execution, a subject needs to prove her
attributes (e.g., by attaching her profile (PROF) with com-
mands). Only if her attributes match the predicates (AttrS)
may the command be accepted.

Capability. In a capability [12] based system, a subject
holds a ticket (TKT) stating her access rights to certain
objects. The ticket is signed by a trusted common authority
(e.g., the administrator) so nobody can forge it. An ID-based
TKT specifies objects by enumerating their IDs, while an
attribute-based one uses attribute predicates (Section 6). In
either case the subject sends a TKT together with her CMD,
and the object verifies the TKT to find out if the subject is
authorized to access it.

9.1 Symbol Definition and Magnitudes
We first introduce as follows the symbols we use in updating
overhead expressions. Explanation for the magnitude values
of N, k, c, n,m can be found in Section 2.

1) object amounts. An enterprise may have 104 ∼ 105

objects in total. In reality a subject has access rights to only
a fraction of all the objects, of which the number is denoted
as N in an ID-based system, around 102 ∼ 103.

2) categories. A subject usually belongs to k (100 ∼ 101)
subject categories; each subject category may have access
rights to c ( 100 ∼ 101) object categories, with n (101 ∼
102) objects in each. Thus, in an attribute-based system, the
number of objects a subject can access is kcn, whose order
of magnitude is consistent with N in an ID-based system. A
subject category has m (101 ∼ 102) subjects.

Note that one ID-based policy specifies one subject’s
access rights to one object; one attribute-based policy relates
one subject category and one object category, thus n objects.

3) policy service rates. A policy is called in service if there
exists a TKT which was generated based on it and is not
expired yet. For simplicity, we assume a subject requests
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Fig. 8. The impact of subject category size on attribute-based policy
service rate Θ.

dozens of (101) ID-based TKTs and a few (100) attribute-
based TKTs per day, with each having a 1-day lifetime;
her N ID-based access rights have an independent identical
chance to be requested (if ID-based), so are her kc attribute-
based access rights (if attribute-based).

Since an ID-based policy serves exactly one subject, the
policy is in service if and only if that subject has requested
a TKT for access rights specified by it that day. So ID-based
policy service rate θ = 101/N = 10−2 ∼ 10−1.

However, an attribute-based policy serves a subject cat-
egory which has m subjects. The policy is in service as long
as at least one subject among the m has requested a TKT
generated based on it that day. The probability that one
subject requests it is η = 100/kc = 10−2 ∼ 10−1, and
attribute-based policy service rate Θ = 1 − (1 − η)m. Fig. 8
shows that Θ is less than but close to 100% most of the time,
unless the access right is for unpopular IoT service (e.g.,
θ = 10−2) and there are not many subjects (e.g., m < 100)
in the subject category served by the policy.

9.2 Updating Overhead Comparison
We present the updating overhead of four strategies (Tab. 1
and Tab. 2): ACL and Heracles (capability based), with each
having an ID-based variant and an attribute-based variant.

1) ACL, ID-based. An ID-based ACL system has the
largest updating overhead. When a subject joins/leaves, the
backend needs to immediately contact all the N (102 ∼ 103)
objects that she can access, to add/remove her access
rights to/from their ACLs. When an ID-based policy gets
added/removed by the administrator, the corresponding
object always needs to be notified.
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2) Heracles, ID-based. Heracles adopts capability based
access control, and has remarkably smaller updating over-
head than ID-based ACL facing most operations. First, there
is no overhead when a subject/policy is added because now
it is the subject’s duty to request her tickets when needed.
This overhead shift mitigates not only the workload but also
the difficulty of updating, because: 1) a subject consciously
requests only the access rights she is about to use, while in
ACL all objects must be notified regardless of whether they
are to be accessed; 2) subjects share the updating work from
the backend and each handles her own part, making it more
robust against network failures—the backend cannot do
much when finding some objects unreachable, but a human
subject can respond flexibly, e.g., try alternative network
connections.

Second, the updating overhead is one or two orders
of magnitude smaller than ID-based ACL when a sub-
ject/policy is removed. It is because an updating message
will be sent to an object, telling it to revoke a subject’s ticket,
only if the subject requested a ticket targeting that object
early that day. If a policy is not in service (i.e., no ticket based
on it was requested), the corresponding object does not need
to be contacted when the subject or the policy is removed.
As introduced, an ID-based policy has a small service rate θ
(10−2 ∼ 10−1), so the overhead is reduced by 10x–100x.

3) ACL, attribute-based. Similar to ID-based ACL, an
attribute-based ACL system has large overhead. Compared
with ID-based ACL, its main advantage is when a subject
is added, no objects need to be notified. This is because the
ACLs stored by objects specify authorized subjects using
predicates instead of ID enumeration; later it finds a subject
authorized if the subject presents a valid profile showing
that her attributes meet the ACL predicates. But like ID-
based ACL, when a subject leaves, all the kcn (102 ∼ 103)
objects she could access must be updated to reject her access
attempts in the future. As for policy updating, note that
an attribute-based policy relates one object category, thus n
(101 ∼ 102) objects should be notified to update their ACLs
when the policy is added or removed.

4) Heracles, attribute-based. Heracles supports both
ID-based and attribute-based access, and it outperforms
attribute-based ACL in updating efficiency. First, it elim-
inates the overhead when a subject/policy is added be-
cause the burden has shifted to the subject/backend to
obtain/issue tickets properly. Second, similarly, one or two
orders of magnitude fewer objects need to be notified to
revoke a subject’s tickets when the subject is removed,
because she only holds tickets for ηkcn (η = 10−2 ∼ 10−1).
objects, among all the kcn (102 ∼ 103) ones she could access.

Third, when removing an attribute-based policy, Hera-
cles always has smaller overhead than attribute-based ACL
although the improvement may be slight. An attribute-
based policy relates n objects, which need to be notified
for ticket revocation only if the policy is in service (i.e.,
there exist unexpired tickets generated based on it). Thus,
the expected value of updating overhead is Θn, compared
to ACL’s n. Though each subject has a small probability η
to put a policy in service, an attribute-based policy can be
requested by any of the m (101 ∼ 102) subjects, and the
probability that at least one of them puts the policy in ser-
vice can be high (i.e. Θ ≈ 100%, then Heracles and ACL have

similar overhead), especially when m is large. Limiting the
size of a subject category (i.e. m) makes updating overhead
smaller. E.g., when m = 10,Θ = 10% ∼ 65% (Fig. 8).

Adding/Removing Categories. Tab. 2 shows the over-
head when adding/removing a subject/object category, and
these operations are for attribute-based systems only. As is
seen, Heracles eliminates the overhead when adding a cate-
gory, and reduces the overhead slightly when removing one.
For both attribute-based ACL and Heracles, the overhead of
adding/removing a subject category is c (100 ∼ 101) times
of that of adding/removing a policy in that system, because
a subject category has access rights to c object categories.
The overhead of adding/removing an object category is the
same as adding/removing a policy, because each attribute-
based policy relates exactly one object category.

Adding/Removing Objects. In any of the four strategies,
when an object is added/removed, only that object needs to
be notified, so the overhead is always 1. Strictly speaking,
Heracles does not reduce the overhead in these two cases,
but the overhead is originally small enough, and can hardly
be further reduced to 0.

9.3 Impact of Updating Overhead on Security

Either ACL updating (if ACL based) or ticket revocation (if
using Heracles) messages need to reach the affected objects
immediately, otherwise valid subjects’ commands will be re-
jected while invalid ones’ commands accepted. Larger over-
head in synchronizing access control related information to
objects results in higher vulnerability, because more objects
to notify inevitably leads to more updating failures/delays,
due to network failures, processing/transmission delay, etc.
Heracles greatly reduces the number of objects to notify,
thus chances of failures, achieving much stronger security.

Delay-Tolerant Updating. Besides the updating we have
analyzed so far which needs immediate completion, there
may be other updating activities. E.g., in an ACL based
system, objects periodically (e.g., every day) check ACL
updates from the backend; in Heracles, subjects request
needed tickets beforehand. Such updating activities (in both
ACL systems and Heracles) are scattered throughout all
the subjects/objects and time of the day; additionally, they
are delay-tolerant. They are different from the updating
incurred by the administrator’s operation on the backend
database, which contacts objects in burst mode and is delay
sensitive. So they are less an issue for system burden and
security, thus not considered in our analysis.

10 EXPERIMENTAL EVALUATION

We have implemented our prototype including four com-
ponents of Heracles: the backend, subject devices, leader
objects and member objects. The backend program runs in a
server machine. We use a Samsung Galaxy S8 (2.3GHz Quad
+ 1.7GHz Quad CPU, 4GB RAM) as our subject device,
and deploy 18 leader objects in a large room to construct
a group network with diameter up to 9 hops, where each
leader object runs on a Raspberry Pi 3 (1.2GHz Quad CPU,
1GB RAM). Besides, we use Arduino Mega 2560 (16MHz
Clock + 8KB RAM) as resource-constrained member objects.
Different radios can be used, as long as network connectivity
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and routing exist, and we use WiFi on our testbed: Pi has a
built-in WiFi module; the Arduino Mega 2560 is equipped
with an ESP8266 module for WiFi communication.

We evaluate message overhead of commands, time
cost of cryptographic operations (e.g., signature sign-
ing/verification), binding latency, and command execu-
tion latency. Note that evaluation results like latency de-
pend significantly on factors like the radio, background
traffic intensity, routing protocol and cryptographic al-
gorithms/parameters/libraries chosen in implementation.
Thus the performance numbers should not be interpreted
literally, but rather revealing the likely ranges and magni-
tudes. Also, though our design targets enterprise IoT, our
testbed consisting of 18 leader objects (and extra member
objects) which constitute a 9-hop network is sufficient for
testing command execution latency. In reality there will be
more objects, but hop count mostly would not be larger, be-
cause most users will be controlling IoT devices in proxim-
ity. For rare cases of distant targets (> 10 hops), commands
can be routed via the backbone Internet for better resilience
and shorter latency.

10.1 Command Message Overhead

By comparing the length of CMDs which are either ID-
or attribute-based in two real cases (Student Case and
Administrator Case), we prove that the two are preferable
in different scenarios: ID-based CMDs are more efficient for
small amounts of objects in various categories (Student Case
like), while attribute-based ones excel in bulk operation
that targets large amounts of objects in a few categories
(Administrator Case like).

Field Study. Types and amounts of the objects in the two
cases are from a field study on our engineering building
on campus, which has two floors, with 32 offices/labs on
the 1st floor, and 36 on the 2nd. A medium office/lab is
used as a representative which has 6 ceiling lights, 8 desk
lamps, 5 computers, 1 door, 3 windows, 1 alarm and 6 other
devices. Totally, there could be approximately 30 objects
each room and 2040 objects in this building, excluding those
in restrooms, lobbies or corridors.

Student Case. In this scenario, a graduate student re-
quests a TKT in the morning for certain objects installed
in her lab, for the functions she will probably use this day.
There are 8 objects included: 2 ceiling lights, 2 desk lamps,
1 door, 1 window, 1 coffee maker, and 1 air conditioner.
This TKT is a representative covering a few objects in quite
different categories, and later the subject will use it to
operate a single object at a time.

Administrator Case. In this scenarios, an administrator
of a building requests a TKT for all the 408 lights and 68
alarms in the building. This TKT is a representative covering
great amounts but limited categories of objects and will be
used for bulk operation. E.g., he uses it to trigger all the
alarms and turn on all the lights to evacuate people from
the building when an emergency occurs.

Message Overhead. Fig. 9 (a) shows the length of ID-
and attribute-based CMD for both cases. First, in Student
Case, an ID-based CMD has 312 B while an attribute-based
one has 346 B. The former is shorter because this case has
only 8 objects, thus simply enumerating their IDs cost fewer

bytes. Second, in Administrator Case, an ID-based CMD
has 2,128 B while an attribute-based one needs only 256 B,
which is 12% of the former. It is because Administrator Case
has 476 objects but only 2 types (lights and alarms), thus 2
predicates are enough to specify all of them, reducing the
length of an ID-based CMD by one order of magnitude.
The length of attribute-based CMD only increases with the
number of object categories, regardless of how many objects
need to be covered.

10.2 Cryptographic Operation Time Cost
We test the computation time of operations related to public-
key signatures and message authentication codes on subject
devices, leader objects and member objects, using crypto-
graphic libraries AndroidOpenSSL (default library of An-
droid), Java Cryptography Architecture [13] (built-in piece
of Java), and micro-ecc [14] (small and fast implementation
of ECDSA/ECDH for 8-bit processors using C language)
respectively. Exactly which signature algorithm and key size
to pick is orthogonal to our design. We choose ECC in
our implementation because compared with RSA, it offers
similar security strength at a smaller key size [10], [15]. We
choose ecliptic curve secp224r1 because: i) it achieves high
enough strength (112-bit, comparable to RSA 2048) with
short computation time; ii) it is supported by the libraries
across all the three platforms (Android, Pi and Arduino).

Signature. First, a subject device needs only about 2 ms
for signature signing/verification, due to the device’s rich
computing resource. As for objects, as shown in Fig. 9 (b),
on a leader object it takes 13.4 ms for signing and 25.9 ms
for verification. On a member object signing/verification
costs 2.8/3.2 seconds, which are two orders of magnitude
larger than those on a leader, thus not presented in the same
figure. So far, we confirm that such public-key operations,
when performed on member objects, will lead to significant
latency. Thus they should only be conducted occasionally
on member objects (e.g., in binding, which happens at most
a few times a day) instead of too frequently (e.g., command
execution), to avoid sluggish user experience.

RSA vs. ECC. RSA 2048 and ECDSA 224 have compara-
ble security strength, but the former is much less efficient in
both computation and signature length: i) though RSA 2048
has fast signature verification (9.9 ms on a leader object), its
signing time is 265.0 ms, about 20x as long as ECDSA 224;
ii) an RSA 2048 signature has 256 B while ECDSA 224 needs
only 56 B. We use ECDSA 224 in our implementation.

HMAC. On the other hand, hash-based message authen-
tication code [16] (HMAC) is significantly less expensive
and can be generated at high speed by even a resource-
constrained member object, using 8.8 ms. And a leader
object spends only 0.7 ms. Thus, it is a good choice to
use signatures for authenticity/integrity protection on in-
teractions between subject devices and leader objects, and
use HMACs between leader and member objects. Heracles
uses this strategy: a leader object verifies a CMD’s signature
signed by a subject, and sends its member an adapted CMD
which uses an HMAC in place of the signature.

10.3 Binding Latency
We evaluate the time cost by a member to bind to a leader,
and its composition. Binding latency is the time from the
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Fig. 9. Performance evaluation on message overhead, cryptographic computation time, binding latency, and command execution latency.

member’s sending the first message (NM ) till both the
member and the leader finish computing the shared secret
using ECDH algorithm. The overall latency is 14.8 seconds.

Fig. 9 (c) (d) show the time cost of every time-consuming
operations (either ECDSA or ECDH operations) in binding
stage: 6 operations (m1 to m6) are performed by a member
object, and 7 operations (l1 to l7) by a leader. Details can be
found in Section 7. Again, we see that a leader operation
costs at most 23.8 ms, while a member operation consumes
at least 2.6 seconds and up to 3.2 seconds.

The overall binding latency mainly consists of: i) time
cost of 5 public-key operations on the member Tm; ii)
time cost of 2 public-key operations on the leader Tl; iii)
transmission time of the three messages (95.6 ms). Tm =∑6

i=2 t(mi) = 14,670.3 ms; Tl =
∑2

i=1 t(li) = 30.5 ms.
Note that m1 does not contribute to the binding latency
because the member can perform it in advance, and save
the generated ECDH public parameter for later binding use.
This reduces the binding time by 2.6 seconds at the expense
of 56 B storage. Also, l3 to l7 (together costing 99.1 ms) do
not contribute to the binding latency either because they
are performed concurrently with m6 (costing 2.6 seconds).
Since m6 is slow, it is completed much later than l7, and it
determines when the binding process is finished. We see that
99% of the binding latency comes from the member’s public-
key operations due to its constrained computing resource.

Such binding latency (14.8 seconds) is acceptable, since
session keys and binding notifications are updated infre-
quently (usually once or a few times a day). Also, it is not
performed on demand of subjects’ commands, thus there is
no stringent requirement of fast completion.

10.4 Command Execution Latency

We test the time difference from a CMD’s issuing to its
RES’s returning and verification completion, for ID-based
CMDs (Student Case, a single target) and attribute-based

CMDs (Administrator Case, bulk operation). The experi-
ments show that Heracles achieves responsive execution: a
bulk operation CMD takes 0.57 second to control 18 objects
which are scattered 1–9 hops away from a subject; mostly a
target is nearby, i.e. 1 or 2 hops away, and execution of an
ID-/attribute-based CMD on such an object costs only 0.07
second (1 hop) or 0.13 second (2 hops).

We deploy 18 leader objects and test two network topolo-
gies. In the first network, objects are 1–9 hops away from the
subject device, with 2 objects at each hop (i.e., Object 1, 2 are
1-hop away, Object 3, 4 are 2-hop away, and so on). In the
second network, objects are 1–5 hops away from the subject
device: there are 4 objects at hop 1–4 respectively, and Object
17, 18 are 5 hops away from the subject.

The latency mainly results from: i) the subject device’s
signing a CMD and verifying the target’s RES; ii) the target’s
verifying the CMD and signing an RES; iii) messages’ trans-
mission time which depends on background traffic intensity
and can vary with environments and time. Besides, en-
route check can be optionally enabled to make intermediate
nodes between the subject device and the target object verify
CMDs and RESs before forwarding them. This is a useful
feature in help alleviate DoS attacks which keep flooding
fake messages in the network (Section 8).

10.4.1 Subject-to-Leader Commands
As shown in Fig. 9 (e), in the 9-hop network, a bulk op-
eration CMD has short latency no matter en-route check is
enabled or not: when en-route check is on, it takes 575.6 ms
to operate 18 objects; when it is off, it takes 342.4 ms. The
former costs slightly longer because each intermediate node
in the routing path verifies the signature of CMDs going to-
wards the targets and the returning RESs before forwarding
them. According to research on usability engineering [17], if
response time is below 1 second, the user’s flow of thought
will stay uninterrupted. Thus our bulk operation achieves
good responsiveness.
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Fig. 9 (f) presents the impact of hop counts on latency:
the ladder-shaped curves show that command execution
on objects at the same hop cost similar time, and the time
increases fairly linearly with hop counts. In the vast majority
of cases, IoT users are controlling nearby objects which are
1 or 2 hops away: bulk operation execution on a 1-hop
object needs only 70.3 ms no matter en-route check is on
or off, because there is no forwarding node between the
subject and 1-hop targets thus no en-route check performed;
execution on a 2-hop object costs 130.6 ms when en-route
check is on, and 98.5 ms when it is off. Such short latency
has the user feel that the operation is completed instanta-
neously [17]. Controlling an object which is 9 hops away
needs 561.7/312.4 ms when en-route check is on/off.

The 5-hop network test (Fig. 9 (g) (h)) shows simi-
lar trends. Both cases have responsive execution and cost
shorter time than 9-hop: it costs 337.5 ms to finish bulk
operations on 18 objects with en-route check, and 252.3 ms
without en-route check. Execution on objects which are 5
hops away cost 331.8/246.4 ms when check is on/off.

Besides, for a target of the same hop count, an ID-based
CMD for Student Case costs similar time as an attribute-
based CMD for Administrator Case due to their similar
message length (Fig. 9 (a)). So its figures are omitted here.

By comparing the results of this new testbed (18 objects,
up to 9 hops) with those of our old one (5 objects, up to
3 hops) in [18], we observe a similar trend that the time
cost increases linearly with hop count which is within 9. We
do not explore the case of operating objects at larger hops
because we believe it is rare, and we suggest in that case
infrastructures should participate in such that hop-by-hop
routing does not need to go beyond 9 hops. More discussion
can be found in Section 12.

10.4.2 Subject-to-Member Commands
Strategy 1: Indirect Subject-to-Member Commands. A
target may also be a member object. In this strategy it is as-
sociated with a leader beforehand: the leader verifies/signs
the signatures of CMDs/RESs from/to the subject on behalf
of the member, while the leader-member CMDs/RESs are
secured using HMACs. The latency between a leader’s
issuing a CMD with HMAC to its member and the leader’s
receiving, verifying the returning RES is 46.2 ms. In detail,
1.4 ms is cost by the leader in generating HMAC for CMD
and verifying HMAC of RES from the member; 17.7 ms is
cost by the member in verifying HMAC of CMD from the
leader and generating HMAC for RES. Message transmis-
sion costs 27 ms, about 59% of the overall latency.

Let’s define an i-hop member object as a member whose
leader is i-hop away from the subject (1 ≤ i ≤ 9), then
the overall latency of operating it is always 46.2 ms larger
than operating its leader. Recall that in Heracles, leader
objects form the “backbone” for message forwarding and
member objects are “leaves”. Thus, a command targeting an
i-hop member is realized with one targeting an i-hop leader
object, followed by a 1-hop leader-to-member command
which costs 46.2 ms. Fig. 9 (e) to (h) show that in the most
time consuming case (i.e., control a member object when en-
route check is enabled), it costs 621.8 ms to operate 18 objects
in the 9-hop network, and 383.7 ms in the 5-hop network.
Good enough responsiveness is still achieved.

Strategy 2: Direct Subject-to-Member Commands. If
a member interacts directly with a subject device via
CMDs/RESs secured by signatures, it does not need a
leader. However, the execution latency would be signifi-
cantly prolonged due to a member’s poor computing per-
formance. According to our experiments, a member needs
3.2 seconds to verify the signature in a subject CMD, and 2.8
seconds to sign the RES it generates. Thus, even operating
a single 1-hop member object costs at least 6.0 seconds,
about 10x as long as controlling 18 leader objects spread in
9 hops using Strategy 1, let alone operating many multi-hop
member targets. This strategy not only causes unacceptably
long delay to users, but also quickly drains the energy of
member objects most of which are battery-powered.

There is a symmetric-key alternative way for subject-
member end-to-end protection: a member establishes a sym-
metric key with every subject it needs to interact with, and
they use HMACs in their CMDs/RESs. In this way the
member also does not need a leader, and has short execution
latency at the same time. However, compared with Strategy
1 in which a member needs to establish a key with only
its leader, this strategy has expensive key establishment
and maintenance overhead, and is not fit for enterprise
scales. Besides, en-route check is unavailable unless all the
forwarding nodes also share the symmetric key.

11 RELATED WORK

ACL and capability are two common forms of access con-
trol [12], and their differences in computer systems are an-
alyzed in [19]. Access control policies include discretionary,
mandatory, and role based access control. Attribute based
access on encrypted data in cloud [20] is explored using at-
tribute based encryption [21]. Our system adopts capability
based access control for its efficient updating.

Exiting smart home products have mostly all-or-nothing
access control [2], [3], [22] that family members can access
everything and outsiders nothing. Recent work provides
access control based on subject-object pairs using hierarchi-
cal data names [23], or extensions on time by abstracting
smart objects as peripherals to a computer [24]. They are
intended for traditional computer systems/cloud, targeting
small scale homes, or providing coarse grained and basic
ACL based access control. Our system achieves fine grained
access control, which is necessary for enterprise environ-
ments where users and devices are both heterogeneous.

Many approaches [3], [4], [5] use centralized execution
strategies for secure access, and all access must go through
the cloud for enforcing authorization policies. They have
weak availability: a machine/network failure results in total
loss of access. This causes much more serious impact in en-
terprise environments than homes due to the former’s huge
subject/object amounts property (Section 2). Kerberos [25],
which has been widely adopted by industry, realizes dis-
tributed authentication by granting parties tickets that prove
their identities. It does not deal with access rights. We have
tickets carry the requested authorizations, thus when the
backend is unavailable, a subject can continue operating
objects till the tickets expire (e.g., a few hours), hopefully
by then the network/server failure has been resolved. Only
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the ticket request operation involves back-and-forth com-
munication to the backend. Subsequent commands are sent
directly to objects, which greatly improves responsiveness.

There are a few capability based IoT access control
designs [26], [27], [28], but they lack deep justification
proving capability’s advantage over ACL at enterprise scale.
We are the first one to perform quantitative analysis and
comparison on ACL based systems and capability based
systems under enterprise IoT contexts, and we prove that
a capability based strategy significantly reduces the overall
updating overhead and results in higher system scalability
and stronger security. Also, those designs are ID-based
while our system additionally supports attribute capability-
based access control which achieves efficient bulk operation
and smaller requesting overhead. E.g., to access a newly
installed light, if ID-based, the subject has to request a
new ticket that covers the light’s ID; however, if she holds
an attribute-based TKT specifying her rights of “operating
lights”, she does not need to request another ticket. Besides,
none of the existing work offers complete design, implemen-
tation and evaluation as we do.

12 DISCUSSION

Impact of Leader Update on Binding. When a leader object
leaves, its members should get new leaders. As mentioned
in Section 7, a member object can establish symmetric keys
with multiple leaders beforehand, but is bound to one at a
time. When the current leader fails, it can quickly switch to
another which it shares a key with, without performing the
slow key establishment process. Besides, we may limit the
number of members that one leader can accept, and spread
binding load more evenly among leader objects, restricting
the binding updating overhead upon a leader’s leaving.

Bulk Operation. We use a testbed of 18 objects, up to
9 hops to evaluate bulk operation. First, considering that
mainstream radios (e.g., WiFi, Bluetooth, ZigBee) have rea-
sonably far transmission distances (e.g., dozens of meters)
while IoT commands mostly target objects around the user,
e.g., within her building, 9 hops are more than enough.
When commands occasionally do need to go further, hop-
by-hop routing might be slow or fragile; in that case they
can be sent via infrastructures (e.g., access points, cables)
to the destinations or their vicinity, and then propagated
among peers. In this way, hop-by-hop routing does not
need to go beyond 9 hops. Second, in reality, there can
be more objects at each hop, using broadcast can make
them receive commands quickly regardless of the number
of objects. Thus, we believe our evaluation is reasonable.

Bulk Operation Command Routing. A bulk operation
CMD is usually propagated with a scope control mecha-
nism to avoid blind flooding. One solution is to use fil-
ters based on object locations. E.g., a CMD with predicate
{type = lamp∧floor = 2} targets the objects on the second
floor only, and an object should not forward it to objects
out of the scope (e.g., Floor 1, 3). It is easy to realize if an
object maintains the location information of its neighbors
(e.g., location based names in data-centric networks [8]).

Confidentiality. Our design protects authenticity, in-
tegrity and freshness but does not ensure TKT/CMD con-
tent confidentiality. The content is not encrypted, thus ad-

versaries may find out one’s access rights, intended op-
erations, which could be sensitive. Given that each sub-
ject/object has a public-private key pair, establishing sym-
metric keys to encrypt conversations is feasible. We leave
the complete solution as future work.

Service Discovery. In the current system, subjects see the
same profiles (PROF) of an object even though they have
very different access rights to the object. If a PROF contains
sensitive information (e.g., functions for VIPs’ exclusive
use), it should not be disclosed to subjects without appro-
priate levels. In the future we will make PROFs customized
such that subjects discover different versions for the same
object and gain only the knowledge allowed.

Physical Contact Attacks. An attacker may gain physical
contact with objects, and launch attacks such as rebooting
the target to purge its records of IDCMDs and replay CMDs
whose timestamps are still within time synchronization
error e. To address this problem, we may require any object
not to accept CMDs upon power up until e time later.
Then the replayed CMDs will be rejected for their obsolete
timestamps. A full solution to physical contact based attacks
goes beyond the scope of this paper.

En-Route Check. Leader objects can conduct en-route
check to alleviate denial-of-service attacks that flood large
numbers of fake messages in the network. Under normal
conditions when attacks do not happen, en-route check can
be disabled to save computation, energy and time. If a target
leader detects attacks, it may broadcast an alert message
notifying other leader objects in vicinity to switch on en-
route check, and with possible hints on what to check (e.g.,
TKT integrity, CMD freshness).

13 CONCLUSION

In this paper, we describe the design, implementation and
evaluation of Heracles, which achieves fine-grained access
control, efficient updating, and responsive command exe-
cution for enterprise scale IoT. Heracles uses secure, un-
forgeable tokens to describe the authorizations granted to
a subject, which are used to access objects robustly and
quickly, without involving the cloud. Besides, it supports
responsive operations on resource-constrained objects and
efficient bulk operations. Our analysis and performance
evaluation show that it is secure, and has scalable updating
(eliminates or reduces by 10x–100x the updating overhead
in many situations), and responsive execution (0.07 s to
access a 1-hop object; 0.57 s to access 18 multi-hop objects).
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