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Abstract—Edge devices with sensing, storage, and communication resources (e.g., smartphones, tablets, connected vehicles, and
loT nodes) are increasingly penetrating our daily lives. Many novel applications can be created through sharing data among nearby
peer edge devices. In such applications, caching data at some edge devices can greatly improve data availability, retrieval robustness,
and delivery latency. In this paper, we study the unique problem of caching fairness in edge computing environments. Due to the
heterogeneity of peer edge devices, load balance is a critical issue that affects the fairness in caching. We propose fairness metrics to
characterize this issue and formulate the caching fairness problem as an integer linear programming problem, which is shown as the
summation of multiple Connected Facility Location (ConFL) problems. We provide an approximation algorithm by leveraging an existing
ConFL approximation algorithm, and prove that it preserves a 6.55 approximation ratio. We further develop a distributed algorithm
where devices exchange data reachability information and identify popular candidates as caching nodes. Finally, we update the
fairness metric and apply it to algorithms for making continuous caching decisions over time. Our extensive evaluation results show that
compared with existing caching algorithms for wireless networks, our proposed algorithms significantly improve the data caching
fairness while keeping the contention induced latency comparable to the best existing algorithms.

Index Terms—Pervasive edge computing, peer data sharing, cooperative caching

1 INTRODUCTION

OUR surrounding environments are increasingly pene-
trated with various types of edge devices, including
mobile phones, tablets, connected vehicles, road-side cam-
eras, and diverse Internet-of-Things (IoT). These devices
possess sensing, computing, storage and communication
capabilities. They produce pervasive sensing data about
physical phenomena in the surrounding environment. By
sharing sensing data among such peer edge devices, numer-
ous novel applications can be created.

1.1 Motivation

Consider a large outdoor public event (e.g., music festival, or
university commencement). Smartphones carried by people
can capture diverse data, including human activities, their
locations, and image/video clips. When shared among peer
devices, such data can help people avoid food stands of long
lines, discover interesting souvenirs and artifacts, or enjoy
images, video clips of special, memorable moments. Another
example is traffic accident photos and video clips that help
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to keep nearby police and drivers aware of the conditions.
Police and insurance companies can determine who is
responsible for the accident and accelerate the process, and
drivers can choose alternative routes to avoid traffic jams.
Yet another case is micro-climate sensors that can collect
temperature, humidity and air pollution conditions for cer-
tain areas, especially in suburbs. Residents and schools can
schedule outdoor activities based on such conditions.

Caching is a critical mechanism to enable such peer data
sharing among edge devices. The movements of people
thus devices and the varying availabilities of data and
resources (e.g., battery, storage) constitute a highly fluid
environment full of uncertainty and dynamics. By caching
the data at willing and capable devices, the availability of
data, the robustness, and latency in their retrieval can all be
greatly improved. Recent content centric networks [1] even
integrate caching as a fundamental component in their
design.

1.2 Challenges and Contributions

Despite some earlier work [2], [3] on caching in wireless net-
works (MANET), the critical issue of fairness in caching has
not been addressed. Such work focuses on reducing the con-
tention thus latency in data retrieval. They can cause
extremely unbalanced caching load, e.g., a few fixed devices
are always chosen as caching nodes [4], [5]. Although this
may not be an issue in MANET if all devices listen to one
authority, it is simply infeasible in edge environments: each
device may belong to a different owner, and caching

1536-1233 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on July 30,2020 at 17:18:09 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-7296-9222
https://orcid.org/0000-0001-7296-9222
https://orcid.org/0000-0001-7296-9222
https://orcid.org/0000-0001-7296-9222
https://orcid.org/0000-0001-7296-9222
mailto:
mailto:

HUANG ETAL.: FAIR AND EFFICIENT CACHING ALGORITHMS AND STRATEGIES FOR PEER DATA SHARING IN PERVASIVE EDGE... 853

decisions can only be voluntarily accepted, not forcefully
mandated.

In this paper, we study how to ensure caching fairness
among peer devices in pervasive edge computing environ-
ments. We formulate the problem in integer linear program-
ming form, and show that it is the summation of multiple
Connected Facility Location (ConFL) problems. We propose
an approximation algorithm and prove that it preserves a 6.55
approximation ratio to the optimal solution. We also show
that it achieves very good caching fairness when 75 percent of
data are cached on 73.43 percent of nodes. We further develop
a distributed algorithm where nearby devices exchange data
availability information to make collaborative caching deci-
sions. Finally, we update the definition on fairness metrics
and apply that to the proposed distributed algorithm for mak-
ing caching decisions continuously as data are generated or
become obsolete in the network.

We make the following contributions in this paper.

e We consider caching fairness in data sharing among
peer edge devices. On top of contention costs thus
retrieval latency, the fairness costs are incorporated
into an integer linear programming problem, which
is shown to be the summation of multiple traditional
ConFL problems.

e We design an algorithm by leveraging one of the
existing ConFL approximation algorithms. We prove
that the algorithm preserves the same approximation
ratio as the original ConFL algorithm.

e We further design a distributed algorithm where
devices exchange data retrieval costs among 2-hop
neighbors to identify candidates with the smallest
costs, and popular candidates volunteer to cache data.

e We modify fairness metrics and propose a caching
strategy using proposed algorithms that continu-
ously adapts caching decisions as new data are gen-
erated or old data become obsolete.

e We implement our algorithms and compare against
other algorithms for distributed wireless network
caching. Simulation results show that our algorithms
significantly improve data caching fairness while
keeping the contention induced latency comparable
to the best existing algorithms with O(N?) complex-
ity, where N is the number of nodes in the network.

The rest of the paper is organized as follows. In Section 2,

we discuss some related work on mobile caching and facil-
ity location problems. In Section 3 we give the system model
and the formulation of the problem. We provide algorithms
in Section 4 to solve the problem. We evaluate our design
and compare with other previous works in Section 5.
Finally, we conclude the paper in Section 6.

2 RELATED WORK

Caching is one of the classical mechanisms to improve
data access robustness and performance. Cooperative
caching, which shares and coordinates data caching deci-
sions among nodes, has been applied in ad hoc networks.
For cooperative caching for data, Yin et al. [6] propose two
caching schemes and a method to obtain data in mobile
networks. Hara et al. [7] propose a strategy to remove

redundancy in the neighborhood, and Hamlet [8] mini-
mizes access costs by leveraging the content diversity of
different data in the neighborhood.

There exists some work that focuses on improving data
access rates by caching in wireless networks. One basic idea
is to place cache based on content popularity such that the
cached content can frequently be used. WAVE [9] decides
popularity based on the recommendation from upstream
node request counts. Li et al. [10] dynamically place caching
replicas on the en-route path in named data networks
(NDN) [11], and MPC [12] caches only popular content
adapted in Content-Centric Networks (CCN) [13]. Another
approach is to find caching locations that minimize data
access latency. Nuggehalli et al. [14] use the hop-count as
the delay model to find the best places to cache data. Later,
Fan et al. [3] propose a contention-aware caching algorithm,
which is more accurate than the hop-count based algorithm
since the packet contention is the fundamental cause of
latency in MANET. Similarly, Sung et al. use contention as a
key factor in determining the delay. They introduce a con-
tention based solution on flat wireless networks [15], and
extend to two-tier wireless content delivery networks [5].
Caching can also help deal with mobility in edge computing
scenarios. Proactively caching data near where nodes need
data can improve the data accessing rate despite the high
mobility of nodes [16], [17].

The problem of determining caching locations is closely
related to the classical Facility Location (FL) problem. Most
caching studies map their problems into different FL prob-
lems or modify FL problems to solve caching placement. Usu-
ally, they use either Uncapacitated Facility Location (UFL)
problem [18] or rent-or-buy problem [19]. The more general
case for these two problems is the Connected Facility Location
problem [20]. Among them, UFL does not consider the con-
tent dissemination costs, while rent-or-buy problem does not
consider the facility building costs in the ConFL problem.

In this paper, we design our approximation algorithms by
leveraging the ConFL problem. Since the ConFL is an NP-
hard problem, previous work proposes many approximation
algorithms. Jung et al. [21] achieve the best deterministic con-
stant approximation ratio with 6.55-approximation based
on the primal-dual approach. The best approximation algo-
rithm is a 4.32-approximation randomized algorithm [22], in
which the authors argue that through a derandomization
process, it could reach a factor of 4.32-approximation ratio.
However, the derandomization process is not polynomial,
thus limiting its ability to solve the ConFL problem. There
are also heuristic [23] and greedy [24] solutions for the
ConFL problem. Though such algorithms may not have solid
approximation bounds, they may still achieve good perfor-
mance in practice. We focus on the algorithms with bounded
approximation ratios (i.e., deterministic ones) and leverage
them in our algorithms.

3 SySTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce our system model and discuss
how we quantify fairness and contention of the network.
Then we provide an integer linear programming (ILP) for-
mulation for the problem and explain its relation to the
ConFL problem.
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3.1 System Model

Let graph G = (V, £) be a connected undirected graph repre-
senting the network topology for a multi-hop wireless net-
work, where vertex set (V) represents the nodes in the
network, and edge set (£) represents the connection links
between nodes. In many pervasive edge environments,
nodes (e.g., customers in cafés) exhibit low to moderate
mobility, and the amount of exchanged data is limited (e.g.,
a few MBs). Pedestrians carrying smartphones or IoT devi-
ces will not move much during such short data transmission
times (e.g., a few seconds). Thus we assume that the net-
work topology remains relatively stable while caching deci-
sions are being made. For high mobility scenarios such as
vehicles that may change the topology significantly, we
have developed other algorithms and will publish them
separately.

We assume that some data are interested by all nodes.
The goal is to find an optimal way to distribute these data
so as to achieve fairness while ensuring low data access
latency. The whole process consists of two phases. First, we
divide these data into multiple equal size data chunks N
and proactively disseminate them, letting certain node ¢ € V
cache certain chunk n € . We call this process the dissemi-
nation phase. Then, the node which desires data chunk n
will acquire the chunk from a nearby node which has
already cached it. We call this process accessing phase.
Thus, each node needs to acquire a copy of each data chunk.
We do not assume any specific coding technique in fetching
or transmission and each chunk is stored and acquired as is.

3.2 Fairness Degree Cost

Data caching fairness is a critical issue in edge computing
environments where many nodes are owned by different
users. Both storage and battery are important resources,
and the user can decide how many resources to contribute
to caching. Any fixed selection (e.g., the same group of
nodes) for caching will consume excessive resources on cho-
sen nodes. Thus their users may stop participating.

The key to achieving fair caching is to cache less data on
nodes with fewer resources. We quantify the caching fair-
ness of a node by defining a Fairness Degree Cost based on
current node resource consumption conditions. For a node,
the higher Fairness Degree Cost is, the fewer resources are
available, and the less likely it will cache data. Intuitively,
the ratio between used and remaining storage for caching
can represent the usage of storage of a node. The Fairness
Degree Cost for node i is defined as

S(i)

=_ V7 1
Star(7) = S(3)’ W

fi

where Si(4) is the total caching storage of node i, and S(i)
is the storage used. Thus, Si,(i) — S(i) is the storage still
available. Intuitively, it represents a “penalty:” the fewer
resources a node has, the more “cost” the network must
pay to cache data on it. A “cost” of 0 indicates that the
node has not cached anything, and co means that the stor-
age of the node is full and no further caching is possible.
To reduce the cost, nodes with little storage thus high costs
are unlikely to be chosen to cache. Since all chunks have
the same size, we define Sy, (i) as the total number of
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chunks the node can cache, and S(i) as the number of
chunks the node has cached.

Fairness also unifies the solution to cache multiple data
items. Previous wireless caching work, e.g., [5], [14], only
considers caching one piece of data. Although some of them
argue that their solutions can be extended to multiple data
items, the exact process is unclear. According to our under-
standing, these solutions may involve changes in the net-
work topology, which may change the underlying problem
into a different instance. When fairness is considered, multi-
ple data chunks can be cached based on current available
resources on nodes.

Note that the Fairness Degree Cost can be used to value lim-
ited resources for edge nodes such as batteries and band-
width. The cost formulation can be similar to that of storage,
which is the ratio of used and remaining resources. The total
Fairness Degree Cost can be defined as the weighted summation
of all corresponding costs. The weighted summation ensures
that the probability of choosing a node decreases if any
resource of this node is limited at that time. For simplicity, we
only consider the Fairness Degree Cost for storage in this paper.

3.3 Wireless Contention Cost
Wireless contention is one of the most important factors
affecting per hop latency in multi-hop wireless networks.
Contentions cause packet loss and large back-off time, both
increasing the data access latency. Minimizing contention is
a key to reduce the latency. The contention delay model that
describes the delay due to wireless contention has been con-
sidered in [3], [5], [15]. We call it Contention-induced Delay
Cost, or simply Contention Cost. We use the Node Contention
Cost wy, to denote the Contention Cost on a specific node
k € V. It is affected by the number of its contending neigh-
bors, and the amount of transmissions. In this scenario, the
Node Contention Cost wy, is defined as the number of data
packet transmissions through node k, both receiving and
sending. The accurate mathematical representation of this
contention makes the problem very difficult to solve, and
makes it almost impossible for distributed algorithms to
obtain accurate contention information. Thus, inspired by
[5], we propose an estimation solution adopting a similar
approach. For a node k, all neighbors will send requests to
it, and the node will return all data chunks it receives to
direct neighbors. Thus, w;, can be regarded as its degree,
which equals the number of data chunks the node will send
to its neighbors (i.e., one chunk per neighbor).

The Path Contention Cost between two nodes i and j is
based on the Node Contention Cost alongside the path. We
formulate it as

cij = wi[1 + S(K)], (®)
kePATH(i,j)

where all Node Contention Costs are summed along the short-
est path which the data packet will go through. Note that
previously cached data chunks also affect the contention.
Each of these data chunks (cached or new) increases the
contention by the value of the node degree since each chunk
should be transmitted to all neighbors.

The Contention Cost defined above focuses on the delay in
the network caused by the contention in sending and
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receiving messages. Yang et al. give a delay estimation of
contention in [25]. Such Contention Cost is roughly a linear
transformation of the Contention Delay model for evaluating
the delay. Basically, it considers the processing (DCF Inter-
Frame Space in 802.11) delay, back-off delay, transmission
delay and collision delay for a hop. It is represented as

d(k,c) = DIFS + mye +wi Ly + m{Te,

where for node &, DIFS is DCF Inter-Frame Space in 802.11,
my, is the number of back-off slots, € is the length of back-off
slot, wy, is the number of chunks transmitted in neighboring
nodes, T} is the transmission duration of a data chunk, m¢ is
the number of collisions and 7. is the duration of a collision.
Since the back-off slot time and collision duration are rela-
tively small, we can assume that 7, ~ T ~ e. my, = S(k) is
the number of stored data chunks of nodes. m{ = (w;—
1)S(k) is the maximum number of collisions when all neigh-
bors except one send their stored chunks." Thus, d(k,c) ~
DIFS + Ty(wy, + S(k) + (wp, — 1)(S(k))) = DIFS + Ty(wi+
wS(k)), which means that the one-hop Contention Delay is
roughly a linear transformation of the one-hop Contention
Cost. We will use the contention cost to represent access
latency in the following. Note that ¢;; is used for Contention
Cost for both accessing and dissemination phases where the
network topology remains unchanged.

3.4 Problem Formulation

We now formulate the caching problem in pervasive edge
computing environments. The basic idea is to add the Fair-
ness Degree Cost and Contention Cost in a weighted form, and
associate a decision variable to different chunks. Since the
Fairness Degree Cost and the Contention Cost have different
meanings, after some tests, we find that it is better to set
them the same weight in the following integer linear pro-
gramming formulation:

min Z Z f’i Yin
i n
+ Z Z Z CijTijn + Z Z CeZen
i ki n

3)

ec€ n
s.t. Z Z Tijn =1, (Vn e N) (4)
i
Yin — Tijn > 0, (Vi,j € V,Vn € N) (%)
@i < D zen, (Y EV, VR EN,VY CE) 6)
i€V, ecd(Vy)
Tijns Yins Zen € {0,1}.(Vi,j € V,Ve € E,¥Vn € N). (7

In the above linear programming problem, ¢, = ¢;; if node
1 and node j are the two end points of edge e, x;j,, ¥i» and
Zen are assignment variables, and x;j, is the accessing vari-
able. If z;;, = 1, node j will access data chunk n from node
i. Yin is the caching indicator variable. y;, = 1 means that
data chunk n will be stored in node i. z, is the dissemina-
tion variable. z., = 1 means that the data chunk n will be
disseminated through edge e in the dissemination phase.

1. Only one node sending causes no collision.

There are three terms in Equation (3), the objective func-
tion: the Fairness Degree Cost of the entire network, the Con-
tention Cost for the accessing phase and the dissemination
phase of the entire network. Here, f; is defined in Equation (1)
and ¢;; is defined in Equation (2). If the storage of a node is
used up, the node will not cache any more data chunks. Con-
straint Equation (4) ensures that every node j should receive
a specific data chunk n from node ¢. It is clearly not optimal if
a node receives the same data chunk multiple times. Con-
straint Equation (5) ensures that if node j receives a data
chunk n from node 7, node ¢ must store that chunk. Con-
straint Equation (6) is the connectivity constraint. Here, Y, is
any subset of nodes, and §(Y},) represents all edges that con-
nect to Y,,. This is to ensure that for any subset of chosen
nodes to cache data chunk n, they are connected in a Steiner
tree [26]. These nodes need to be connected to disseminate
the data chunks along the Steiner tree. z., = 1 means that
edge e is chosen in the Steiner tree so that data chunk n will
be disseminated through this connection link.

Our problem is an extended case from the Connected
Facility Location problem. It can be transformed to the sum-
mation of multiple ConFL problems. f; is equivalent to the
construction cost for a facility in ConFL problem, which in
this case represents the cost that the network is willing to
pay to select nodes caching a data chunk. ¢;; and ¢, can be
regarded as modified distance costs, adding the factor of
contention of the network. y;, 2;; and 2z, have similar mean-
ings. They represent node i as facilities or caching nodes in
the respective problem and node j wants to access it
through edge e. As shown in [20], the original ConFL prob-
lem is NP-hard. The summation of all different chunks is a
polynomial time mapping, which maps our problem to the
ConFL problem. Thus, our problem is also NP-hard.

It is very difficult to solve the ConFL problem directly.
Fortunately, there are many existing approximation algo-
rithms, among which the best algorithm has a 4.23 approxi-
mation ratio. To take advantage of approximation
algorithms for ConFL, we make another transformation of
our problem to

Z (mln Z fiym + Z Z Cijxijn + M Z Ce,zen) . (8)

n ec&

We transform from one optimization goal of achieving
minimization from variables with data chunks into the sum-
mation of multiple minimization problems for each chunk
individually. This way we can apply the approximation
algorithm to problem Equation (8) by using it multiple
times for different chunks. Although Equation (8) is differ-
ent from Equation (3), we will later show that under certain
conditions, we can use this iterative solution to Equation (8)
to solve Equation (3), and the approximation ratio of the
original approximation algorithm is preserved.

4 CACHING ALGORITHMS

In this section, we first propose an approximation algorithm
for the caching problem by leveraging an existing ConFL
approximation algorithm. Then we develop a distributed
algorithm where devices exchange data reachability infor-
mation and identify popular candidates as caching nodes.
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TABLE 1
Notations Used in Approximation Algorithm

=

Caching node set for data chunk n
Producer of data chunk v
FROZEN node set

TIGHT node pair set

ADMIN node set

INACTIVE node pair set

Direct connection pair set

Indirect connection pair set

Unit increase value of var
Regional village

=Y~

ESESEO U R A= Re> Pavhny

41 Approximation Algorithm

In our proposed approximation algorithm, we obtain input
information from nodes in the network and leverage a
ConFL approximation algorithm to solve the problem. We
adopt the algorithm for the ConFL problem in [21], which
has an approximation ratio of 6.55. This algorithm approxi-
mates the largest possible value of the dual problem. Basi-
cally, nodes with sufficient resources, which lie in the path
between multiple nodes and an existing caching node or
producer, will be selected as caching nodes. The details of
our proposed algorithm are described in Algorithm 1 and
the notations used are given in Table 1.

The algorithm can be explained as follows. For each
chunk, we conduct one iteration (line 2). After some initiali-
zation steps, we update the Fairness Degree Cost for all nodes
in the network (lines 5-7) and then estimate the Contention
Cost of all links based on Equation (2) (lines 8-16). Lines 17-
46 are phase 1 of the approximation algorithm. It iterates
until every node finds out at which place they can obtain
the data chunk, (aka the state FROZEN in the original
approximation algorithm [21]). First, the algorithm
increases the price it is willing to pay for establishing a con-
nection to a caching node (lines 18-20). Note that here the
increasing step units U,, Ug and U, can be different since
the increasing steps of the three parameters have different
meanings on costs in the dual problem.

As we mentioned previously, choosing the parameter
wisely can make the solution better. If this price is larger than
the cost for accessing one existing caching chunk on a node, it
can establish a connection to that node (lines 21-26), which is
the first and second conditions in phase 1 of the original
approximation algorithm in [21]. If not, it goes to the third
condition. Lines 29-30 and 31-32 are the conditions in 3(a)
and 3(b) respectively in [21]. Lines 33-42 deal with condition
3(c) in [21] where all direct connections, inactive node set and
ADMIN set are created. This ends phase 1. Phase 2 is to con-
nect the locations of corresponding nodes together. Many
existing algorithms can be used to address the problem, from
which we choose [26]. We will not discuss it in detail here.
Finally, for chunk n, the ADMIN set A are the nodes that will
cache the chunk. We save this set into L(n) and start the next
round until we find all caching nodes for all chunks.

It should be mentioned that although the best approxima-
tion ratio for ConFL problems so far is 4.23 as proposed in
[22], the algorithm can only obtain a deterministic approxi-
mation ratio with a derandomization process which needs to
solve an exponential size linear programming relaxation.
Thus, this algorithm is practically inefficient and very hard
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to implement. On the other hand, the 6.55-approximation
algorithm we choose has the lowest deterministic approxi-
mation ratio of polynomial time to ConFL problem for now.

Algorithm 1. Approximation Algorithm

Input: G — (V,€), P,
Output: L(n)
1: L(n) <0
2: for all Data chunk n do
33 F—0T—0,Cq—0,C—0,A—0,B—10

4 ;0,8 < 0,y — —1,05; < 0. Vi, j,5
5:  forall node i do
6:  Update fi, — S(i)/[Sii(i) — S(0)]
7:  end for
8: forall nodeido
9: for all node j do
10: Find shortest path PATH(3, j)
11: Find ¢;j — 3 cpatn( ) wall +5(a)]
12: end for
13:  end for

14:  for all edge e do

15: Update c.,, + ¢

16:  end for

17:  while F #V — P, do

18: aji+=U,. VjeEV,j¢ F

19: B+ =Up Vi, j€V,i¢ F.3 By < fin

20: Vit =Up Vi€V, jg BTl =143 Bi; > fin

21: for all node 7, node j do

22: if o > Cij then

23: T[j] < i, F — FU{j}

24: Cilj] < i(i € A) or B[i](i € B)
25: end if

26: end for

27: for all node 7, node j, location [ do
28: if yij > Cij then

29: if i € A then

30: Cilj] < i, F — FuU{j}

31: elseif i € Bthen

3. Cilj] — Blil, F — FU{j}
33: else

34: A— AU{i},Bli] —i

35: R0

36: if y;; > ¢y or B;; > 0 then
37: Cylj] < i, F — FU{j}
38: R — RU{j}

39: end if

40: Blk| < i. Vk € T[R]

41: Cilk] < BJi]. YkeT[i]¢ R
42: F— FU{k}. VkeT[i]¢ R
43: end if

44: end if

45: end for

46: end while

47:  Construct Steiner tree between i € A
48:  L(n) «— A

49: end for

4.2 Complexity Analysis of Approximation
Algorithm

We now discuss the time complexity of the algorithm. We

assume that there are N nodes, () chunks, and the number of

iterations of line 17 is C. Then, the complexity of the
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algorithm in a grid network is O(N?). Apparently, the bottle-
neck of the algorithm is line 27. If we simplify the locations as
the location of nodes in line 27, which is practical in the real
implementation, there will be O(N?) complexity by the num-
ber of loops. Note that lines 8-13 in Algorithm 1 require the
shortest path between every two nodes, which costs at most
O(N?) using Floyd-Warshall algorithm. If the network topol-
ogy is simple, such as a grid network, the complexity might
drop to O(N?). Meanwhile, Steiner tree problem has polyno-
mial time approximation algorithms. The work like [26] can
achieve 1.55 approximation ratio at the time complexity of
O(N?). The number of iterations is related to the chosen unit
step U,. If the unit step is large, it might quickly finish but
may select fewer nodes and increase the Contention Cost of
accessing phase; or if the unit is small, it might take a long
time. However, it will not exceed max{c;;}/U,. If we increase
o to become larger than the maximum of all ¢;;, data chunks
can be placed anywhere. In this case, the iteration will end.
So the number of iterations is no more than C' = max{c¢;;}/U.
After all, in the worst case, for each chunk, the complexity is
O(CN?). For the algorithm in total, its complexity is no more
than O(QCN?). For max{c;;}, it depends on the data chunks
of the network as well as the connection complexity. Some
networks may have less complexity. For example, for a grid
network, the number of maximum hops of the network is
fixed. O(C) = O(Q) since the size of {c¢;;} is fixed. We argue
that in practical edge computing environments, the number
of data chunks is a constant not depending on the size of the
network. Thus, the overall complexity of a grid network is
O(N?). The original approximation algorithm can be exe-
cuted in polynomial time, which can still offer a 6.55 approxi-
mation ratio to the ConFL problem, and our problem as well.

Now we show that this iterative solution under proper
increment unit settings will achieve the same approxima-
tion ratio as Equation (3).

Theorem 1. The above iterative algorithm can achieve a 6.55
approximation ratio to the optimization problem (8).

Proof. Equation (8) is the summation of a series of minimi-
zation problems. To address the problem, first, we must
obtain the dual problem of each chunk represented in one
of the minimization problems in Equation (8). For a linear
programming problem, the maximum value of the dual
problem is the same as the minimum value of the primal
problem. In this problem, it is easier to solve the dual
problem than the original one. The dual problem formu-
lation can be induced from [21]. For each minimization
problem, we have

max Z(xjn — Z Bujn 9
J J

st aj < g+ ﬂijn + Z Qym,v”, (Vi #* 'U,j) (10)
Y
Kjn < Cujn + ﬂvjm (VJ) (1 1)
Z:Bijn S fij7 (\V/’L) (12)
J

Z Z OYH,jn < Cen, (VB) (13)

Je€d(Yn)
Ajns :Bijm eyn-,jﬂ = 0. (14)

In Equation (9), «, B and 6 are three dual variables of
Zn, Yn and z, in Equation (3). We need to find the values
of dual variables to get the optimal value of the original
problem. We let Dual, = max(}_; o — >, B,) be the
approximate optimal value (not the real optimal value)
of Equation (9). Opt,, is the optimal value for each chunk
n of Equation (8). Similarly, we let Dual(n) = n(3_; ojn—
>_;Bujn) be the approximate optimal value for the dual
problem of Equation (3) and Opt(n) be the optimum
value of Equation (3). The approximation algorithm is
based on improving the dual value to approximate the
objective value. We can conclude that if there was only
one chunk in the network, Dual(1) = Dual;. We assume
that the cost is always lower if we use caching rather
than directly getting all data from the producer. Thus,
according to Equations (9), (10), (11), Dual, < Zj Cojn-
The result is the same as Dual(n) < >_, >, c,jn. We then
define €, and ey, where Vn, €1, €2, > 0. Let Dual(n) =
Zj Cyjn — €1p, and Dual, = "Z/ Cyjn — N€ay. For the first
chunk, €)1 = €21. We assume that adding a cache should
lower the total cost of facility construction. If choosing U,
and Up properly, after the first chunk, we have ¢, > €,.
When all chunks are cached into the network, Y Dual, =
Zn E/ Cyjn— Zn €ip =" Z, Cojn — Z ney, <n Z/ Cujn —
>~ ney, = Dual(n). Since there is a 6.55-approximation algo-
rithm for the primal-dual problem, we set k as the approxi-
mation ratio. Then Dual,, = kx Opt,, and Dual(n) = 6.55x
Opt(n). Thus, we have Y, Dual, = nDual, = nk x Opt, <
Dual(n) = 6.55 x Opt(n). Since nOpt,, = Opt(n), We have
k < 6.55. We conclude that it will achieve the same approxi-
mation ratio by using the algorithm with fixed approxima-
tion ratio multiple times. O

4.3 Distributed Algorithm

The algorithm proposed above is a centralized algorithm that
needs the information of connection topology of the network.
However, sometimes nodes may not have such information.
To address this issue, we now make some extensions to the
approximation algorithm and propose a distributed algo-
rithm. The basic idea is to keep the variables associated with
a node and let the node maintain them, and send control
messages within the k-hop range to obtain the contention
information and inform the state change of a node.

In the distributed algorithm, the initial states of nodes
are the same as the approximation algorithm. Consider that
there is a new data chunk to be cached in the network. First,
there will be an New Packet Info (NPI) packet informing all
nodes that there is a new data chunk to cache. Then, nodes
will exchange information about the contention. The
exchange will be limited in the k-hop range to avoid flood-
ing. Then node ¢ will increase a bid denoted as «;. If the bid
can cover the estimated contention cost between two nodes i
and j, node ¢ will send a TIGHT request to node j, meaning
“Can I get data from you?” and start a bid for relay cost y;
and resource cost B;. If the bid for relay cost covers the con-
tention cost, the node will send a SPAN request, “Can you
fetch data for me from other nodes?” A node that has
received enough SPAN requests will make itself an ADMIN
node, and send responses back to the nodes which sent these
SPAN requests and those whose bid for resource cost was
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TABLE 2

Messages in the Distributed Algorithm

Packets Content Range

NPI Inform there is a new data chunk to  Broadcast
be cached

CcC Contention collection request Local

TIGHT Inform a node for tight (bid larger Local
than contention cost)

SPAN Inform a node for span (bid larger Local
than relay cost)

FREEZE Response message to freeze a Local
certain node

NADMIN Inform self admin for those nodes Local
which tights with this node

BADMIN  Inform self admin for those nodes Broadcast

which has adequate resources

large enough. Nodes that receive the response message will
stop bidding. Algorithm 2 shows the detailed process for a
data chunk. Whenever a node receives a message, one of the
processes in Algorithm 2 will be performed on that node. If a
node determines itself to be an ADMIN node, it will proac-
tively request the data chunk from the producers. Note that
all types of messages, except NPI messages and BADMIN
messages, are only limited in the k-hop range.

4.4 Complexity Analysis of Distributed Algorithm
We now discuss the number of messages of the distributed
algorithm. All messages that will be transmitted in the net-
work are listed in Table 2. We assume there are N nodes
and @ chunks. The number of messages is of O(QN + N?).
The number of NPI messages is equal to the number of
chunks. Every node will send out CC packets for each
chunk, so the total number is O(QN) which is the number
of chunks times the number of nodes. The number of
TIGHT and SPAN messages are both O(N?), where the
worst case is to send every other node a TIGHT message.
This is unlikely to occur since there will always be nodes
that have data copies and send responses. The number of
FREEZE messages is O(N) since every node will send at
most once when it finds a node which can cache. NADMIN
and BADMIN are all messages sent from a node that is
selected to become a caching node. Each caching node will
only send these two messages once, which is in total at most
O(N). We can conclude that the total number of messages is
O(QN + N?), where TIGHT, SPAN and CC are the most
dominating messages in the network.

4.5 Caching for Continuously Generated Data

So far our proposed algorithms are based on the assumption
that every node has the caching storage capacity to store all
data chunks. In reality cases, the producers may generate
data chunks continuously. For example, micro-climate sen-
sors such as thermometers and hygrometers will generate
temperature and humidity data continuously for small
areas, and old data will become obsolete. Over time, data
chunks may become outdated as the information is no lon-
ger valid, or caching storage may be full on some nodes,
thus necessitating cache replacement. As new data are being
generated, the caching decisions must be adapted continu-
ously to ensure fair and efficient data access. Thus, we
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propose a continuous caching strategy, which extends our
original design to meet the demand of caching scenarios
over long time periods.

Algorithm 2. Distributed Algorithm

Receive NEw Packer INFO(NPI)
Send Contention Collection (CC(7)) Request in k£ hops
while True do
Gradually increase «; Until «; larger than one of the Con;
received.
Send TIGHT (i) Request to j.
Gradually increase g}, y;
if y; larger than Con; then
Send SPAN(:) Request to j.
end if
end while
end Receive
Receive CCi
Con+ =1
Send Con back
end Receive
Receive Tight/Spani
T =Tu{i}
if Node is INACTIVE then
Send FREEZE(a) toVj € T
else if Node is ADMIN then
Send FREEZE(i) toVj € T
else if Node is ACTIVE and Message is SPAN then
c+=1
end if
if Node is ACTIVE and ¢ > M then
Make myself ADMIN
Send NADMING) toVj € T
Broadcast BADMIN(i)
Proactively request Data chunk from Producer
end if
end Receive
Receive Freezei
a=1
Stop increasing o, B v,
end Receive
Receive Nadmini
a=1
Stop increasing «j, B, v,
Send FREEZE(a) toVj € T
end Receive
Receive Badmini
if Node is ACTIVE and ; > Con; and g; < f; then
a=1
Stop increasing o, B, v;
Send FREEZE(a) toVj € T
end if
end Receive

The previous algorithms can only support caching of
continuously generated data chunks for a short time. If the
data generation rate is larger than the expiration rate, all
caching storages in the network will eventually become full.
Moreover, caching storage is usually available where con-
tention costs are high, which is the reason that those nodes
are not chosen for caching previously. Therefore, it is neces-
sary to replace chunks from some of the nodes at key
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locations of low contention costs, even if their storage is full.
The total contention cost for accessing the new chunk will
decrease if more than one node cache the new chunk. First,
the contention cost is the same on the node which swaps a
chunk, since the number of chunks on that node will not
change; second, caching additional chunk replicas on other
nodes will decrease the total contention costs. Note that the
replicas of the new chunk can be cached not only on nodes
with available storage, but also on nodes that are full, in
which case some old chunks must be driven out.

Carefully selecting which nodes to replace existing
chunks with a new chunk is crucial for maintaining low
access latency in continuous caching. In the original design,
the fairness degree cost of node ¢ will be oo if its caching
storage is full, and then this node will no longer cache any
more chunk. To enable choosing nodes with full storage, we
redefine the fairness degree cost as follows.

O
f’l, = Stol ( L>_S('>
Stot () + 2 jevyiy i

if S(Z) < Stol(i)

. ) (15)
if S(i) = Siol(i)-

When S(i) < Sii(7), the fairness degree cost is the same
as the original design. When S(i) = Sii(¢), the cost is the
maximum possible fairness degree cost (equal to Sy (i)
when using the number of chunks as the metric) plus the
summation of all possible contention costs for other nodes to
access this chunk from node i. The redefined fairness degree
cost makes it possible to choose a node with full caching stor-
age. If the system chooses a node with full storage, such a
decision will produce less overall contention costs than
choosing nodes with available storage. This is because that
the fairness costs will be higher on nodes which are full than
on nodes with available storage. After we refine the fairness
costs for the situation that nodes may be full, we can apply
the new definition of f; in Equation (15) to replace the old
definition in the distributed algorithm in Algorithm 2. This
will enable the ability to swap out chunks from nodes which
are full in some high fairness degree cost but low contention
cost cases to achieve continuous caching over time.

Note that the nodes selected to swap out and cache will
not always be the same for each newly generated data chunk.
The new data chunk will likely have some replicas on some
other nodes with available storage. Since the network selects
where to cache based on the current network state, the
changes of caching storage on different nodes will have dif-
ferent effects on the distribution of each chunk. Meanwhile,
the nodes will delete chunks if they expire. The deletion will
create space for caching storage. The expiration and deletion
of chunks will have even greater effects on the selection of
nodes for cache replacement. Each time a new chunk is gen-
erated, we call the previous algorithm with the fixed number
of chunks, and utilize the new fairness degree cost in the
original algorithm to support continuous caching scenarios.
Thus, the proposed strategy can be used to ensure low
latency and fairness for caching over time.

By using the new fairness degree cost definition, the pre-
vious algorithm can select which nodes should cache the
new data chunk. On those nodes that have full storage, they
must select which existing chunks to swap out. Since we
assume that all nodes need to acquire all chunks in the

network, all chunks are being requested equally. Thus, the
cache replacement strategies based on “recently used” are
not applicable for this case. Some popular applicable replace-
ment strategies are FIFO (first in, first out), LIFO (last in, first
out) and RR (random replacement). Another simple replace-
ment strategy based on data value inspired by [27] can also be
applied to the continuous caching scenarios. The data value
can be set by the producer of the data and it continuously
decreases over time. The existing chunk with the lowest
value will be swapped out to make space for new chunks.

Although different cache replacement strategies will
swap out different chunks, through experiments we find
that there is not any significant difference on the performan-
ces of caching. First, the selected nodes to perform cache
replacement are the same no matter which replacement
strategies are applied, since the algorithm for deciding these
nodes is orthogonal to the replacement strategies. Second,
swapping out and storing a new chunk will not change the
total used storage, and the impact on contention costs
throughout the network is similar among the strategies.
Simulations in Section 5 show that the difference on the per-
formances is similar on two of the replacement strategies.
Third, different replacement strategies have no impact on
the accessibility of other unexpired chunks. Multiple nodes
will store the replicas for a chunk. When swapping out one
chunk from a node, there will be other replicas of this chunk
on other nodes. Thus, most nodes accessing chunks stored
on other nodes are not affected very much.

As will be seen in the performance evaluation section,
with the above simple extensions and modifications, the
algorithm can work well in the continuous caching scenar-
ios over time.

5 PERFORMANCE EVALUATION

In this section, we present detailed simulation and evaluation of
our proposed algorithms. Our simulations focus on answering
the following questions: 1) How do the proposed algorithms
compare with other existing multi-hop caching algorithms on
contention costs? 2) How do the proposed algorithms compare
with existing algorithms on fairness? 3) What is the perfor-
mance of cache replacement supported by our proposed algo-
rithms and strategies?

To answer these questions, we implement both our algo-
rithms and two other existing multi-hop caching algorithms
[5], [14]. To compare our algorithm with optimal solutions,
we also use PuLP [28], the linear programming modulator,
to implement the optimization problem. We implement
these algorithms on both grid network topologies and ran-
dom network topologies. We fix the producer in grid net-
works, and randomly choose a node as the producer in
random networks. Unless otherwise specified, we put a
total of 100 chunks in the network and each node is also
capable of storing 100 chunks. A node will send the data to
another requesting node through the shortest path in hops.
We conduct our simulations on a computer equipped with
an Intel Core i7-5820K and 16 GB RAM.

5.1 Comparison with Optimal Solution
Fig. 1 shows the difference between the optimal solution
and different algorithms for the first 5 chunks on a 6 x 6
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(d) Algorithm [5]

(e) Algorithm [14]

Fig. 1. The distribution of the first five data chunks in a 6 x 6 grid net-
work. For (b)-(e), the area size and number in each circle show the
difference in the number of stored chunks from the optimal solution
on the respective node. The star indicates the producer. The results
show that our algorithms get the closest chunk distribution to the
optimal result.

grid networks. Fig. 1a shows the optimal distribution for the
proposed formulation. The optimal result is obtained from
the linear programming modulator. The size of the circle
and the number in it show the number of chunks a node
stores. The evenly distributed chunks among nodes show
that most nodes participate in caching, while few nodes
cached all five chunks. The more chunks are in the network,
the fairer each node caches. Fig. 1b, 1c, 1d, 1le show the dif-
ference with optimal results for the four algorithm men-
tioned above. Fig. 1b and 1c are algorithms we propose,
while Fig. 1d and 1le are existing algorithms to compare.
The size of the circle and the number in it indicate the diff-
erence in the number of chunks that each node stores
compared to the optimal results. In our algorithms, the dif-
ference with optimal solutions is smaller. The more nodes
are selected to cache, the more evenly the data distribution
is. Other two algorithms choose nodes based on the cost
(hop count or contention) obtained from the current net-
work topology, without considering the current state of
nodes. They always choose the same group of nodes for
each chunk. Thus, in these two algorithms, all 5 chunks are
cached at the same group of nodes, and the difference is sig-
nificantly larger.
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Fig. 2. Contention cost of four different algorithms in grid and random
networks. Our algorithms perform better than both “Cont” and “Hopc”
algorithms.

5.2 Contention Cost Evaluation

We now evaluate the contention cost performance of our
proposed approximation algorithm (denoted in figures as
Appx) and distributed algorithm (Dist). We also compare
them with the two existing algorithms mentioned above,
which estimate latency based on hop count (Hopc) or con-
tention (Cont). We put 100 distinct data chunks in the net-
works and place these chunks by running these algorithms.
We obtain the contention cost by adding all contention costs
among all paths in the network. As mentioned earlier, con-
tention cost here can be translated into data access latency.

Fig. 2a shows the contention cost for all four algorithms
in different network sizes in grid networks, from 5 x 5 to
10 x 10. Our proposed algorithms perform similarly to the
“Cont” algorithm, in both smaller and larger networks. The
approximation algorithm is on average 10.84 percent better
than the “Cont” algorithm, and the distributed algorithm is
on average 7.63 percent better than the “Cont” algorithm.
Meanwhile, our algorithms perform much better than the
“Hopc” algorithm, with average 97.9 and 97.1 percent better
respectively for approximation and distributed algorithms.
We can observe that when the total number of chunks is
small, the difference in contention cost is not very obvious,
since the position bias strategy will provide the best place
for accessing these chunks. However, as the number of
chunks increases, the contention around the nodes with
“best position” also increases, making the fair caching more
competitive for a larger number of chunks.

We also test our algorithms in random networks. The
nodes are distributed randomly in roughly the same sized
area as the grid network with the nearest number of nodes.
Fig. 2b shows the comparison between these four algorithms.
Our algorithms also perform well in random networks,
achieving significantly lower contention costs. The approxi-
mation and distributed algorithms are on average 10.26 and
7.45 percent better than “Cont” algorithm respectively.

As we mentioned in Section 4.3, in the distributed algo-
rithm, nodes will collect local information to make estima-
tions about the network. A good estimation is very crucial
for the distributed algorithm. It gives nodes general infor-
mation about the network and further guides nodes to select
the values of the parameters. In general, the more informa-
tion nodes have, the better estimations nodes will make.
However, if the packets for information exchange traverse
too many hops, it will cause more packet transmission thus
more contention.

Fig. 3 plots the contention cost and the propagation scope
limitation under different sizes of grid networks. We find
that 2-hop limitation will give the best results in contention
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Fig. 3. Effect of message hop limitation on contention cost in the distrib-
uted algorithm. Tested on different size of grid networks. 2-Hop limit has
the best result.

1.0 7 1.0 7
; V H i
0.81; 7 i 0.81; 7
i / i /
L08fi / L 061 /
8 | /'I [ 8 | /'I 5
041 —— Appx 041 —— Appx
./' -=-- Dist _/' L4 -=-- Dist
02¢ 47 Hopc 0.2f# e Hopc
1 7 —-— Cont 1 —.— Cont
0.0 0.0
0 8 16 24 32 40 48 56 64 0 10 20 30 40 50 60

Number of nodes Number of nodes

(a) Grid network (8 x 8) (b) Random network (60 nodes)

Fig. 4. Cumulative chunk distribution of four different algorithms in grid
and random networks (100 chunks). Our proposed algorithms are fairer
on chunk distribution.

costs. When messages are limited within 1-hop, nodes get
too little information for estimation. Nodes may underesti-
mate the contention, such that nodes at high contention
locations may incorrectly decide to cache data. When the
hop limitation is larger than 2, the difference between total
contention cost on different propagation scopes is relatively
small, since nodes have adequate information about the net-
work. It also brings extra contention when the message
propagation scope is larger. With proper information col-
lected, nodes will have better estimations, and more nodes
will be selected as caching or relay nodes. To balance
between message overhead and caching performance, we
therefore choose 2-hop limitation on propagation for local
information exchange packets in the distributed algorithm.

5.3 Fairness Evaluation

Next, we evaluate the performance on fairness for our algo-
rithms. As mentioned earlier, in edge computing environ-
ments, nodes are owned by individuals. With limited
resources, fairness is crucial in such environments.

Fig. 4 shows the number of nodes needed to store a cer-
tain ratio of all data on an 8 x 8 grid network (a) and a ran-
dom network contains 60 nodes (b). If more nodes
participate in caching, the workload of each node will be
fairer. We define p-percentile fairness as the fraction of
nodes needed to cache p% of the total data. Ideally, when all
nodes have the same caching load, p-percentile fairness is
strictly p%. The smaller it is, the more uneven the load, the
less fair it will be. In the 8 x 8 grid network, the 75%-percen-
tile fairness of approximation and distributed algorithms
are 73 and 81 percent respectively, while 3 and 25 percent
fairness for “Cont” and “Hopc” algorithms respectively.
This shows that our algorithms enable more nodes to partic-
ipate in caching data chunks, which makes it fairer for cach-
ing. The fair distribution is also applied in random
networks, as shown in Fig. 4b. The observations are similar
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Fig. 5. The Gini coefficient of four different algorithms in grid and random
networks. Our proposed algorithms have a lower Gini coefficient.

on chunk distribution. It shows that our algorithms can
ensure fair caching in more general cases.

Another well received measurement for fairness is the
Gini coefficient. The Gini coefficient is widely used to depict
income disparity, and is also used in previous works to
measure fair caching [29]. The definition is as follows:

22t — )
227‘, Zj L ’

Gini =

where t; and ¢; are the number of chunks stored in nodes i
and j respectively. Note that in the denominator, ¢; and ¢;
are commutable. It measures the inequality of cached
chunks among different nodes. In general, the lower the
Gini coefficient is, the fairer the network will be.

Fig. 5 depicts the Gini coefficient for all four algorithms
in both an 8 x 8 grid network (a) and a random network
that contains 60 nodes (b). Our algorithms have a Gini coef-
ficient about 0.2. This means that the chunk distribution is
fairer among all nodes. Moreover, when the network size
grows, the Gini coefficient of our algorithms drops while
others remain roughly the same or even increasing. The
larger the number of nodes is, the more evenly chunks will
be distributed in our algorithms, thus decreasing the Gini
coefficient.

Dividing large data items into multiple chunks is easy to
maintain, and chunks can be cached separately to enhance
robustness. A chunk may have multiple copies (i.e., repli-
cas) stored on different nodes. However, all chunks belong-
ing to one data item must be obtained for successful data
accessing. The contention cost of chunks should be roughly
even, such that they can be obtained in about the same time
for accessing. Otherwise, one chunk with long latency may
delay the successful access of the data item. We test such
per chunk fairness by putting 100 distinct chunks into the
network and calculate the contention cost in accessing
phase of each chunk.

Fig. 6 shows the accessing contention cost for each data
chunk in different grid networks (a) and random networks
(b) for the distributed algorithm. Each point depicts the aver-
age accessing cost of 10 distinct chunks on average. The
accessing contention cost for each chunk is roughly the same,
which shows that each chunk fairness is also maintained in
our distributed algorithm. Note that in “Cont” and “Hopc”
algorithms, they do not consider each chunk distribution.
Thus, every chunk is stored on the same set of nodes. This
will cause huge contention on a few selected nodes since they
have to respond to all data requests.
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5.4 Continuous Caching Evaluation

To further understand our extended algorithms in continu-
ous caching scenarios, we conduct the simulation over long
time periods using the modified distributed algorithm. In
this case, each node is capable of storing 50 chunks, and the
total number of distinct data chunks is 1000. A new chunk
is generated every second. Every chunk will be cached on
multiple different nodes as replicas. In this scenario, every
chunk will have an expiration time. Once a chunk expires,
the node will delete this chunk from its caching storage,
making space to store future chunks. Before expiration, if a
node is already full, and the network still wants to put data
onto this node, as we discussed in Section 4.5, the node will
swap out one chunk. We first analyze the performance
using FIFO as the replacement strategy.

Fig. 7 shows the Gini coefficient over time. As we men-
tioned before, it measures the inequality of cached chunks
among different nodes. We conduct the simulation on dif-
ferent sizes of grid networks, and we sample the Gini coeffi-
cient of the entire network every 50 seconds. Overall, the
Gini coefficient is limited between 0.1 to 0.2, which shows
good fairness when running over time. It first gradually
decreases before the first chunk starts to expire (in this case,
between 300s to 600s). This shows the fact that the algorithm
makes caching selections based on the current network,
thus fairer over time. Meanwhile, it also agrees with the
observation from the previous simulation without any
replacement, where the larger size of the network, the more
nodes participate in caching, the lower the Gini coefficient
will be. After chunks start to expire, the Gini coefficient
starts to increase and gradually achieves a stable state.
Nodes swap out out-dated chunks and may not have a new
chunk to store. Thus, the expiring of chunks causes the tem-
porary increase on the Gini coefficient, since deleting the
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Fig. 8. Contention cost (accessing phase) for chunks in continuous sce-
nario, each point depicts the average of every 50 seconds. The cost fluc-
tuates for diffferent chunks in relatively small ranges.
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Fig. 9. Total storage used in continuous scenario, each point depicts the
average of every 50 seconds. As the Gini coefficient depicts previously,
the system will reach an equilibrium as the rate of generating and delet-
ing chunks stablilized over time.

out-dated chunk is not even on every node. When the pro-
cess goes on, nodes deleting expired chunks and caching
new data chunk will finally achieve an equilibrated state.
The change of total storage also reflects this equilibrium,
which we will discuss later.

The even contention cost on accessing of each data chunk
is also important in continuous caching for steady accessing.
This can keep smooth data access for continuous service in
the network, since all chunks of a piece of data often need to
be completely collected to be useful. Fig. 8 plots the average
contention cost in accessing phase for every 50 seconds.
When the network size is small, the accessing cost is
roughly the same. When the network size increases, the
accessing cost fluctuates more, but it is still within a certain
range (5 x n? to 10 x n?, where n is the total number of
nodes). The fluctuation mostly occurs when chunks start to
expire. After the network reaches the equilibrium, the
accessing costs also remain roughly the same. In general, it
shows that the proposed continuous caching can also lead
to low data access latency.

The changes of the total storage used is another way to
observe the behavior over long time periods. Fig. 9 depicts
the total storage used throughout the entire network over
time. In grid networks (a), we test from 5 x 5 to 10 x 10, and
in random networks (b), we test from 20 to 100 nodes. The
expiration time of every chunk is between 300s to 600s for
different network sizes in both settings. Before the first
chunk expires, the storage will gradually increase as more
data chunks are cached. The figure also shows that our algo-
rithms make more replicas in larger networks for easy
accessing and fairness. The larger the network size, the
more replicas for a chunk, thus more storage will be used.
Meanwhile, the network will not be overloaded and use up
all storage (despite some of the nodes will use up all storage
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Fig. 10. The contention cost and total storage used in continuous scenar-
ios. Caching replacement is determined by data values. The expiration
threshold value is uniform random for each chunk. The result is very sim-
ilar to that of Figs. 8 and 9.

and need cache replacement later). As the system running
over time, after chunks start to expire, the total storage will
first decrease and then increase. The network will quickly
find an equilibrium state and maintain fair and efficient
caching, as well as the Gini coefficient shows.

Because of these replicas, the ratio between the number
of accessible chunks to the number of chunks that are not
expired (hit rate) is always 100 percent for unexpired
chunks. It means that even if one node swaps out a chunk
in order to store a new chunk, there are other replicas in
the network. The chunk can still be accessed via other
replicas.

Finally, we discuss the difference in the performances of
cache replacement strategies. As we mentioned in Section 4.5,
the only difference on different cache replacement is which
chunk the node will swap out when it is full. For FIFO, we
swap out the oldest one. If we assign a data value for every
chunk, the node will swap out the one with the lowest value.
Other parts of the process for caching are the same for differ-
ent replacement strategies.

For swapping out data chunks using data values, if it
drops below a certain threshold, the chunk is marked as
expired. The node will delete the chunk to make room for
new chunks. We set the expiration threshold value as uni-
form random for each chunk, which the average time based
on the value is between 300s to 600s for different network
sizes, with the standard deviation of 100 seconds.

Fig. 10 depicts the total contention costs (a) and the
total storage used (b) when we used the value function to
decide which chunk the nodes will swap out. We test
them under different sizes of grid networks. These figures
are very similar to that of Figs. 8 and 9 using FIFO as the
replacement strategy. The contention costs for accessing
chunks are at the same level of the FIFO replacement
strategy. This shows that accessing for chunks is as effi-
cient as other replacement strategies. The total storage
used is smoother when reaching the steady state of the
storage. This is because the distribution of lifetime for
each chunk is uniformly random. Thus, some chunks may
have more lifetime. The hit rate of unexpired chunks is
also 100 percent. This shows that our proposed algorithm
and continuous caching strategies can also achieve the
same degree of fairness and low latency despite different
replacement strategies.

In summary, the above simulation results show that the
extended distributed algorithm also works well on continu-
ous caching over long time periods.

6 CONCLUSION AND DISCUSSION

In this paper, we propose two caching algorithms to achieve
fair workload among selected caching nodes for data shar-
ing in pervasive edge environments. We consider fairness
in caching multiple data items while keeping contention
cost low for data access. We propose an approximation
algorithm and a distributed algorithm. Comparison with
two existing algorithms on wireless network caching shows
that our algorithms can achieve comparable or even lower
latency while greatly improving fairness, thus data access
robustness and performance.

We would like to stress that the accurate representation of
contention cost or actual delay is very difficult. There are
many factors that can affect them. The accurate formulation
of contention cost is not the primary goal of our work in this
paper. Thus, we adopt the contention-induced delay, a
mature, well-studied model used in recent works to repre-
sent the contention cost. Our work focus on finding fair and
efficient caching algorithms, where the topology of the net-
work does not change significantly in short data transmis-
sion times. For high-mobility scenarios that change the
topology during the data transmission, we have designed
corresponding algorithms and strategies and will publish
them separately.
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