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Abstract—In IoT, what services from which nearby devices are available, must be discovered by a user’s device (e.g., smartphone)
before she can issue commands to access them. Service visibility scoping in large scale, heterogeneous enterprise environments has
multiple unique features, e.g., proximity based interactions, differentiated visibility according to device natures and user attributes,
frequent user churns thus revocation. They render existing solutions completely insufficient. We propose Argus, a distributed algorithm
offering three-level, fine-grained visibility scoping in parallel: i) Level 1 public visibility where services are identically visible to everyone;
ii) Level 2 differentiated visibility where service visibility depends on users’ non-sensitive attributes; iii) Level 3 covert visibility where
service visibility depends on users’ sensitive attributes that are never explicitly disclosed. Extensive analysis and experiments show
that: i) Argus is secure; ii) its Level 2 is 10x as scalable and computationally efficient as work using Attribute-based Encryption, Level 3
is 10x as efficient as work using Paring-based Cryptography; iii) it is fast and agile for satisfactory user experience, costing 0.25 s to
discover 20 Level 1 devices, and 0.63 s for Level 2 or Level 3 devices.
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1 INTRODUCTION

IN Internet of Things, what services from which nearby
devices are available, must be discovered by a user’s

device (e.g., smartphone) before she can issue commands to
access them [1]. The visibility of services must be “scoped”
to authorized users only, i.e., only the authorized service
subset/variant should be “visible” to the user device. Ser-
vice visibility scoping in large scale, heterogeneous enter-
prise environments has multiple unique features, which
render existing solutions [2], [3], [4], [5], [6], [7] significantly
ineffective or completely insufficient.

First, IoT interactions via short-range radios are largely
physical proximity based. A user mostly discovers and
controls nearby devices, such that desired physical changes
would occur in the local environment (e.g., door unlocking,
higher ambient brightness, lower room temperature, louder
music volume in the current room). A centralized server
does not know which devices are around the user device; ac-
curate user location requires more complexity in localization
capability. As a result, solutions [2], [3], [4] using centralized
servers are unfit for such proximity based discovery.

Second, multiple services of different natures usually
exist around a user, and all of them need to be discov-
ered. Three examples (of different natures) are sketched
here and will be introduced in detail in Section 4. Imagine
a university or corporate campus: 1) public utilities (e.g.,
thermometers in aisles) may be discovered to everyone,
even visitors; 2) yet most devices should be conditionally
disclosed according to users’ non-sensitive attributes (e.g.,
expensive equipment in an office should only be visible
to the employees); 3) still there are services customized
for specific populations of sensitive attributes that should
be discovered with privacy preservation (e.g., a vending
machine dispenses counseling/psychological support fly-
ers, hidden within regular magazines to students of needs).
Existing distributed schemes [5], [6], [7] are restricted to one
type and unfit for enterprise IoT with numerous, heteroge-

neous services; the simple piling up of multiple schemes
for heterogeneous service discovery is far from sufficient
because those schemes can have conflict or redundancy.

Third, user churns are frequent in large scale enterprise
environments. There are employment entry/termination or
promotion/demotion/rotation all the time. All these may
require updating messages to large numbers of devices. E.g.,
upon an employment termination, all the devices accessible
to the employee (e.g., small numbers specifically to her
but large numbers accessible to all employees) need to be
informed of that churn. Such changes must be propagated
and effectuated quickly and efficiently. Otherwise, new
users may fail to discover and access services timely, while
unauthorized users continue to see service access which
they are no longer eligible for; neither is desirable.

We propose Argus, a distributed, proximity-based IoT
service discovery algorithm that offers three levels (public,
differentiated, covert) of visibility in parallel. Each level
is built on top of its prior level with minimum extension,
and together they achieve efficient, harmonious, concurrent
discoveries covering IoT services of different natures. Also,
it minimizes the huge overhead resulting from authoriza-
tion updating (e.g., user addition/revocation), which is the
scalability bottleneck in this context, and fits well with an
enterprise scale. We claim our contributions as follows:

• We identify unique requirements of visibility scop-
ing in enterprise IoT, and design a distributed 3-
in-1 algorithm for scalable, concurrent, fast service
discovery at three levels: Level 1: public visibility
where services are identically visible to everyone;
Level 2: differentiated visibility where service vis-
ibility depends on users’ non-sensitive attributes; and
Level 3: covert visibility where visibility depends
on users’ sensitive attributes that are never explicitly
disclosed for the sake of privacy.
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• We identify Level 2 as the scalability bottleneck
in IoT service discovery. It is worth noting that,
our Level 2 using conventional cryptography (e.g.,
ECDSA) is found 10x as scalable and computa-
tionally efficient as more recent, fancier crypto like
Attribute-based Encryption (ABE) [8].

• Argus Level 3 goes beyond existing privacy-
preserving discovery work, and realizes indistin-
guishability that attackers cannot even know Level
3 is happening, let alone prying into user privacy
in Level 3. Besides, our Level 3 is found 10x as
computationally efficient as work based on Pairing-
based Cryptography (PBC) [9].

• We implement Argus’s all three levels, and ABE,
PBC for comparison. Extensive analysis and real
experiments on a 20-node testbed are conducted.
Besides the high scalability and computational effi-
ciency mentioned above, it is found secure and fast,
costing 0.25 s to discover 20 Level 1 devices, and 0.63
s for Level 2 or Level 3 devices.

2 MODELS AND ASSUMPTIONS

2.1 IoT Nodes in Enterprise Environments
Node Types. There are three types of nodes: the backend,
subject devices and objects. Subjects (i.e. users) use subject
devices (e.g., smartphones) to operate objects (i.e. IoT de-
vices). As is widely used in practice, the backend is not a
single server, but a hierarchy of servers run by the admin
to manage registered subjects/objects; it realizes a chain of
trust, and resists collapse under the load and a single point
of failure. Each subject/object has multiple attributes (e.g.,
a user’s position, department; a device’s type, functions),
and must register on the backend (e.g., manually out of
band), which is a common requirement in real enterprises. It
obtains an ID, private key, public key certificate (CERT) and
attribute profile (PROF) signed by the backend’s private key.

Resource & Power. Objects may have different re-
sources. Resource-poor objects (e.g., temperature sensors,
smoke detectors) have poor computing performance and
are usually battery-powered. Resource-rich ones (e.g., door
locks, HVAC, surveillance cameras) have fairly good com-
puting performance and wall power; they can run public-
key algorithms at reasonable speed. It is common in reality
that vendors equip more important, expensive IoT devices
with better hardware, so we assume Level 2 and 3 objects are
resource-rich (more discussion can be found in Section 11).

Network Connectivity. Objects may have diverse com-
munication interfaces, e.g., WiFi, Bluetooth, ZigBee. We
focus on the security design above the network layer, and
assume network connectivity exists among nodes (e.g., via
bridging devices with multiple radios) in proximity and
multi-hop routing is available [10]. The network formed by
subject devices and objects is called ground network.

2.2 Service Visibility
Access Control Policy. The backend stores and manages ac-
cess control policies about what services a subject can access
on an object. Given the large numbers of subjects/objects,
the policies are frequently defined on categories using at-
tribute predicates, not just individual identities, to avoid

inefficient enumeration. E.g., [subject: position==‘manager’;
object: type==‘door lock’ && room type==‘conference’; rights:
{‘open’; ‘close’}] denotes that all managers have open/close
access to the door locks on conference rooms.

There are two types of attributes: non-sensitive at-
tributes can be safely included in signed credentials (e.g.,
PROF) and publicly propagated, e.g., a regular employee’s
position, a corridor light’s make/model; in contrast, sen-
sitive attributes must be kept on need-to-know basis and
secret from the public or unauthorized subjects/objects,
e.g., a student/employee’s financial (broke), medical status
(disabled, depressed).

Service Visibility. Visibility scoping policies are congru-
ent with access control policies such that subjects and their
devices should only “see” the services they are authorized
to access. We call both of them policies for short. To this
end, a subject device sends queries in the ground network,
and nearby objects return their profiles (PROF), revealing
their service information to the subject. Depending on the
subject’s access rights, an object may return differentiated
variants of service information.

2.3 System Scale

We describe the typical scales of several aspects of enterprise
IoT, where 10i, i ∈ Z denotes order of magnitude. E.g., 100:
several, 102: hundreds. They are intended to give a rough
sense, and actual systems may have larger/smaller scales.

1) huge subject/object amounts. Google search shows
that the numbers of employees are: Google 98K, Apple
132K, Amazon 613K; so subject amount is 104 ∼ 105.
According to the field study in [11], a typical lab/office
may have ∼30 objects, and even a 2-story building may
have ∼2K objects. A subject usually has access to N objects,
which is around 100 (if she can access a few rooms) or up to
1K (if she can access objects in multiple buildings, e.g., on
campus); thus N is usually 102 ∼ 103.

targets in one discovery operation. Though N objects are
discoverable to a subject, the number of those in her prox-
imity at any time thus the targets in one discovery operation
is mostly not more than dozens. We denote it as n (101).

2) subject/object categories. A subject category (accord-
ing to a predicate on subjects’ non-sensitive attributes, e.g.,
“all students in CS Department, University X”) has α (usu-
ally 100 ∼ 102, and possibly ≥ 103) subjects (e.g., group:
100; class: 101; department:≥ 103; college:≥ 104). An object
category (according to objects’ non-sensitive attributes) has β
objects, and β has a similar range as α (e.g., “all devices in
Room Y”: 101; “all lights in Building Z”: ≥ 102).

3) secret groups. If a policy allows subjects with certain
sensitive attributes to discover objects with certain sensitive
attributes, then they belong to one secret group. In reality,
the persons with sensitive attributes (e.g., disability) in an
enterprise and the objects serving them should not be too
many, and a secret group has size γ (100 ∼ 101 or 102).

4) frequent subject/object churns. In enterprises, em-
ployee entry/exit or promotion/demotion/rotation, and
device installation/decommissioning happen all the time.
All these may affect the access rights for individ-
ual/category subjects, and should be effectuated quickly
and efficiently. E.g., when a subject leaves, all the N (102 ∼
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103) objects she could access should be notified to reject her
future discovery attempts.

3 DESIGN GOALS

Secrecy. We consider three subitems: 1) service information
secrecy for services behind walls (required by Level 2
and 3). Subjects should be kept from discovering services
behind walls (i.e. services in the rooms they cannot enter)
via sending queries from outside, otherwise the presence of
indoor belongings is exposed to outsiders. Though services
behind walls are physically invisible, they can be discovered
by outsiders if no security countermeasure is taken because
many radios penetrate walls. Protecting physical security
and accessibility is not an IT problem, thus out of the scope.

2) sensitive attribute secrecy (required by Level 3). Sen-
sitive attributes of a subject/object should only be disclosed
to an authorized object/subject during service discovery.

3) indistinguishability (required by Level 3). Whether a
subject/object has a sensitive attribute, or whether Level 3
discovery is happening, should be unknown to attackers.

Authenticity & Integrity & Freshness. Authenticity and
integrity ensure that an entity is indeed the claimed one and
a message is not forged or altered. Freshness means that a
message is recently generated and not a replayed one.

Scalability. Upon any change in the backend database
(e.g., policy addition, subject removal), the overhead of
propagating and effectuating the changes to affected sub-
jects/objects (i.e. updating overhead) should be minimized
to make the system fit for an enterprise scale.

Responsiveness. The number of compute intensive op-
erations (e.g., public-key) should be small enough such that
discovering the n (defined in Section 2, usually 101) services
in a user’s proximity can be completed within 1 second to
achieve positive user experience [12].

Non-Goals. Attackers may know the existence of phys-
ically visible devices (e.g., they see door locks). They may
physically steal objects’ service information or phish sub-
jects’ sensitive attributes; subjects may inadvertently leak
service information they discovered or sensitive attributes.
Besides, attackers may launch DoS attacks. We do no ad-
dress those issues in this paper.

4 BACKEND OPERATIONS AND OVERVIEW

4.1 Backend Operations
Bootstrapping. A subject or object X must first register on
the backend out-of-band. This is a common requirement in
real enterprises. The backend adds its information to the
database, and issues an identity IDX , private key Kpri

X ,
public key certificate (CERT) and possibly multiple attribute
profiles (PROF) to X . The admin’s public key Kpub

admin is
also delivered. CERT and PROF are signed by the admin
and cannot be forged or altered. A subject PROF lists the
subject’s non-sensitive attributes and can be publicly dis-
closed; an object PROF lists provided functions (thus service
information) besides the object’s non-sensitive attributes.

Fellows. We call subjects and objects in the same secret
group fellows. The backend issues fellows with one symmet-
ric group key (denoted as Kgrp

i for secret group i). A subject
or object is possibly in multiple secret groups.

Levels. An object gets its secrecy level defined (1, 2, or 3)
and must keep that to itself. The level usually depends on
the device type but can be configured by the admin.

1) Level 1. (no secrecy) These objects are usually
resource-poor, and offer publicly accessible services identi-
cal to everyone (e.g., thermometers in aisles), or are behind
walls but not worth hiding (e.g., lights in offices). Their
service information needs no encryption, but is signed by
the admin for integrity protection.

Level 1
Level 1

Level 2

Invalid Profile Valid Profile

Query 
Level 1 Info 
Level 2 Info

Fig. 1. Discovery in Level 1 and Level 2

2) Level 2. (service information secrecy) These objects
are resource-rich for public-key operations. They are behind
walls and must resist discovery by outsiders: objects return
different service information (encrypted) according to sub-
jects’ non-sensitive attributes (in subjects’ PROFs).

Example. In Fig. 1, a multimedia device in an office
checks query senders’ PROFs, and returns encrypted infor-
mation only to the office employees, not outsiders.

Level 3
Valid Profile & 
Invalid Code

Valid Profile & 
Valid Code

Level 3 Info

A flyer’s in.

Fig. 2. Discovery in Level 3

3) Level 3. (service information secrecy+sensitive at-
tribute secrecy+indistinguishability) These objects are also
resource-rich, and they secretly offer customized services to
special populations (i.e. subjects with sensitive attributes)
while posing as Level 2 objects to other populations.

Example. In Fig. 2, Imagine student S with learning
disability shows his diagnosis to the university, and is put
in the corresponding secret group. When S uses a campus
magazine machine O, if O happens to have a sensitive
attribute “machine serving students with learning disabil-
ity”, they will secretly confirm that they are fellows using a
“code”, then O dispenses medical/counseling/university-
policy support flyers to S , hidden within regular magazines
so others will not know Level 3 discovery is happening.
This is one way to offer special populations useful infor-
mation when they are using daily IoT services (e.g., buy
magazines/newspapers). Others will get “clean” magazines
when using O, and think O is Level 2. As a result, others
cannot identify S as a sensitive attribute owner, or O as a
Level 3 machine serving special populations.

Profile. A Level 2 object providing m different services
gets from the backend an attribute-based ACL containing m
PROF variants: {predi, PROFO,i}, 1 ≤ i ≤ m, where predi
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is a predicate on subjects’ non-sensitive attributes (e.g., [po-
sition==‘manager’ && department==‘X’]). If a subject’s PROF
matches predi, O will send encrypted PROFO,i to her.

A Level 3 object in m′ secret groups gets m′ PROF
variants: {Kgrp

i , PROFO,i}, 1 ≤ i ≤ m′, where Kgrp
i is the

symmetric group key of group i. After O confirms that a
subject possesses Kgrp

i , it will return encrypted PROFO,i.
A subject in n′ secret groups gets n′ group keys. Note that
even a subject with no sensitive attribute still gets a (fake)
group key, called cover-up key (details in Section 6).

Access Control Policy Update. The admin may need to
update the backend database at any time, and possible oper-
ations include adding, removing, changing a subject/object
individual or category and the access rights. Changes on
the backend may need to be immediately propagated to
the ground network and effectuated on the affected sub-
jects/objects, such that newly authorized subjects can dis-
cover services, or de-authorized subjects stop seeing previ-
ously visible services.

4.2 Overview of Three-Level Discovery

Argus is a 3-in-1 algorithm which discovers services in three
levels. We sketch the discovery process in each level.

Level 1 Discovery. The discovery of Level 1 objects is
a typical 2-way data discovery/retrieval [13] process in the
ground network. In Fig. 5, subject S broadcasts query QUE1
to objects around, and a Level 1 object O sends back its
profile (PROF) in plaintext in response RES1. QUE1 carries
random RS for objects to detect duplicate queries. Because
PROFs are signed by the admin, their integrity is ensured.

Level 2 & Level 3 Discoveries. They have a similar
workflow (Fig. 5). First, S broadcasts query QUE1, a Level
2 or Level 3 object O returns response RES1 for session
key establishment with S . Second, S sends query QUE2
individually to each O found in the 1st step to complete
session key establishment and deliver her PROF (for Level
2 discovery) and “code” (for Level 3 discovery). A Level 2
object checks the PROF to get S’s non-sensitive attributes; a
Level 3 object verifies the “code” to see if S is its fellow. Then
its PROF is encrypted using the session key and returned in
response RES2. We present the design details of Level 2 and
3 in the following two sections (symbols listed in Tab. 1).

TABLE 1
Symbols Used in Argus

Symbol Description

CERTX public key certificate of entity X
PROFX profile of X
KEXMX public value for ECDH key agreement, generated by X
[...]SIGX signature of content in [ ] signed by X
MACX hash-based message authentication code generated by X
[...]ENCK ciphertext of content in [ ] encrypted by key K
|| concatenation

5 LEVEL 2: DIFFERENTIATED DISCOVERY

This discovery targets Level 2 objects which provide
differentiated services according to subjects’ non-sensitive
attributes. Argus uses conventional cryptography (e.g.,

ECDSA, ECDH) for mutual authentication and service in-
formation secrecy. Also, we develop an alternative using
more recent cryptography Attribute-based Encryption [8]
for comparison. We find that Argus precedes the alternative
in many aspects (e.g., 10x high scalability and computation
efficiency), and suits our service discovery context best.

5.1 Argus’s Level 2 Scheme
Main Idea. Subject S reveals her non-sensitive attributes to
object O by presenting her profile PROFS ; O checks her at-
tributes and chooses the suitable PROFO variant to return.
The messages between S and O must be authenticated, and
PROFO must be encrypted for service information secrecy.

S O
QUE1

RS����������������������������������������������!
1z }| {

PROFO;

2z }| {
RO; CERTO; KEXMO; [m]SIGO ���������������������������������������������� RES1

QUE2

2z }| {
PROFS ; CERTS ; KEXMS ; [⇤]SIGS ; MACS,2����������������������������������������������!

2z }| {
[PROFO]ENCK2

; MACO,2 ���������������������������������������������� RES2

Fig. 3. v1.0, concurrent 2-in-1 algorithm for Level 1 and 2 discoveries.
The content in a brace with number i is only sent by subjects performing
Level i discovery, or by objects in Level i.

Algorithm. As shown in Fig. 3, S first broadcasts
query QUE1 carrying random RS . O in Level 2 sends
back response RES1. Besides random RO , RES1 carries O’s
public key certificate CERTO and key exchange material
KEXMO . In Fig. 3, m = RS ||RO||KEXMO is signed by
O for integrity protection.

Second, on receiving RES1, S verifies the signa-
ture, and based on KEXMO she establishes the pre-
master secret preK. Level 2’s session key K2 =
HMAC(preK, labelK ||RS ||RO), HMAC(secret, seed) is
an HMAC-based pseudorandom function, labelK is ASCII
string “session key”. Then S sends query QUE2 to O,
which contains her profile PROFS , public key certifi-
cate CERTS and key exchange material KEXMS . All
the content sent and received so far (denoted as ∗,
i.e., QUE1, QUE2 and PROFS , CERTS , KEXMS) is
signed for integrity protection. Also, Level 2’s MACS,2 =
HMAC(K2, labelS ||Hash(∗)), labelS = “subject finished”,
is sent for O to verify the success of the handshake.

Third, on receiving QUE2, O verifies the signature, and
based on KEXMS it establishes the same preK and K2.
Based on K2 it verifies MACS,2: if valid, O checks which
subject category (predi) matches the subject’s non-sensitive
attributes in PROFS , and encrypts the corresponding
PROFO using K2. O sends back response RES2 containing
the PROFO ciphertext and MACO,2, where MACO,2 =
HMAC(K2, labelO||Hash(∗)), labelO = “object finished”.
S verifies MACO,2 and decrypts the ciphertext using K2,
getting the service information for her securely.

Our design shares some similarities with TLS hand-
shake [14] in realizing mutual authentication and symmetric
key establishment. However, Argus efficiently embeds pro-
file exchange in, accomplishing the whole discovery in a 4-
way interaction; besides, it has minimum message overhead
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by eliminating any unrelated component and fixing the key
exchange algorithm at ephemeral ECDH, and authentica-
tion at ECDSA, which are significantly more efficient than
other algorithms like RSA (experiments in Section 9.1).

5.2 Alternative: ABE based Strategy
Another way to realize Level 2 discovery is to use
Ciphertext-Policy Attribute-based Encryption [8]. In CP-
ABE, a subject is issued with a set of keys by authorities,
each corresponding to one of her attributes; and a cipher-
text has a built-in policy which is a predicate on subject
attributes. A subject can decrypt a ciphertext if and only
if she has all the attributes (thus the keys) to meet the ci-
phertext policy. ABE has been used for scenarios like cloud-
based health record sharing [15], [16], [17], where patients
upload their health record ciphertexts to the cloud and
can then go offline; the ciphertexts have policies specifying
consumer attributes (e.g., [Physician ∧ HospitalX]), and
only the qualifying ones (i.e., physicians in Hospital X) can
decrypt them after retrieving them from the cloud. More
background introduction on ABE is in Appendix A.2.

Based on subjects’ different attributes, the ciphertexts
they can decrypt and the plaintexts they can view are also
differentiated. This sounds a natural match for Level 2
discovery, thus we explore its application in our context.

Solution. The backend is the only key authority
and data producer. It does not give objects plaintext
{predi, PROFO,i} (predi is a predicate on subject at-
tributes) at bootstrapping, instead it issues them with ABE
ciphertexts—PROFO,i encrypted using policy predi. Also,
it issues subjects with ABE secret keys according to their
attributes. An object performs no cryptographic operation;
actually it is nothing more than a data store, and can safely
hand over whatever is queried because the PROFs are
encrypted. Only subjects with the secret key components
corresponding to needed attributes can successfully decrypt
the ciphertexts and view the service information. An object
may make its ciphertexts cached by objects around to im-
prove discovery availability and speed.

5.3 Comparison: Argus vs. ABE
Here we present the results of comprehensive comparison
between Argus and ABE, which shows that Argus has many
more advantages, e.g., 10x high scalability and computation
efficiency. Quantitative analysis and experimental details
are shown in Section 8 and Section 9.

1) Scalability. Updating overhead must be reduced to
make the system scalable to enterprise environments, for the
context’s huge subject/object amounts and frequent subject/object
churns properties (Section 2). ABE has up to 10x as expensive
updating overhead as Argus when a subject leaves the
system (analysis in Section 8). Non-monotonic ABE is lighter
weight but still more expensive than Argus (Appendix A.2).

2) Computation Cost. A subject/object in Argus es-
tablishes one pairwise session key for each object/subject
it is interacting, thus the amount of compute intensive
operations (ECDSA, ECDH) is linear to the number of
interaction targets. When using ABE, a subject needs to
decrypt a ciphertext for each target, while objects have no
encryption work since the ciphertexts were given by the

backend. ABE is at least 10x as computationally expensive as
Argus (experiments in Section 9.1), and a derivative called
non-monotonic ABE [18], [19] is even more expensive.

3) Responsiveness. Argus uses 4-way messages while
ABE 2-way, so Argus costs a little longer in transmission.
However, its overall time cost in discovering services in
proximity is much smaller than ABE due to its much smaller
computation cost, achieving much higher responsiveness.
Section 9.2 shows that it discovers 20 Level 2 objects in 0.63
s while ABE may cost seconds for just one object.

4) Online vs. Offline. ABE’s offline property facilitates
its application in scenarios like health record sharing, where
data production and consumption are asynchronous, and
producers can upload their data (ciphertexts), then go of-
fline, and the data is still secured and available to con-
sumers. Argus needs subjects and objects to be online at
the same time. But service discovery is different from record
sharing: objects should stay online for being discovered and
accessed; actually, it is better that their service information
becomes unobtainable when they go offline due to power
outages or malfunctions, otherwise subjects will be misled
into attempting to access unavailable services. Thus, ABE’s
offline property is not beneficial here.

5) Traceability. When using ABE, after a subject retrieves
ciphertexts, whether she succeeds in decrypting them or not
is only known by herself. An object has no way to know
who has succeeded in discovering its services, thus logging
is impossible. In contrast, Argus allows each object to record
the result of each discovery operation.

6) Engineering Maturity. Argus uses conventional cryp-
tography which is well optimized and has passed long-term
validation. ABE has scarce or relatively preliminary imple-
mentations and might be less comfortable to engineers.

6 LEVEL 3: COVERT DISCOVERY

This discovery targets Level 3 objects which provide covert
services according to subjects’ sensitive attributes. Like Level
2, object O in Level 3 ensures that subject S has quali-
fying attributes before returning PROFO. However, those
attributes are sensitive (e.g., learning disability) and S does
not want to disclose them to O before seeing O’s sensitive
qualifying attributes (e.g., machine serving special popu-
lations). Note that using K2 established by S and O in
Section 5 to encrypt S’s sensitive attributes does not work:
it only protects S’s privacy against third parties, but here
S wants to guard against not only third parties, but also O,
the one she is interacting with.

Neither S nor O is willing to make the first move, thus
a chicken-or-egg problem arises. We apply a symmetric-key
mechanism similar to [20] for private service discovery so
sensitive attribute secrecy on both sides (i.e. mutual privacy)
is achieved. Besides, we beef up mutual privacy with a
novel scheme which hides Level 3 discovery in Level 2,
making them indistinguishable. As a result, attackers are
even unaware that Level 3 discovery is happening, let alone
peeking at sensitive attributes. We show that it outperforms
alternatives using more recent cryptography (e.g., 10x high
computation efficiency), and suits our context best.
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6.1 Argus’s Level 3 Scheme for Sensitive Attribute Se-
crecy
Main Idea. Recall that at bootstrapping subjects and objects
are put into the same secret group if they have sensitive
attributes which allow them to recognize each other. They
are called “fellows” and share one symmetric group key
(Kgrp

i for group i). Confirming one’s sensitive attributes is
indirectly realized by verifying its group membership, by
verifying its possession of the group key. S and O send
to each other an HMAC generated from the group key to
prove her/its possession. O verifies S first and then vice
versa. O will send the suitable PROFO confidentially only
if S is its fellow.

S O
QUE1

RS����������������������������������������������!
1z }| {

PROFO;

2,3z }| {
RO; CERTO; KEXMO; [m]SIGO ���������������������������������������������� RES1

QUE2

2,3z }| {
PROFS ; CERTS ; KEXMS ; [⇤]SIGS ; MACS,2;

3z }| {
MACS,3����������������������������������������������!

2z }| {
[PROFO]ENCK2

; MACO,2;

3z }| {
[PROFO]ENCK3

; MACO,3 ���������������������������������������������� RES2

Fig. 4. v2.0, concurrent 3-in-1 algorithm for Level 1, 2, 3 discoveries. It
supports sensitive attribute secrecy in Level 3. The content in red boxes
are newly added on top of v1.0 in Fig. 3.

Algorithm. Fig. 4 shows Level 3 discovery which is
built on top of Level 1 and 2. Level 3’s session key
K3 = HMAC(K2||Kgrp

i , labelK ||RS ||RO) (assume S is
in group i), is computed after K2. When S performs
Level 3 discovery, QUE2 carries Level 3’s MACS,3 =
HMAC(K3, labelS ||Hash(∗)). The definitions of labelK ,
labelS , labelO and ∗ can be found in Section 5.
O in Level 3 can establish the same K3 only if it has

Kgrp
i , i.e., it is a fellow of S . On receiving QUE2, it does all

a Level 2 object does, and additionally verifies MACS,3:
if valid, it recognizes S as a fellow. Then it generates
MACO,3 = HMAC(K3, labelO||Hash(∗)), encrypts the
suitable PROFO variant with K3, and adds them to RES2.

Depending on O’s level, the HMAC of RES2 may be
MACO,2 or MACO,3. S first tries to verify it with K2 to see
if it is a MACO,2: if valid, S knows O is in Level 2 and she
decrypts the ciphertext using K2. Otherwise she uses K3 to
verify if the HMAC is a MACO,3: if valid, S knows O is in
Level 3 and she uses K3 for decryption.

Sensitive Attribute Secrecy. Sensitive attribute secrecy is
realized on both S and O due to HMAC’s one-way feature:
if S and O are not in the same group, O will find MACS,3
invalid. However, all it knows is S is not its fellow, but
which secret group S is in stays unrevealed because the
group key is not explicitly exchanged. Vice versa, S will not
know a non-fellow O’s group membership.

Overhead of Extensions. We see v2.0 brings in little
extra discovery overhead to v1.0. Most components in RES1
and QUE2 are reused. In QUE2, one HMAC (only 32 bytes
if using SHA-256) is added when performing Level 3 dis-
covery. The length of RES2 is unchanged, because either
Level 2 or Level 3 service information is sent back, not both.
As for computation cost, S and O need one more HMAC
generation and verification, together costing less than 1 ms.

6.2 Argus’s Level 3 Scheme for Indistinguishability
So far, Level 3 discovery prevents a non-fellow from peek-
ing at an entity’s sensitive attributes (aka privacy), but
performing Level 3 discovery itself implies that the entity
has at least one sensitive attribute. E.g., attackers find a
subject is seeking for Level 3 objects, then they guess she
is a member of special crowds, though which crowd (e.g.,
depression or addiction) is unknown. Level 2 and 3 can
be easily distinguished due to their message composition
differences: i) QUE2 has one more component (MACS,3)
when seeking for a Level 3 object; ii) RES2 from a Level
3 object carries MACO,3 other than MACO,2. Attacks in
detail are presented in Section 7.

Main Idea. We make Level 2 and Level 3 indistinguish-
able, realizing covert visibility. QUE2s from all subjects
have identical structures regardless of levels, so are RES2s
from all objects. Attackers are even unaware that Level 3
discovery is happening.

S O
QUE1

RS����������������������������������������������!
1z }| {

PROFO;

2,3z }| {
RO; CERTO; KEXMO; [m]SIGO ���������������������������������������������� RES1

QUE2

2,3z }| {
PROFS ; CERTS ; KEXMS ; [⇤]SIGS ; MACS,2; MACS,3����������������������������������������������!

2z }| {
[PROFO]ENCK2

; MACO,2;

3z }| {
[PROFO]ENCKX ; MACO,X ���������������������������������������������� RES2

Fig. 5. v3.0, concurrent 3-in-1 algorithm for Level 1, 2, 3 discoveries. It
supports both sensitive attribute secrecy and indistinguishability in Level
3. The content in green boxes are modified on top of v2.0 in Fig. 4.

Algorithm. Fig. 5 shows that Level 2 and 3 discoveries
now use identical QUE2 which always carries MACO,2 and
MACO,3, and are performed concurrently. Besides, a Level 3
object no longer sends MACO,3 constantly in RES2. Instead,
its RES2 has MACO,X , where X can be 2 or 3: MACO,3 to
fellows, with PROFO encrypted by K3; MACO,2 to non-
fellows, with PROFO encrypted by K2.

Indistinguishable Subjects. 1) concurrent discoveries.
A subject uses the same QUE2 to discover both Level 2
and 3 objects, so attackers cannot tell Level 3 discovery
is happening based on QUE2’s composition difference. 2)
cover-up key. All subjects perform concurrent Level 2 and
3 discoveries, even if some of them have no sensitive at-
tributes. Recall that at bootstrapping even a subject S with
no sensitive attribute still gets a (fake) secret group key
(called cover-up key) from the backend. A cover-up key is
a unique random number and there is no second entity
owning it, thus theMACS,3 generated from it will not result
in successful handshakes. But using it, S can send MACS,3
like a sensitive attribute owner; now in attackers’ eyes,
every subject belongs to special populations with sensitive
attributes, and the real ones are concealed.

Indistinguishable Objects. 1) double-faced role. Each
Level 3 object plays a “double-faced” role: it returns
MACO,3 and offers Level 3 special service information to
its fellows (special populations), while returnsMACO,2 and
offers Level 2 services to non-fellows. Non-fellows always
receive MACO,2 and they do not know the object’s another
role (i.e., Level 3). 2) constant RES2 length. The ciphertexts
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of service information (PROFO) in Level 2 and 3 may
have different sizes. To eliminate that,O appends minimum
meaningless bytes to each of its PROFO variants before
transmission to make them identically long. 3) constant
response time. In Level 3 discovery O verifies one more
HMAC (MACS,3) than Level 2, costing longer. The time
difference is mostly negligibly small (< 0.1 ms); if not,
O will wait for that difference before sending Level 2 RES2
to make response time identical to Level 3.

Overhead of Extensions. We see v3.0 brings in little extra
overhead to v2.0. In QUE2, now MACS,3 is mandatory, so
QUE2 should always have these 32 bytes (if using SHA-256).
RES2’s length and computation cost are unchanged.

So far the entire protocol in all three levels is presented
and we summarize its workflow in Fig. 6.

Start

S sends QUE1 O's level?

O returns RES1 
(PROFO in plaintext)

Stop

1

2 or 3
O returns RES1; 
S sends QUE2

O's level?

O checks PROFS; 
O generates K2

2

O verfies MACS,3; 
O generates K2,K3

3

Is MACS,3 
valid?

O retruns RES2 (PROFO 
encrypted by K2)

O returns RES2 (PROFO 
encrypted by K3)

NO YES

Fig. 6. Argus Workflow

6.3 Multiple Sensitive Attributes
Level 3 discovers the fellow objects in one secret group at a
time, because MACS,3 is generated from one group key. In
reality a subject may have multiple (usually no more than a
few) sensitive attributes and are members in multiple secret
groups. Her device can automatically use her group keys
in turns (one at a time) to generate MACS,3 and launch
discoveries, till all her authorized covert services are found.

6.4 Alternative: PBC based Strategy
An alternative for sensitive attribute secrecy in Level 3 is
to use Pairing-based Cryptography [9]. When using PBC,
fellows are not issued with a group symmetric key Kgrp

i

at bootstrapping; instead they each get a unique PBC key,
which will be used to establish a pairwise symmetric key
(denoted as Kpair

S,O between S and O) during discovery. PBC
has this one extra step, and the remaining procedures are
the same as Argus, i.e., S andO test each other’s possession
of the symmetric key to see if the other is a fellow. More
backend introduction on PBC is in Appendix A.3.

Solution. PBC can use Argus’s four messages as is,
but with different computation operations: when receiving
RES1, S computes Kpair

S,O , and replaces K3 with Kpair
S,O

in generating MACS,3; similarly, when receiving QUE2,
O computes Kpair

S,O , and uses Kpair
S,O to generate MACO,3.

Comparison: Argus vs. PBC. We find that Argus has
smaller computation cost (PBC is 10x as expensive) while
achieving the same secrecy and scalability.

1) Computation Cost. The symmetric-key mechanism in
Argus Level 3 brings in no compute intensive operations
(HMAC generation and verification cost < 0.1 ms), and
the overall computation cost is almost identical to that in
Level 2. PBC, however, has 10x as expensive cost as Level 2
(experiments in Section 9.1).

2) Secrecy. PBC uses a pairwise key Kpair
S,O to generate

MACS,3 and MACO,3, so the conversation between S and
O is kept from any third party. If the two HMACs are
purely generated from a group key Kgrp

i , an eavesdropper
which is a fellow (thus also has Kgrp

i ) can understand the
conversation. However, note that Argus Level 3 is not a
pure symmetric-key mechanism which uses Kgrp

i directly;
instead, it uses K3 (generated using K2 and Kgrp

i ). Leverag-
ing K2 from Level 2 which is a pairwise key between S and
O, K3 is also pairwise. Thus, Argus performs as well as PBC
in resisting eavesdropping.

3) Scalability. To remove a subject from a secret group,
PBC just needs to notify the fellow objects to revoke her
ID. A symmetric-key mechanism needs all the fellows (both
subjects and objects) to update the group key, which is
more expensive. But again, Argus Level 3 is not purely
symmetric-key; it is built on top of Level 2. Thus, to prevent
a subject from further Level 3 discovery, we can revoke it in
Level 2 by adding her ID into the fellow objects’ revocation
lists, which has the same overhead as PBC.

7 SECURITY ANALYSIS

Threat Model. We assume the backend is trustworthy and
well-protected. Also, communication between the backend
and subject/object devices is secure. Subject devices and
resource-rich objects are reasonably well protected, e.g., by
their operating systems.

We assume breaking the cryptographic algorithms (e.g.,
ECDSA, ECDH) are computationally infeasible when long
enough keys are used (e.g., 128-bit). Attackers can capture,
inject, modify and replay messages sent over the commu-
nication channel. Sources. Attackers may be external—they
are not registered on the backend thus have no backend-
signed public keys, or internal ones that are registered
but go rogue. Roles. Attackers may behave passively as
eavesdroppers, or actively to impersonate subjects or objects
and interact with benign nodes. Targets. Attackers may aim
at service information secrecy, sensitive attribute secrecy,
indistinguishability.

Like TLS and many other algorithms, the security of
ours is on the premise that secret information is kept to
its owner, and is computationally infeasible to compromise,
and cannot be obtained from sources outside of the channel.
However, in reality it can, e.g., attackers have military
computing resources, or they leverage malware or social en-
gineering to steal private keys from users/devices. Resisting
those attacks is out of the scope. Our analysis below shows
that attackers will fail unless they have session key K2, K3,
or private key Kpri

X (X is a subject or object) and/or secret
group key Kgrp

i (for group i).

7.1 Level 2 Attacks from External Attackers
Service Information Secrecy. In Level 2, attackers may try
to view a PROFO they are unauthorized to. Also, they may
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spread a false PROFO. Their possible roles and actions are:
Case1: Eavesdropper. Passive attacker E eavesdrops

the conversation between subject S and object O to view
PROFO. She needs to compromise K2 to decrypt the ci-
phertext of PROFO, which is infeasible. Note that E cannot
obtain K2 by compromising Kpri

S or Kpri
O (cracking a long-

term key might be easier than a session key), because we
use ephemeral ECDH for key exchange between S and O,
which has forward secrecy.

Case2: Subject/Object Impostor. Active attacker
ES poses as S to interact with O and request PROFO. Since
the interaction is authenticated, she will fail due to the lack
of Kpri

S . EO poses as O to give S fake service information,
but it will fail without Kpri

O . Besides, PROFO is signed by
the admin for authenticity and integrity protection, breaking
which is considered infeasible.

7.2 Level 3 Attacks from External Attackers

Service Information Secrecy. First, attackers may launch the
same attacks in Level 2 to get PROFO. We assume S and
O are fellows in secret group i, and they share Kgrp

i .
Case3: Eavesdropper. This time E needs K3 to decrypt

the ciphertext of PROFO. She may: i) compromise K3

directly, which is infeasible; ii) or compromise K2 and Kgrp
i

because they together generate K3, but this does not make
things easier.

Case4: Subject/Object Impostor. ES poses as S to inter-
act with O for PROFO. To succeed, she needs Kpri

S and
Kgrp
i . For the same reason in Case2, EO will fail in giving

fake service information.
Sensitive Attribute Secrecy. Second, attackers may try

to find out what sensitive attributes S or O has.
Case5: Eavesdropper. Attacker E eavesdrops the conver-

sation of S and O, but she will know S or O is in group
i only if she can confirm that MACS,3 or MACO,3 is a
valid HMAC generated using Kgrp

i , which needs K2 and
Kgrp
i . Besides, knowing that an entity belongs to group i

does not mean knowing its sensitive attribute, unless the
mapping relationships between group IDs and attributes are
also known. However, that knowledge is kept to the admin.

Case6: Subject/Object Impostor. ES poses asO’s subject
fellow to interact with O, and tries to find out O’s sensitive
attributes. To succeed, she needs a valid subject private key,
Kgrp
i and the mapping relationships. Similarly, EO may pose

as an object fellow to explore S’s sensitive attributes, and it
needs a valid object private key and Kgrp

i .
Indistinguishability. Third, attackers may try to find out

if S or O has any sensitive attribute (regardless of what
sensitive attribute), and if Level 3 discovery is happening.

Case7: Eavesdropper. i) subject distinguishability. As
introduced in Section 6.2, we use cover-up keys on subjects
who have no sensitive attributes to make them pose as
real sensitive attribute owners. E have no way to distin-
guish them. ii) object distinguishability. Since only Level
3 objects’s RES2 may carry MACO,3 other than MACO,2,
E may leverage this to recognize Level 3 objects. However,
to recognize MACO,3, she needs K3, which is impractical.

Case8: Subject/Object Impostor. ES interacts with O to
see if it is in Level 3. If ES recognizes the HMAC in RES2 as
MACO,3, then she knows O is. This needs a valid private

key and Kgrp
i . Alternatively, she may try an elimination

method: tell if the HMAC is MACO,2, and if not, it is
MACO,3 then. Verifying MACO,2 only needs a valid pri-
vate key, so the security strength is degraded if this works.
However, Level 3 objects play “double-faced” roles: they
send MACO,2 to attackers, thus attackers cannot use the
elimination trick.
EO may impersonate O to interact with S to see if she

has any sensitive attributes, but cover-up keys impede that.
Case9: Side-Channel Attacks. Beware of side-channel

attacks which may compromise indistinguishability. Partic-
ularly, due to a Level 3 object’s additional computation on
base of Level 2, it will take longer to respond than a Level
2 one. An attacker may recognize Level 3 objects through
timing measurements and analysis (i.e. timing attacks). How-
ever, in Argus a Level 3 object only needs to verify one more
HMAC (i.e. MACS,3) than a Level 2 one, which costs < 0.1
ms on Raspberry Pi. It cannot be detected when buried
under much larger time fluctuations from OS, network, etc.

7.3 Attacks from Internal Attackers
Assume benign entity I goes rogue. Unlike an external
attacker, she already has a valid private key Kpri

I . However,
note that if she eavesdrops (Case1, 3, 5, 7) or impersonates
others (Case2, 4), her own private key is useless and the
attacks are the same as external attacks. It becomes easier to
crack Case6, 8: since I already has a valid private key, she
just needs to compromise Kgrp

i , which is still difficult.

7.4 Consequences of Key Compromise
If a session key is compromised, only that session’s content
(e.g., service information) will be exposed; if a private key
is compromised, only that entity will be impersonated. If
a private key and a group key are both compromised,
attackers may find out members in that one secret group
only, by interacting with them one by one instead of getting
the entire member list. Each of these cases has a limited
impact, and cannot paralyze the service discovery system.

8 SCALABILITY ANALYSIS

The system must be scalable to enterprises, and the most
critical metric for scalability in our context is updating
overhead instead of discovery overhead. This is because
Argus is for discovering services in proximity, the number
of which is usually not more than dozens (Section 2). In
contrast, any change in the backend database (e.g., policy
addition, subject removal) related to Level 2 or 3 should be
immediately synchronized to all affected subjects/objects on
the ground, otherwise authorized users may fail to discover
and access new services timely, while unauthorized users
continue to see services they are no longer eligible for. Such
updating overhead (defined as the number of affected subjects
and objects) can be huge.

Level 1 & 3 Scalability. Level 1 is little relevant
to this authorization-related updating because it offers
identical information to everyone. When changing a sub-
ject/object/policy in Level 3, the worst case (e.g., remove a
person from a secret group) is all the other fellows in the
group should get new keys, i.e., the overhead is (γ − 1)
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(defined in Section 2, usually 100 ∼ 101). It is small due to a
secret group’s limited size.

Level 2 Scalability. Level 2 has the largest updating
overhead. We find that Argus is up to 1000x as efficient as
ID-based ACL alternatives in adding a subject, and up to 10x
as efficient as Attribute-based Encryption (ABE) alternatives
in removing a subject. To add/remove an object/policy,
mostly just that object or the objects mentioned in that policy
should be updated, thus the overhead is 1 or β (defined in
Section 2, usually 100 ∼ 102). Adding/removing a subject
is the bottleneck of scalability, thus we show the analysis on
it in detail as below.

8.1 Detailed Scalability Analysis on Level 2

ID-based ACL. In this method, every object locally stores
its access control list enumerating the identities of subjects
which are allowed to access and discover it. In Section 2
we show that a subject may access N (102 ∼ 103) objects
typically. Then when subject S joins/leaves the system, the
N objects she can access should be notified to add/remove
her ID (i.e. IDS) to/from their ACLs.

TABLE 2
Updating Overhead Comparison

Add a subject Rmv a subject

ID-based ACL N N
ABE 1 (ξoN + ξs(α− 1)) ≈ 10N
Argus 1 N

Argus. In Argus, an object stores an attribute-based
ACL, which uses predicates on subject attributes (e.g.,
[position==‘manager’ && department==‘X’]) to describe its
authorized subjects. To access objects, a newcomer S just
needs to contact the backend once to get her attribute profile
(overhead: 1), and present it to objects; objects do not need to
update their ACLs. This significantly outperforms ID-based
ACL (up to 1000x). However, when S leaves, the backend
should notify the N objects that she could access, to remove
IDS from their ACLs and refuse her future discovery.

ABE. Ciphertext-Policy Attribute-based Encryption [8]
can be used for Level 2 discovery. At bootstrapping, the
backend issues S with a set of keys, each corresponding
to her one attribute (e.g., department:X); also, the back-
end issues O with ABE ciphertexts—PROFO,i encrypted
using policy predi (e.g., [position==‘manager’ && depart-
ment==‘X’]). Based on ABE’s principle, the PROFO,i cipher-
text can be decrypted only if S has all the attributes (thus
the keys) to meet predi.

About updating, a newcomer S just gets her secret keys
from the backend, then she can discover services (overhead:
1). To revoke S , the backend has to globally revoke a set of
her attributes to make her no longer belong to any subject
category. E.g., to revoke her attribute department:X, it: i) re-
encrypts all ciphertexts whose encryption policies contain
department:X, and delivers them to their objects (overhead:
ξoN, ξo ≥ 1); ii) re-generates those attributes’ secret keys,
and delivers them to all subjects owning the attributes ex-
cept S (overhead: ξs(α−1), ξs ≥ 1). α (defined in Section 2)
is the number of subjects in a subject category, usually

100 ∼ 102, possibly ≥ 103. Such attribute-level updating
often affects more subjects than S’s category members, and
more objects than what S could access, that is why ξs, ξo
mostly go over 1. The overall overhead is (ξoN + ξs(α−1)).
When ξo, ξs > 1, or α is large (e.g., 103 ∼ 104, if S is in a
large category like a department or college), the overhead
easily goes to 10N or more.

9 EXPERIMENTAL EVALUATION

We implement all the three levels of Argus. Besides, two
alternatives are implemented: one is based on Attribute-
based Encryption (ABE) and used for Level 2 (introduced in
Section 5); the other is based on Pairing-based Cryptography
(PBC) and used for Level 3 (Section 6).

Testbed Rationality. We conduct experiments on a
testbed consisting of 1 subject device (Nexus 6) and 20
objects, each emulated by a Raspberry Pi 3. 1) As mentioned
in Section 2, we assume Level 2 and 3 objects, which have
high security requirements, are equipped with sufficient
resource and power, and can run public-key algorithms
at reasonable speed. 2) Though Level 1 objects in reality
have poor computing resource, they simply return profiles
after receiving queries, and no computation is needed, thus
emulating them using Pis or Arduinos makes no difference.
3) Our design is above the network layer and orthogonal to
radios. As a result, we believe Pis communicating with WiFi
well emulate objects in all three levels, and networking and
power aspects. 4) One discovery operation aims to find the
n (101, defined in Section 2) objects in a user’s proximity
though she has access rights to N (102 ∼ 103, Section 2) ob-
jects. N affects updating overhead and is used in scalability
analysis (Section 8); to test the time of discovering n objects
we believe our tested with 20 Pis has a sufficient scale.

Settings. The subject device broadcasts QUE1s since at
the beginning which objects are nearby is unknown; QUE2,
RES1 and RES2 are unicast. To remedy packet losses, we
use application-layer acknowledgement and retransmission
for unicast messages: a packet sent for the ith time (i ≥ 1)
will wait for a random delay between (2i−1− 1)τ and (2i−
1)τ and depart unless the ACK for a previous transmission
returns before this. We choose τ = 150 ms because it leads
to low latencies and low retransmission rates (Section 9.3),
and use this setting in other experiments.

We test the computation time cost on the subject de-
vice and objects, and find that to achieve 128-bit security
strength, Argus needs only 105 ms while ABE and PBC
cost at least 10x long. As for the overall discovery time cost
(mainly by computation and transmission), Argus takes 0.25
s to discover 20 Level 1 objects and 0.63 s for 20 Level 2
or 3 objects (each object is 1 hop from the subject). For a
multi-hop case where 20 Level 2 or Level 3 objects are from
1-hop to 4-hop away from the subject, Argus costs 1.15 s for
discovery completion and is still well responsive.

9.1 Computation Time Cost

The cryptographic computation time for Argus, AES and
PBC are evaluated. We use crypto libraries OpenAn-
droidSSL on the subject device and JCA on objects, for
their efficient implementation compared with others (e.g.,
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Fig. 7. Computation Time Cost and Discovery Time Cost

Spongy Castle). ECDSA is preferred to RSA because the
latter costs much longer (e.g., 18x for 128-bit strength). The
experiments show that Argus is 10x as computationally
efficient as ABE and PBC.

Fig. 7 (a) shows the computation time on the subject side
for ECDSA (for signature) and ECDH (for key exchange) op-
erations, under strength 112-bit, 128-bit, 192-bit, 256-bit. As
shown, computation time increases with security strength,
e.g., 112-bit costs 4.7 ms in signing while 256-bit costs 26.0
ms. For each strength, ECDSA verification/ECDH secret
computation costs similar or slightly longer time than sign-
ing/parameter generation. Similar results are observed on
the object side. Other operations like HMAC and AES cost
less than 1 ms on both sides. In the following experiments,
we use 128-bit due to its fast speed while sufficient strength.

Argus. Fig. 7 (b) shows the overall computation time
on subjects and objects in all levels. In Level 1 discovery, a
subject only needs to verify one signature (of PROFO), cost-
ing 5.1 ms; an object has no compute intensive operation.
In Level 2 and 3, a subject needs 1 signing, 3 verifications
(for CERTO, KEXMO , PROFO), 2 ECDH operations (pa-
rameter generation, secret computation), costing 27.4 ms; an
object needs the same, costing 78.2 ms. Note that the public-
key operations in Level 2 and 3 are identical.

ABE. When using ABE, encryption is performed by
the backend and decryption by subject devices. Objects do
neither. Considering that the backend has superior perfor-
mance and ciphertexts can be generated beforehand, here
we focus more on subject decryption time cost, tested using
CP-ABE library [21]. As shown in Fig. 7 (c), ABE’s decryp-
tion time is well linearly to the number of attributes in the
ciphertext policy. Each attribute leads to about 1 second
decryption time increase.

PBC. Pairing time is the time cost for computing a
pairwise symmetric key using PBC keys. We evaluate JPBC
library [22] on the subject device and objects, and pairing
costs 2.2 s and 7.7 s respectively, as shown in Fig. 7 (d).

Note that test results depend significantly on the crypto
library implementation. The ABE and PBC libraries cur-
rently available are probably preliminary, thus the decryp-
tion time and pairing time presented should not be inter-
preted literally, but rather revealing the likely magnitudes.
According to our experiments, ABE and PBC cost at least
10x as long as Argus.

9.2 Overall Discovery Time Cost

We present in Fig. 7 (e) (g) the overall time cost (mainly
by computation and transmission) for Argus to discover 20
objects, in all the three levels, in both single-hop and multi-
hop conditions. Even in Level 2 and 3, discovering 20 single-
hop objects costs only 0.63 s, while multi-hop objects only
1.15 s. Such short latencies result in positive user experience.

Single-Hop. Fig. 7 (e) shows that in each level the
discovery time cost increases with the number of objects
to be discovered. The completion of discovering 20 objects
is quick, which costs 0.25 s for Level 1 and 0.63 s for Level 2
and 3. Level 1 needs less than half of the time of Level 2/3
because it is 2-way communication while the other two are
4-way. Also, Level 1 has less computation. Fig. 7 (f) shows
the time composition for discovering 1 single-hop object: in
Level 1 89% of the time is on transmission; in Level 2/3
it is 45%. The variance in (f) mainly comes from changeful
wireless transmission time.

Notice that Level 2 and Level 3 have overlapped time
curves, thus indistinguishable time cost. This is because Ar-
gus Level 3 only has one more HMAC generation than Level
2, which averagely costs 0.08 ms on Pi. In practice, such
tiny difference will not give attackers chances to distinguish
Level 3 objects from Level 2 ones via timing measurements,
because it is buried in timing fluctuations (e.g., from OS,
program run, network) of higher orders of magnitude.

Multi-Hop. We also test the discovery time cost in a
multi-hop condition. The 20 objects are divided to 4 equal
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groups: Object 1–5, 6–10, 11–15, 16–20 are 1, 2, 3, 4 hops
away from the subject respectively. Fig. 7 (g) shows that
the discovery costs longer than the single-hop case: here
discovering 20 Level 1 objects needs 0.72 s, and Level 2 or
Level 3 objects 1.15 s. But still, the latency is short. Fig. 7
(h) reveals the impact of hops on latency: discovering a
1-hop Level 1 object averagely costs 0.13 s, while 4-hop
needs 0.53 s; as for a Level 2 or Level 3 object, 1-hop
takes about 0.32 s (0.1 s computation + 0.22 s transmission)
while 4-hop 0.92 s (0.1 s computation + 0.82 s transmission).
We see transmission time increases roughly linearly with
hop counts. In all cases Argus is fast enough to achieve
satisfactory user experience.

9.3 Message Overhead

We show the size (unit: byte) of every message in Tab. 3.RX :
28 B (like TLS); MACX : 32 B (SHA-256). X is S or O. When
using 128-bit strength, CERTX is an X.509 ECDSA certifi-
cate of 552 B; KEXMX and SIGX have 64 B. PROFX
averagely has 200. [PROFO]ENKK is assumed to use AES
in CBC mode, with 16-byte IV, 32-byte MAC, (padding
ignored), thus a ciphertext has size 248. Notice that Argus
has light message overhead, and actually in Level 2 and 3
about half of the bytes are from the two X.509 certificates.

TABLE 3
Message Size

MessageSize (byte) QUE1 RES1 QUE2 RES2 Total

Lvl 1 28 200 228
Lvl 2/3 28 772 1008 280 2088

QUE1 is a broadcast message while the others are uni-
cast. Thus, to discover n objects which are single-hop away,
if message losses are not considered: in Lvl 1, (n + 1) (1
QUE1, n RES1) messages are needed; in Level 2 or Level 3,
(3n+ 1) (1 QUE1, n RES1, QUE2, RES2) are needed.
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Fig. 8. Retransmission Time Choosing

In real environments message losses happen, and we use
application layer backoff and retransmissions for reliable
delivery. Fig. 8 shows that a larger τ increases latencies
while a smaller τ incurs unnecessary retransmissions. We
find τ = 150 ms achieves a good balance between low
latency (0.6 s for discovering 20 Level 2 or Level 3 objects)
and low retransmission rates (10%).

10 RELATED WORK

10.1 Centralized vs. Distributed Discovery
Centralized. Many existing solutions depend on centralized
infrastructures (i.e. servers, directories) which maintain the
information of registered services and handle announce-
ments to or queries from users. E.g., in Ninja SDS [3],
a server stores the description of available services and
services running at a specific location; MQTT [23] is a
publish/subscribe protocol which realizes reliable, efficient
messaging between IoT devices [24], [25]. Other central-
ized examples are DNS [2], Jini [26] (Sun Microsystems),
Salutation [27], and SLP [4]. Such systems use servers as
repositories for efficient, scalable and wide-area discovery.
However, they may encounter a single point of failure or
long latency. Some systems [3], [23], [28], [29] have multiple
servers running concurrently to improve reliability, and the
servers keep contacting each other to make the caches up-
dated. Eventual consistency [30] (a type of weak consistence)
is achieved, thus users may see obsolete information.

Distributed. Distributed solutions like DEAPspace [31]
(IBM), UPnP [5], and SDP [6] (Bluetooth) are infrastructure-
less, and any service may announce itself or reply a query.
Multicast DNS [32], SLP and Bonjour [7] (Apple) support
both centralized and distributed discoveries. A distributed,
ad-hoc discovery strategy has the advantage of discovering
nearby services robustly (no single point of failure) and
quickly. However, it does not have a wide-area discovery
scope. E.g., UPnP provides discovery in LAN, DEAPspace
and Bluetooth in a single-hop ad-hoc network, while cen-
tralized systems like DNS and Ninja have global discovery.

10.2 Secure Discovery
10.2.1 Authenticated & Encrypted Discovery.
Security issues are limitedly covered in existing work. Au-
thentication. Some systems [2], [31] require neither user
nor service information to be authenticated. SLP [4] au-
thenticates services or devices but not users; Salutation [27]
in contrast, authenticates users only. In Ninja [3], Jini [26]
and UPnP [5], both services and uses are authenticated.
Encryption. Ninja, UPnP and Bluetooth [6] have messages
encrypted for confidentiality.

10.2.2 Private Discovery.
In an ad-hoc network, if a user and a service both have pri-
vacy concerns, neither wants to expose its sensitive informa-
tion before the other does, a chicken-or-egg problem arises.
In solutions like [3], [33], a trustworthy proxy is assumed
and used as a bridge between users and services. Both
entities simply send to the proxy encrypted messages which
only the proxy can decrypt. This model avoids the chicken-
or-egg problem but is infrastructure-dependent, while the
solutions below are not.

Multiple cryptographies have been applied. 1) Public-
key. In Private Authentication [34], the sender encrypts its
ID with the receiver’s public key (e.g., RSA) to ensure only
that receiver can view it. One-to-many public-key cryp-
tographies like Prefix Encryption [35] (based on Identity-
Based Encryption [36], [37]) have also been used [38]. Public-
key strategies have huge computational cost. 2) Symmetric-
key. In [39], [40], [20] a user and the service she can
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discover get a symmetric key at bootstrapping. In later
discoveries, they do not reveal their real IDs; instead, they
test each other’s possession of the symmetric key, mostly
by exchanging MACs generated from the key. Zhu et al.
believe even disclosing a MAC might expose too much
information of the sender, thus a Bloom filter [41] gen-
erated from the MAC is sent instead [42], or one piece
of a MAC is sent each time [43]. 3) Pairing-based. When
Pairing-based Cryptography [9], [44] is used, fellows get
PBC keys at bootstrapping which will be used to generate a
pairwise symmetric key during handshake. Then two users
test if the other owns the symmetric key, like symmetric-
key mechanisms. MASHaBLE [45] combines this with BLE
to discover secret community members. Liu et al. [46] apply
it to gateways’ authenticating WiFi devices.

How is Argus different? 1) Argus consciously chooses
a distributed, P2P discovery strategy because IoT interac-
tions are largely physical proximity based. 2) It achieves
concurrent visibility scoping at three levels, while existing
solutions are restricted to one and unfit for enterprise IoT
with numerous, heterogeneous services. 3) It minimizes
the updating overhead upon the frequent enterprise user
churns, making the system scalable to enterprise IoT. 4) It
goes beyond mutual privacy in existing work and achieves
indistinguishability.

11 DISCUSSION

Secrecy of Physically Visible Services. Argus prevents user
devices from collecting service information of unauthorized
objects/services, especially those behind walls, which usu-
ally have larger amounts and higher secrecy requirements
than those in public areas. Humans may gain knowledge
of physically visible services, but that belongs to physical
access security, which is out of the scope of this paper.

Performance-Poor Objects. In this paper we assume
Level 2 and Level 3 objects have resources for public-
key computation at reasonable speed, because vendors
naturally spend a little extra money securing important
objects with better hardware, considering that nowadays
hardware is already very cheap. However, it is valuable to
explore a lightweight strategy fitting for even performance-
constrained objects, and we leave this to future work.

Revocation. When a subject loses access rights, Argus
efficiently updates the policies to the objects she could
access to reject her future discoveries. Of course, if she
has already gained an object’s information, the revocation
cannot remove the knowledge from her head. However,
for proximity-based discovery in a large-scale enterprise
environment, it is not uncommon that a subject has not dis-
covered all the objects she could discover when her access
rights are gone, then the revocation stops her knowing more.

KP-ABE. Besides CP-ABE which is explored, there is
a Key-Policy variant [47] (KP-ABE). When using KP, a
ciphertext of service information is tagged with a set of
attributes (e.g., {Room1, P rinter} describing the encrypted
data while a user key has a built-in policy which is a
predicate on data attributes. Such tags are in plaintext to
serve as search keywords and an input for decryption. We
have shown that CP is not as good as Argus, and KP is even
worse: like CP, it also has expensive computation cost and

updating overhead; besides, its plaintext data attribute tags
of ciphertexts ruin service information secrecy.

Unlinkability. Unlinkable discovery [45] is a type of
private discovery which prevents attackers from identifying
or tracking users. Its work usually has a city-scale context,
where the visiting to certain places (e.g., hospitals, bars,
clubs) involves privacy and should be kept secret. Argus
does not achieve unlinkability, because we believe within
an enterprise, location history (which department/building
a person has been to) is a less sensitive thing. Even so, we
may leave it as future work.

Message Transmission. In our implementation we use
broadcast for QUE1 and unicast for QUE2, RES1 and RES2.
Also, we use application-layer acknowledgement and re-
transmission to remedy unicast message losses. In essence,
this problem is on communication reliability, which is or-
thogonal to and independent from Argus.

Suitable Users. Argus discovers three levels of services
concurrently on an enterprise scale, and is especially suit-
able for enterprise IoT which has numerous, heterogeneous
services. We believe IoT device manufacturers targeting en-
terprise customers would like to replace existing protocols
in their products with Argus. In contrast, small scale IoT
contexts like smart homes mostly have small amounts, only
one or two levels of services, and Argus’s advantages in
scalability and heterogeneity are less needed, thus smart
home manufacturers would not bother to update protocols.

12 CONCLUSION

In this paper, we describe the design, implementation and
evaluation of Argus, a proximity-based service discovery al-
gorithm which efficiently discovers three levels of visibility
(public, differentiated and covert) in parallel, and is scalable
to IoT in enterprises. It has much less computation cost and
updating overhead than alternatives using ABE and PBC. It
is very responsive, taking only 0.25 s to discover 20 nearby
public services, 0.63 s for 20 differentiated or covert services,
agile for satisfactory user experience.
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APPENDIX A
CRYPTOGRAPHIC PRELIMINARIES

A.1 Bilinear Maps

Let G1 and G2 be two multiplicative cyclic groups of prime
order p. Let g be a generator of G1 and ê be a bilinear map,
ê : G1 × G1 → G2. The bilinear map has the following
properties: i) bilinearity: for all u, v ∈ G1 and a, b ∈ Zp,
ê(ua, vb) = ê(u, v)ab; ii) non-degenracy: ê(g, g) 6= 1. We say
that G1 is a bilinear group if the group operation in G1 and
ê are both efficiently computable. Notice that ê is symmetric
since ê(ga, gb) = ê(g, g)ab = ê(gb, ga).
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A.2 Attribute-based Encryption

Attribute-based Encryption [48] is a public-key one-to-many
encryption, and it has mainly two schemes: Key-Policy [47]
(KP-ABE) and Ciphertext-Policy [8] (CP-ABE). In KP-ABE,
a ciphertext is tagged with a set of attributes describing
the data while a user key has a built-in policy which is a
predicate on data attributes; CP-ABE, in contrast, issues a
user with a set of keys according to her attributes, and a
ciphertext is associated with a policy which is a predicate
on user attributes. For either scheme, a ciphertext can be
decrypted if and only if the attributes in the set match
the policy. Note that the original KP- and CP-ABE are
monotonic: their policies support logic AND (∧), OR (∨), but
not NOT. A policy example is [(Student∧DeptX)∨Admin].
The four main algorithms of CP-ABE in [8] are:

1) Setup. This algorithm chooses a bilinear group G1

of prime order p, generator g, and two random exponents
α, β ∈ Zp. It outputs master key MK = (β, gα) (kept
secret) and public key PK = (G1, g, g

β , ê(g, g)α) (publicly
available).

2) KeyGen. Input: a set of user attributes A and MK .
The algorithm outputs secret key SK = (g(α+r)/β , {gr ·
H(i)ri}, i ∈ A), where r, ri ∈ Zp are randomly chosen and
H is a hash function mapping any attribute described as a
binary string to an element in G1. SK is securely issued to
the user whose attributes constitutingA. As is seen, a user’s
secret key has one component for each of her attributes, but
with a common r embedded in. No two users share the
same r, which is for stopping collusion attacks.

3) Encrypt. Input: a plaintext M , an access policy tree
T and PK. A leaf node in T specifies a user attribute
and a non-leaf one represents logic AND or OR. In this
way it carries a predicate on user attributes. The algorithm
chooses a polynomial qi for each node i in T in a top-
down manner starting from the root node R. qR(0) is set
to s where s ∈ Zp is randomly chosen. For any other
node i, qi(0) is set to qparent(i)(index(i)) where parent(i)
denotes i’s parent in T and index(i) is i’s unique index
given by its parent. The algorithm outputs C = (T , C̃ =
M · ê(g, g)αs, gβs, {gqi(0), H(i)qi(0)}, i ∈ T ’s leaf nodes).

4) Decrypt. Input: C and SK. The algorithm first com-
putes DecryptNode(CT, SK, i) = ê(g, g)r·qi(0) for i ∈
T ’s leaf nodes. Then it aggregates these pairing results in
a bottom-up manner using polynomial interpolation. Fi-
nally it may recover ê(g, g)rs and then ê(g, g)αs. M =
C̃/ê(g, g)αs.

Revocation. i) Periodic revocation [8]. The original CP-
ABE revokes users through a time attribute in A and T .
Ciphertexts are periodically re-encrypted with new time at-
tributes (e.g., at the end of each day); users may periodically
request updated keys (for the time attribute part) from the
key manager and only unrevoked users will succeed. E.g.,
a user with SK for {Student, 07/30/18} can decrypt the
data encrypted with policy [Student ∧ 07/30/18]; if she
is revoked, next day she will not be able to decrypt the
data which is re-encrypted with policy [Student∧07/31/18]
due to the lack of SK for 07/31/18. ii) Immediate revo-
cation [15], [17], [49]. Ciphertexts can also be re-encrypted
using new keys immediately when a user leaves the system,
and new keys are immediately, securely delivered to unre-

voked users. iii) Non-monotonic revocation [18], [19]. Non-
monotonic ABE additionally supports logic NOT in policies,
which is useful for efficient revocation: to revoke S , ci-
phertexts are re-encrypted using a policy which negates S’s
identity or unique attribute (e.g., [Student ∧ (NOT IDS)]).
Unrevoked users do not need to update their keys, thus
updating overhead is reduced. However, as more and more
subjects are revoked, a ciphertext’s NOT list grows longer
and decryption time also increases, till at some point (e.g.,
a month later) it is necessary to clear the NOT list, using
periodic or immediate revocation.

A.3 Pairing-based Secret Handshake
Secret handshake [50], [45] ensures that two members in the
same group will recognize each other as fellows while a
non-fellow cannot identify one’s membership, no matter by
eavesdropping or performing a handshake. A pairing-based
strategy is shown as below.

1) Setup. The admin chooses a bilinear group G1 of
prime order p and generator g, and a group secret si ∈ Zp is
randomly chosen for each group i. Then, the admin issues
entity X with a pseudonym ψX and the corresponding PBC
key Kpbc

X,i = H(ψX)si if X is a member in group i, where H
is a hash function mapping a string to an element in G1.

2) Handshake. Assume Alice from group i and
Bob from group j attempt to shake hands secretly.
First, they exchange pseudonyms, i.e. ψA and ψB . Sec-
ond, Alice uses Kpbc

A,i and ψB to compute a pairwise
key ê(H(ψA)

si), H(ψB)) = ê(H(ψA), H(ψB))
si ; simi-

larly, Bob uses Kpbc
B,j and ψA to compute a pairwise key

ê(H(ψA), H(ψB)
sj ) = ê(H(ψA), H(ψB))

sj . Apparently,
the outcomes are the same if and only if si = sj , i.e., Alice
and Bob are fellows. Third, they check if the other possesses
the same secret: if so, they recognize each other as fellows;
otherwise non-fellows, but exactly which group she or the
other is in (i.e., the membership) remains unrevealed.

Note that in the PBC alternative we develop for Level 3
discovery, the ID of X is used in place of a pseudonym, i.e.,
Kpbc
X,i = H(IDX)si . By exchanging profiles (containing IDs),
S and O can start secret handshake. A pseudonym instead
of a real ID should be used when anonymity or unlinkability
is needed, which is not the case in this paper.
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