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Towards Scalable Indoor Map Construction and
Refinement using Acoustics on Smartphones

Bing Zhou, Mohammed Elbadry, Ruipeng Gao, Fan Ye

Abstract—The lack of digital floor plans is a huge obstacle to pervasive indoor location based services (LBS). Recent floor plan
construction work crowdsources mobile sensing data from smartphone users for scalability. However, they incur long time (e.g., weeks
or months) and tremendous efforts in data collection. In this paper, we propose BatMapper, which explores a previously untapped
sensing modality – acoustics – for fast, fine grained and low cost floor plan construction. We design sound signals suitable for
heterogeneous microphones on commodity smartphones, and acoustic signal processing techniques to produce accurate distance
measurements to nearby objects. We further develop robust probabilistic echo-object association, recursive outlier removal and
probabilistic resampling algorithms to identify the correspondence between distances and objects, thus the geometry of corridors and
rooms. We compensate minute hand sway movements to identify small surface recessions, thus detecting doors automatically.
Experiments in real buildings show BatMapper achieves 1− 2 cm distance accuracy in ranges up around 4 m; a 2 ∼ 3 minute walk
generates fine grained corridor shapes, detects doors at 92% precision and 1 ∼ 2 m location error at 90-percentile; and tens of
seconds of measurement gestures produce room geometry with errors < 0.3 m at 80-percentile, at 1− 2 orders of magnitude less
data amounts and user efforts.

Index Terms—Acoustic Sensing; Indoor Floor Plans
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1 INTRODUCTION

Online digital maps (e.g., Google Maps) have provided great
convenience for location based services (LBS) outdoors such
as finding nearby point-of-interests (POIs) and navigation.
However, for indoor environments where people spend
over 80% of the time [2], such maps are extremely scarce
and unavailable in most buildings. This has become a huge
obstacle to pervasive indoor LBS.

Accurate, scalable indoor floor plan construction at low
costs is urgently needed. Autonomous robots equipped
with high precision special sensors (e.g., laser rangers [3],
depth cameras [4], sonars [5] ) can produce high quality
maps. However, the high manufacturing costs, operational
and logistic obstacles make it difficult to deploy robots
in large quantities. Recently some work [6], [7], [8], [9],
[10] have leveraged crowdsourced data (e.g., WiFi, iner-
tial, images) from commodity mobile devices to achieve
scalability. However, they require large amounts of data to
combat inevitable errors and noises in crowdsourcing, hence
expensive total efforts and long data collection times. Those
using images also face common limitations in vision tech-
niques: dark/changed lighting, blurry images, glass walls,
and restrictions on photo-taking due to privacy concerns.

In this paper, we propose BatMapper, a novel acoustic
sensing based system for accurate floor plan construction
using commodity smartphones. Unlike inertial [6] or WiFi
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data [11], [12] that are inherently noisy, acoustics is capa-
ble of producing very accurate (e.g., a few cm’s) distance
measurements. Unlike images [7], its performance is not
affected by lighting conditions or transparent objects, nor
does it cause privacy concerns. A single person can finish
the measurements of a floor in a few minutes, eliminating
the long time needed to crowdsource large amounts [13] of
data from many users.

Despite its potentials, accurate and robust acoustic based
floor plan construction is far from straightforward. Com-
modity smartphone speakers and microphones are designed
with power, sensitivity intended mainly for low frequency
human voice and music; their characteristics are not con-
ducive for acoustic mapping. Due to the existence of nu-
merous surrounding objects, many echoes, not just those
bouncing off large surfaces like walls, but also those from
smaller objects or over multiple surfaces, will be received.
We must reliably determine which echoes, thus distances,
correspond to interested objects/surfaces. Finally, the activ-
ities and efforts needed from the user must be convenient
and minimal, so as to cover the whole floor in short time.

We make the following contributions in this work:

• We explore different acoustic signal designs and
identify frequencies, pulse lengths, modulation and
reshaping suitable for heterogeneous microphones in
commodity smartphones, and echo detection tech-
niques that achieve ranging accuracy of 1 − 2 cm in
distances up to ∼ 4 m.

• We analyze the constraints and dependencies in dis-
tances among echoes from different surfaces, and de-
velop probabilistic evidence accumulation and recur-
sive outlier removal algorithms to reliably associate
echo distances to reflection surfaces. We compensate
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Fig. 1. BatMapper takes acoustic and inertial data and uses a series of
algorithms to produce and refine the geometry of corridors and rooms,
thus the full floor map.

the minute hand sway movement during walking,
and automatically detect doors by their small reces-
sions, thus increased distances.

• We propose measurement gestures and a proba-
bilistic resampling algorithm for fast, robust room
size/shape estimation in tens of seconds. We design
classification algorithms to distinguish corridor seg-
ments, turning corners, open spaces, and cluttered
areas for fine grained and more robust mapping.

• We develop a mapping application on Android de-
vices, and demonstrate its capability of real-time
mapping for indoor environments. We also propose
several techniques for refining the maps based on
common features of indoor building structures.

• Extensive experiments in real buildings show that a
2 ∼ 3 minute walk can produce fine-grained corridor
shapes and detect recessed doors at precision of 92%
and location error of 1 ∼ 2 cm at 90-percentile; the
measurement gesture can estimate room geometry at
errors < 0.3m at 80-percentile. Compared to state of
the art, the amounts of user efforts and data are both
reduced by 1 ∼ 2 orders of magnitude.

To the best of our knowledge, BatMapper is the first to
explore acoustic sensing for floor plan construction using
commodity smartphones, demonstrating robust, accurate
results while cutting user efforts and data amounts by
orders of magnitude.

2 OVERVIEW

BatMapper leverages three sensing modalities: acoustic, gy-
roscope and accelerometer for fast, accurate floor plan con-
struction (Figure 1). The user walks along corridors and in-
side rooms while holding the phone. The phone keeps emit-
ting and recording sound signals. It detects sound reflec-
tions (i.e., echoes) and measures their distances/amplitudes,
from which relative positions of objects (e.g., walls) are
inferred, and combined with user traces for floor plans.

By measuring the time between the sound emission and
echo reception, the distances to objects are estimated. Al-
though sonar systems have used such principles for explor-
ing and mapping the ocean floor for decades, smartphone
hardware is not designed for acoustic mapping purposes.
Unlike sonar systems customarily equipped with arrays
of tens of ultrasound transducers, the phone usually has
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Fig. 2. A particular sound signal and multiple signal processing steps
produce echo candidates.

one main speaker, two microphones with heterogeneous
characteristics, the top for recording and background noise
cancellation, the bottom for near field human voice. The
speaker and microphones are intended for low frequency
human voice and music (up to ∼ 1 K /4 KHz), not high
frequency ultrasound.

We design a series of algorithms to overcome these
difficulties. We design sound signals suitable for heteroge-
neous microphones, and processing techniques to produce
multiple echo candidates and their distances, amplitudes.
The candidates are inherently noisy due to cluttered objects,
multi-surface reflections, and lack direction information.
Echo-object association, detecting which echo thus distance
corresponds to which object (e.g., walls), is critical.

We propose robust algorithms for echo-object association
to derive geometries of corridors and irregular rooms: a
probabilistic evidence accumulation wall-distance association
algorithm computes probabilities of echoes bouncing off
different surfaces using relationships among various dis-
tances; a recursive outlier removal further eliminates residual
incorrect associations caused by cluttered/moving objects.
A sway compensation technique is designed to extract and
compensate hand sway during walking and its disturbance
to distance, thus small surface recessions (∼ 10cm) are reli-
ably identified and door locations detected. Distinct patterns
in inertial and distances are combined to classify corridors,
corners, open spaces and cluttered areas. A probabilistic
candidate resampling algorithm can measure regular room ge-
ometry in tens of seconds using left-right phone movement
gestures.

3 ACOUSTIC SENSING

The acoustic ranging module in BatMapper consists of sound
emitting, sound recording by two microphones, and a series
of signal processing steps to produce distance/amplitude
measurements for echo candidates in both microphones
(Figure 2). Unlike some existing work [14] that only shows
the received echoes and requires the user to guess and
manually pick the one for a specific object, we leverage
dual microphones and develop signal processing techniques
for accurate and reliable peak detection, thus echo distance
measurements.

3.1 Sound Signal Design

Due to the hardware limitations and heterogeneous prop-
erties of the two microphones, the sound signal design
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Fig. 3. The signal contains two pulses: higher frequency with longer
duration for top microphone, and lower frequency with shorter duration
for the bottom one.

critically impacts the ranging accuracy and reliability. After
extensive experiments and analysis of different frequency
modulations, pulse lengths and wave shapes, we use a two-
pulse signal, one at 3 ms and frequency range 8 ∼ 16 KHz
and the other 1 ms and 8 ∼ 10 KHz, both linear frequency
increasing sine waves with Hanning window reshaping [15]
and separated by 40 ms delay (Figure 3).

Frequency Modulation and Pulse Length. We leverage
a chirp signal with linear frequency increase over time,
commonly used in sonar systems. It has an f0 of the car-
rier frequency, f1 the final frequency. The frequency keeps
increasing linearly from f0 to f1. We choose two frequencies
based on several factors of commodity smartphone hard-
ware. First, the frequency range should not exceed the phys-
ical capability of a normal smartphone speaker, which is
usually capped below 20KHz. Second, the frequency range
should be set apart from background noise, such as human
voice usually under 1 KHz, and music instruments under
4 KHz. Hence we set the minimum carrier frequency as 8
KHz. Third, we need to consider heterogeneous frequency
response properties of the two microphones. The bottom
one is designed for close range human voice capturing,
and the other (usually at the top) for background noise
cancellation. We conduct extensive experiments with sound
signals of different frequency ranges, intensities and lengths.
We find that the top microphone is more sensitive but has
higher noise levels. The bottom one has less noise, and
sensitive to lower frequencies (e.g., human voice). We exper-
iment with different frequency ranges and find that a wider
range [f0, f1] makes the echo peaks more distinct, thus
easier to detect. Lastly, with the same emitting energy, low
frequency sounds propagate farther than high frequency
ones. Reflections could be too weak to be detected if the
frequency is set too high. Increasing the chirp length can
also increase the total energy, but it also increases overlaps
between adjacent echoes from objects of similar distances,
hence reducing the measurement resolution. The final signal
design is a balance among all the above factors, with two
signals of 1 ms 8 − 10 KHz for the bottom microphone,
and 3 ms 8 − 16 KHz for the top one suitable for their
properties.

Final Signal for Emitting. We apply a Hanning win-
dow [15] on the two pulses to reshape their envelops to
increase their peak to side lobe ratio, thus higher signal to
noise ratio (SNR). We join the two pulses and separate them
by a delay in between, so one emitting signal includes two
pulses for both microphones. To ensure echoes from two
pulses do not overlap, the delay must be sufficient. From
experiments, objects more than 6 meters away create very
weak echoes, which can be ignored. Thus the minimum

delay between two pulses corresponds to the farthest range,
which is 6m×2

343m/s = 35ms. We give a bit buffer space and set
it at 40ms. This would allow 1000/(3+40+1+40) ≈ 12Hz
emitting frequency, sufficient for a user to take fine grained
measurements while walking.

3.2 Echo Candidates Generation
Noise Removal. The received signals will go through a
Butterworth bandpass filter, 8 ∼ 10 KHz and 8 ∼ 16 KHz
for the bottom/top microphone, to remove background
noise. Without such filtering, weak reflections can be buried
in the noise. This step is critical for collecting data in noisy
environments.

Echo Peak Generation. Next we cross-correlate the sig-
nal with its respective pulse, a common technique [16] that
produces a peak for each echo, and obtain the upper envelop
for the signal. Then we chop the envelop into segments of
small time windows of 35 ms, each containing echoes from
one pulse only. We need to determine the start of these
windows. The first peak will always be the direct sound
from the speaker to the microphone, and it has the highest
amplitude. It will be used as the starting point. Before we
find peak locations, we use a low pass filter moving average
to eliminate small outlier peaks and smooth the envelop.

Echo Candidates Generation. For each emitted chirp,
multiple peaks corresponding to different echoes are de-
tected. E.g., a chirp in a small room will create echoes from
all sidewalls, the ceiling and floor, even echoes reflected
multiple times. How to associate echoes to objects, deciding
which corresponds to which, is critical to derive the geome-
try of the environment. Using a threshold, we can select only
the top-K strongest peaks, which are hopefully from larger,
closer objects. More candidates will cover those interested
objects (e.g., wall surfaces), but too many candidates may
also include echoes from other smaller, irrelevant objects
(e.g., desks, chairs), making distance-wall association more
difficult. After extensive experiments, we choose top 6 peaks
for the top microphone, because it is more sensitive and has
stronger echoes from faraway objects, and top 10 for the
bottom one, because it is less sensitive and may miss echoes
from faraway walls.

4 FLOOR PLAN CONSTRUCTION

A floor plan includes corridors and rooms. The shapes,
sizes of corridors and the locations of doors along corridors
form the map skeleton; the contours of rooms augment the
skeleton and complete the map.

4.1 Corridor Construction
We combine user traces and acoustic distance measure-
ments to both sides of walls for fast, light weight, and
accurate corridor construction. The user holds the phone
horizontally, and walks along corridors continuously. A
few minutes’ walking is enough to cover a floor of decent
sizes (e.g., 40 × 40 m2). This incurs minimal user efforts,
and minimal phone rotations which minimizes gyroscope
drifts for robust user traces. Door locations are automatically
determined by detecting small distance increases caused by
doors usually slightly recessed (∼ 10 cm) from walls. To
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Fig. 4. Position of speaker and microphones on the phone, and sound
travelling paths of strong echoes in corridor.

handle many echoes and outliers from sound reverberation
over multiple surfaces (e.g., floor, ceiling, and sidewalls)
and moving objects/people, we design a probabilistic evi-
dence accumulation algorithm, and recursive outlier removal to
robustly associate distances to different sidewalls. Inevitable
hand movements during walking cause distance variations
comparable to the small recess depth of doors. Distance may
be increased/decreased, causing false detection or missing
of doors. We design a sway compensation technique that
can correct such minute distance variations for reliable,
automatic door detection.

Distance-Wall Association. To identify which distance
corresponds to which objects, thus the geometry of corri-
dors, we analyze the relationships among the distances and
amplitudes of echo candidates from both microphones, and
devise a probabilistic evidence accumulation (PEA) method
for distance-wall association.

Figure 4 shows a phone held perpendicular to both
sidewalls in a corridor, and reflection paths of strong echoes
received by microphones 1. In Figure 4(a), d1, d2 are dis-
tances from the speaker to the left/right wall (the width of
corridor d = d1 + d2); l1 and l2 are the constant distances
from speaker to the two microphones (the length of the
phone l = l1 + l2).

In path 1,2 (Figure 4(b)), the sound bounces off the right
wall once, and is received by top/bottom microphones. The
echoes are likely very strong due to short travel distances,
and similarly for echoes from left wall in path 3, 4 (Fig-
ure 4(c)). The echoes bouncing both sidewalls can still be
detected, with less amplitude due to longer travel distances
(Figure 4(d)). In reality, we find the top microphone can
detect echoes from path 1,3,5 in most cases, and the bottom
microphone can detect those from path 2 but miss some
from path 4, 6 due to its low sensitivity to far field sounds.

Let {cti}, {dti}, {sti} (i = {1, · · · , 6}) denote the sets
of the 6 strongest echo candidates, their distance measure-
ments and amplitudes from the top microphone; {cbi}, {dbi},
{sbi} (i = {1, · · · , 10}) those from the bottom microphone.
Given these sets, our problem is to estimate the probability
P (cui : path k) that a given candidate cui , u ∈ {t, b} travels
along path k. The distances of candidates with greatest

1. Echoes coming from floor/ceiling have much less amplitudes
because microphone openings are facing sidewalls. Their echo travel
distance relationships also differ from those of sidewalls, thus will
generate much smaller probabilities and be filtered out by PEA.

probabilities will be used to infer path lengths, thus corridor
geometry such as width l.

1) P (cbi : path 2): we combine two evidences. If cbi is a
direct echo from the right wall, a) it is likely to have the
highest amplitude in {sbi}. Thus

P1 = f1(1− sbi/max
i

(sbi )) (1)

where f1(·) ∼ N (0, σ2
1) is the PDF function of a Gaussian

distribution, commonly used in Bayesian Networks to rep-
resent probabilities of such evidences. b) considering path
1 and 2, there must exist a candidate from top microphone
ctj that travels path 1 where dtj − dbi = l. We model this
probability as:

P2 = f2(min
j

(| dtj − dbi − l |)) (2)

where f2(·) ∼ N (0, σ2
2). We combine the two evidences to

compute P (cbi : path 2) = P1 · P2.
2) P (cti : path 3): we combine three evidences. If cti is a

direct echo from the left wall, a) it is likely to have a high
amplitude in {sti} 2. We model this probability as:

P3 = f3(1− sti/max
i

(sti)) (3)

where f3(·) ∼ N (0, σ2
3). b) a cti along path 1 can generate

a high amplitude. We exclude it by the evidence of a
corresponding cbj along path 2 computed in step 1. A large
P (cbj : path 2) indicates less likely cti goes path 2.

P4 = 1− P (cbj : path 2) (4)

where j = argmin
j

(| dti − dbj − l |). c) two other echoes

ctj , c
t
k must exist such that dti + dtj − dtk = l1. Hence

P5 = f5(min
j,k
| dti + dtj − dtk − l1 |); (5)

where j, k ∈ {1, . . . , 6}, j 6= i, k 6= i, j 6= k, f5(·) ∼
N (0, σ2

5). We combine the three evidences for P (cti :
path 3) = P3 · P4 · P5.

3) P (cti : path 5): if echo cti bounces off right then
left wall along path 5: a) considering distance relationship
among path 1,3,5. There must exist two other echoes ctj , c

t
k

such that dti − dtj − dtk = l1, hence

P6 =f5(min
j,k
| dti − dtj − dtk + l1 |); (6)

where j, k ∈ {1, . . . , 6}, j 6= i, k 6= i, j 6= k and f5(·) ∼
N (0, σ2

5). b) considering distance relationship among path
2,3,5. There must exist another ctj and cbk such that dti − dtj −
dbk = l2, hence

P7 = f7(min
j,k
| dti − dtj − dbk − l2 |); (7)

where j ∈ {1, . . . , 6}, j 6= i, k ∈ {1, . . . , 10}, f7(·) ∼
N (0, σ2

7). We combine them to get P (cti : path 5) = P6 · P7.
Parameter Learning. The variances {σ1, σ2, σ3, σ5, σ7} in

the above are needed to compute probabilities. We conduct
experiments in the corridor and collect training data sam-
ples where the traveled paths of echoes are labeled. Given a
sample collection {xi} from a normal distribution, its mean

2. Depending on where the phone is positioned left/right, it may or
may not be the strongest.
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and variance can be estimated [17] as µ =
∑n

j=1
xj

n and
σ = 1

n

∑n
j=1(xi−µ)2. We also find these parameters do not

change much in different buildings, and learning them once
produce accurate results in corridors with width 1.5 ∼ 4m.

Recursive Outlier Removal. After the above compu-
tation, we obtain the probabilities for each cbi traveling
path 2, and each cti traveling path 3 and 5. Initially, we
select the candidate with the highest probability for each
path. However, outliers can happen due to signal noises,
moving objects/people during data collection. We propose
a recursive outlier removal (ROR) algorithm to detect and
replace outliers.

Assume a continuous sequence of n chirps emitted
at time {ti}. Without loss of generality, consider the top
microphone’s candidate set of the 6 strongest echoes at
ti. The one with the highest probability travelling path
3 has distance d[i]. We define a similarity score s =√
α(d[i] − d[j])2 + β(ti − tj)2. For each d[i], count the num-

ber of d[j]’s where s < ε (a threshold), j ∈ {i − n/2, i +
n/2}, j 6= i. If the count is less than a threshold k, d[i] is
considered an outlier. The candidate with the next highest
probability traveling path 3 replaces the outlier. The above
repeats for the new candidate, until it is not detected as
an outlier, or all the 6 candidates at ti are exhausted – the
average of other non-outlier d[j] at neighboring times will
be used. We find in reality the process quickly terminates as
outlier count decreases exponentially.

4.2 User Trace Construction.

We construct user’s walking trace through step counting
and orientation estimation from inertial sensors. However,
the accumulation error with dead-reckoning from inertial
sensors is a well known problem. Thus, we enhance it with
several techniques to suppress such errors: i) we minimize
the user’s manipulation of the phone (e.g., rotating phones
for photo-taking) while walking; ii) we estimate the orien-
tation from sensor fusion instead of gyroscope only; iii) we
leverage structure cues such as right-angle corners and room
shapes of indoor environments to calibrate the orientation
drifts and room shapes.

First, BatMapper just requires the user to hold the
phone and walk along a corridor. Compared to some prior
work [7], it does not require the user to take pictures every
now and then, which involves a lot of phone rotations,
thus introducing more errors in orientation estimation and
step detection. Second, for more robust orientation measure-
ment, we use the composite sensor game-rotation-vector in
smart phones that leverages accelerometer and gyroscope,
which proves to be more reliable than integrating gyroscope
data for orientation. Finally, to combat the accumulation
error, we leverage the structure cues (e.g., straight corridors,
right-angle corners) commonly seen in buildings for orien-
tation calibration. As the user is supposed to walk along
corridors, and make turns at corners, we detect major orien-
tation changes instead of using instantaneous inertial sensor
readings. That is, we “lock” the orientation to a constant
value when there’s no obvious rotation detected (e.g., the
user is walking along a straight corridor). When the user
makes turns, we detect such large orientation changes. If
the orientation change is close to right-angle within a certain

Fig. 5. Phone sway while walking and distance measurements after
compensation.

threshold, it will be calibrated to right-angle automatically
(Section 6.1). The trace is further calibrated when a walking
loop closure is available to compensate step length errors.

4.3 Door Detection and Space Classification

The intuition for door detection is quite simple: doors are
usually recessed from the frame and wall, thus creating
slight increase in distance 3. However, identifying such
recessed doors is challenging. There is an inevitable left-
right swaying of the hand during human walking, caus-
ing distance variations comparable to the recessed depth
(∼ 10cm). This can increase/decrease the distance, thus
generating false or missed detections.

Sway Compensation based Door Detection. Existing
techniques [18], [19] can construct user traces by step
counting, heading estimation and dead reckoning with ac-
celerometer and gyroscope, but not slight movements of
hand swaying. We use Figure 5 to illustrate the process.
Figure 5(a) is the aggregated accelerometer amplitude after a
low pass filter. Peaks occur when either foot hits the ground.
Figure 5(b) is the distance to the right sidewall, which shows
highly correlated patterns: a high peak or a low valley
when the left/right foot hits the ground. Figure 5(c) is the

3. We survey 30 buildings around a university campus. Almost all
doors are recessed except a few for special purposes.
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Fig. 6. Different data patterns to illustrate rules of space classification.

distance to the left sidewall, which has larger noise due
to longer distance and more distance variations caused by
more doors. Figure 5(d) shows the measured corridor width
where distance changes to left/right sidewalls cancel out
each other. Using an empirical threshold of 2

3d, where d is
the recession depth, we detect sudden increase and decrease
to identify corridor segments having doors.

Due to disturbances and noises in measurements, the
above cannot reliably tell the boundaries of doors, or
which side of the wall the door exists, or distinguish ad-
jacent/overlap doors on opposite sides (Figure 5(d)). We
compensate the sway to obtain accurate distance to each
side. Segments without doors on either side are detected in
Figure 5(d). The average of each segment is deducted from
Figure 5(b) to obtain Figure 5(e), the compensation signal.
The locations of missing peaks and valleys in Figure 5(e) are
those of respective peaks in acceleration (Figure 5(a)), and
their amplitudes are estimated using nearest neighboring
peak or valley in Figure 5(e). The signal is fully interpolated
using sinusoid (Figure 5(f)), and deducted from Figure 5(b)
to obtain the compensated distance Figure 5(g). We repeat
the same process for Figure 5(c) and obtain Figure 5(h).
Finally we detect doors on each side in Figure 5(g,h) by
detecting distance increases/decreases using threshold 2

3d.
For each increasing point, a door is detected if a decreasing
point exists within the following (dw − ε, dw + ε) range,
where dw is the door width, ε a tolerance threshold. This
further filters out false detections.

Space Classification. Besides straight corridors, large
open space (e.g., lobby), stair entrances and corners also
exist. We leverage inertial and acoustic data to classify the
space. By identifying large changes in heading direction,
we can detect straight trajectory segments (Figure 6(a)).
We further analyze the total width d and total energy of
received echoes from the bottom microphone, because it is
more sensitive to distance changes.

Intuitively, the total width equals the sum of distances
to two sidewalls in corridors, and the echo energy is strong
in narrow space while weak in large open space. We use
Figure 6(b,c) to illustrate classification rules. The high peak
around 30s in Figure 6(c) indicates a narrow corner because

it has a high intensity and an orientation change. Width
disturbances at 40 ∼ 50 s in Figure 6(b) have normal
corresponding power, which indicates the size of the space
is comparable to corridor, but it is more complex. This
turns out to be a cluttered area of storage boxes. The width
disturbance around 90 s in Figure 6(b) indicates a wide
corner, since we have a large orientation change and normal
power. The drop in power (110−125 s) in Figure 6(c) shows
the user is passing a large open space, and there are large
width disturbances in Figure 6(b) as well. The last width
disturbance in Figure 6(b) has no orientation change and
normal power, corresponding to a stair entrance.

The above rules are largely distinct and exclusive to
each other, with occasional exception (e.g., cluttered area vs.
stair entrance) that may require further efforts. Their main
purpose is not to provide 100% classification accuracy, but
to detect and exclude non-corridor segments, so as to avoid
false door detections caused by disturbances and false walls
in large open spaces beyond measurement range.

5 ROOM CONSTRUCTION

Different methods are used for rooms of two types: 1) small,
regular rooms and 2) irregular or large rooms. Rectangle or
polygon rooms smaller than 8 × 8 m2 are type 1, including
bathrooms, bedrooms, personal offices and laboratories 4.
Type 2 are either irregular shapes or over 8× 8 m2, such as
large classrooms, lobbies, auditoriums.

5.1 Regular Room Construction

We design a fast room construction method that obtains the
width/depth of a regular room using a simple measurement
gesture 5. Without loss of generality, we explain using the
top microphone. The user holds the phone in front of his
body, clicks a button to trigger the phone to emit many
chirps quickly (e.g., 50 in 5s), producing N distance mea-
surements as the original set DO = {dO1 , dO2 , ..., dON}. Each
distance has an equal probability of coming from the left
wall.

The user stretches his arm and moves the phone to
the right side; it emits multiple chirps (e.g., 10 in 1s) and
produces an update set DU = {dU1 , dU2 , ..., dUM}. We use
the following candidate weight update and resampling to
obtain distance from certain directions. Then the user moves
the phone to left, repeat the process. The user may need to
move the phone left/right a few times to produce reliable
results.

Candidate Resampling. Candidate Resampling recalcu-
lates the probabilities of distance candidates over multiple
measurements. The intuition is to “penalize” those that
behave inconsistently given the phone’s movement. For
example, echoes coming from the front wall are assigned
smaller weights because their distances do not change much
in left/right movements. They will have much smaller
weights and thus less likely to be chosen during resampling.

4. Experiments show that the maximum distance that can be reliably
measured is 4m to each side.

5. Most rooms are cluttered and have larger size than corridor width,
thus PEA cannot work reliably in this case.
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We compute the weight ωj for each dOj ∈ DO as:

wj = f(dUk − dOj − µ), k = argmin
k

(| dUk − dOj − µ |) (8)

where f(·) is the likelihood function which has the form
as PDF of Gaussian distribution N (0, σ2) that describes
the similarity between actual distance change dUk − dOj
and expected move distance µ, dUk ∈ DU is a distance
measurement in the update set, σ is the variance tolerating
estimation errors in moving distance. Assuming the phone
is held by the right hand, we set µ = 0.3 m and µ = 0.5 m
for left/right movement, σ at 0.2 empirically. A new set is
formed by sampling N distances from the original set, each
with probabilities proportional to their weights. The original
set is then replaced by the new set.

The user may need to move the phone left/right multi-
ple times. Each time the correct distance will be reinforced
and incorrect ones penalized. Thus the results quickly con-
verge (i.e., showing a distance with dominating probability)
after a couple left/right movements, which can be done
in tens of seconds. Although clutters along the movement
directions may create echoes, such echoes are unstable com-
pared to those from our targeted large surfaces (e.g., walls).
Hence they are assigned lower probabilities and eventually
removed. For better robustness and quick convergence, the
user should avoid large objects, such as large furniture,
along the moving directions. The user can turn 90◦ and
repeat the above process to measure the other two walls. The
total height between ceiling and floor can also be measured
by holding and moving the phone vertically.

5.2 Irregular/Large Room Construction

For irregular/large rooms, we combine user traces and
acoustic measurements for construction. Due to the limited
sensing range, the fast construction method does not work
for irregular or large rooms. The user must walk a full loop
around the internal boundaries of the room, and measure
the distance to the wall continuously. We combine the
user trace and distance measurements to create the room
boundaries. In this case, we walk close to the wall on right
while holding the phone, and leverage PEA to identify the
distance from the wall to bottom microphone. P1 · P2 in
PEA does not rely on left sidewall, thus we can get reliable
distance measurements. As long as objects do not fully block
line of sight to the wall, the acoustics can detect distance
to walls reliably. Compared to approaches [6], [7], [8] using
only user traces that can be distorted by objects, this method
can generate much more accurate room shapes.

6 MAP REFINEMENT

We further explore the hidden geometric structure informa-
tion of indoor environments, such as right-angle corners,
and polygon/circular shapes of rooms to refine floor plans.
Such prior knowledge about building structures provides
new spatial relationships among floor plan elements. Thus
we can further improve the quality of reconstructed maps.

(a) Rectangle (b) Circle (c) Polygon (d) Irregular

Fig. 7. Different kinds of room reshaping: minimum out-bounding rect-
angle/circle fitting (a,b), and turning points connection fitting (c,d).

6.1 STRUCTURE 1: Right-angle Corner Structures

The limited accuracy and long term drift of gyroscope make
it hard to track the orientation accurately, especially during
turns [20]. A few degrees’ error in angle estimation can
cause large location errors of a long hallway after the turn,
thus serious errors in hallway layout and the final map. The
way a user holding the phone is also a main contributor to
large errors. From our experiment experiences, users tend
to swing their hands/arms slightly during walking, causing
errors in orientation estimation.

1) Right-angle Corner Detection. Manhattan [21] struc-
tured buildings are quite common in the real world. In such
buildings, corners are mostly right angled. Such right-angle
turns provide opportunities that can be used for calibration.
We compute the angle between each two intersecting wall
segments. A threshold method is used to detect right-angle
corners: if the computed angle is within a small offset (set
at 5◦ empirically) to 90◦, the intersecting corner is detected
and adjusted as right-angle corner.

2) Hallway Orientation Calibration. Most buildings fol-
low a Manhattan world model, where straight corridors are
perpendicular to each other. Based on detected right-angle
corners, we develop an algorithm to adjust the orientations
of the associated hallways gradually. The orientation of
the longest hallway is assumed to be that of the global
coordinate system. The algorithm rotates hallways around
corner intersecting points to make them parallel to global
horizontal or vertical orientations. For those none right-
angle corners, the orientation remains the same.

6.2 STRUCTURE 2: Room Shape Structures

We use two techniques for room reshaping: out-bounding
rectangle fitting and turning points connection. After that,
each room is placed to respective hallway using the associ-
ated landmark (i.e., door) location to create the final map.
We have three steps for room optimization: room shape
detection, room reshaping, and room arrangement.

1) Room Shape Detection. The prior knowledge of
rooms (e.g., rectangle, polygon, circular) can be leveraged
to optimize reconstructed room shapes. Users walk around
the perimeter of each room’s interior, then trajectories are
constructed from inertial data to infer rough room shapes.
However, this simple method has limitations: user trajecto-
ries may be blocked by obstacles inside rooms, and users
cannot walk close to inner walls exactly. Usually traces tend
to be smaller than the actual size, hence causing false neg-
ative estimations. We detect room shapes as rectangles and
circles, which are most common in indoor environments.
The following steps describes the detailed steps:

1. Generate user trajectories from inertial data to repre-
sent raw room shapes {R1, R2, ...RN}.
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2. Minimum bounding box algorithm [22] is used to com-
pute the minimum out-bounding rectangle for each room
Ri. The ratio between raw room size and the minimum
rectangle size is denoted as r rec. If r rec > 0.9, which
means the shapes are similar, then the room is classified as
rectangle.

3. We use the method in [23] to compute the smallest out-
bounding circle for the remaining rooms and compute the
size ratio r cir between the raw room and out-bounding
circle. Then we use the same threshold method to detect
circular rooms.

4. For those unclassified rooms, we represent such rooms
with polygons. r rec is used to determine how many edges
are needed to fit the room shape in the next step.

2) Room Reshaping. For rectangle/circular rooms, we
use the same minimum out-bounding rectangle/circle com-
puted in the detection step to fit the room shape. In this
way, room corners and inaccessible areas can be fully recon-
structed, such as Figure 7(a) and 7(b).

For those unclassified rooms, we fit the room shapes
by connecting turning points on the trajectory. We take
the derivative of user walking orientation, and find the
peaks of the absolute values of derivatives and sort them
in descending order. These peaks are defined as turning
points. We use the round down number b4/r recc to de-
termine how many turning points are used for fitting. In
this case, if r rec > 0.8, the room will be regarded as
rectangle/quadrangle and four turning points will be used,
such as Figure 7(a) and 7(c). If r rec <= 0.8, it means the
shape could be irregular, which is far from a rectangle. In
this case, more turning points according to the actual room
size are used to make better fitting, as shown in Figure 7(d).

3) Room Arrangement. We place each reshaped room to
the corresponding position along the hallway, according to
the corresponding landmark location and orientation. Since
the user starts walking a closed trajectory from the door
location, hence room location can be determined by aligning
door locations to the corresponding landmark and rotating
the room to achieve minimum overlap between room shape
and hallway.

7 IMPLEMENTATION

We implement the mapping algorithms on Android devices,
and develop a real-time mapping application. Figure 8
shows the user interface of the demo application. We also
use OpenCV for straight line detection, thus straight cor-
ridors. All the computation are done in real-time on the
smartphone, and the map can be streamed to a PC through
Wi-Fi for display. On the smartphone screen, we display
the map and the camera preview with straight corridor
detection. The yellow segments indicate the detected door
locations, black lines are wall boundaries, and the dotted
red line represents the user’s walking trajectory. Refer to
our demo [24] for more details.

8 EVALUATION

We use Huawei Honor 6 smartphone for data collection
and evaluate BatMapper from several aspects: acoustic mea-
surements, algorithm performance, mapping performance,

Fig. 8. User interface of BatMapper demo application on Android.
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Fig. 9. Distance candidate accuracy and error for both top and bottom
microphones.

data amounts and user efforts. We conduct data collection
in 3 large buildings, including a 40 × 60 m2 laboratory,
a 50 × 60 m2 teaching building, and a 45 × 45 m2 office
building. We use the composite sensor game rotation vector
in Android that leverages accelerometer and gyroscope,
which proves more reliable than integrating gyroscope data
for orientation. The trajectory is further calibrated with a
constant orientation drift rate and walking loop closure [25]
when available.

8.1 Acoustic Measurements
Distance Accuracy. Accuracy of distance is the first step
and basis for accurate floor plans. To evaluate the signal
design and processing techniques, we select a plain wall in
an empty space, and measure the distance to the wall at
different locations. We vary the location thus the ground
truth distance from 0.5 ∼ 4 m with steps of 0.5 m, and
repeat 20 times at each location. Figure 9(a) shows that the
distance measurements for both microphones have small
errors up to 3.5 m range, and grow larger at 4 m. Fig-
ure 9(b) shows the CDF for all measurement errors in ranges
0.5 ∼ 3.5 m and 0.5 ∼ 4 m for both microphones. For
the range 0.5 ∼ 3.5 m, the error is within 1 − 2 cm at
80-percentile, and the maximum within 4 cm. For ranges
up to 4 m, we still get reasonable high accuracy of 5 cm
at 80-percentile, and the maximum ∼ 10 cm. The effective
range of ∼ 3.5 m is sufficient to measure distances to
both sidewalls simultaneously, at accuracy better than door
recession depth (∼ 10 cm).

Background Noise Tolerance. Background noises such
as human speech and music are common, especially in
public buildings. We evaluate their impact by comparing
3 scenarios: quiet room, human talking and pop music from
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Fig. 10. CDF for measurement errors of both microphones in different
scenarios: quiet room, human talking, and pop music at a fixed distance
of 3.5 meters.

Fig. 11. Distance measurement accuracy to a wall while the user is static
or walking at a fixed distance of 1 meter.

another smartphone 1m away at maximum volume. We do
50 measurements at 3.5 m from a wall. Figure 10(a), 10(b)
show the CDF of measurement errors for the top and bottom
microphones. The top microphone has most errors at 1.8 cm
and at most 2.2 cm under all scenarios, which shows high
noise tolerance. The bottom microphone has ∼ 1.4cm error
at 90-percentile in quiet room, and ∼ 1.75 cm under human
talking or pop music, both with comparable performance.
Because the higher frequency band 8 ∼ 16 KHz for the
top microphone is far from human voice or music (up to
∼ 1K/4 KHz), it has better noise tolerance. The bottom
microphone uses a lower frequency band 8 ∼ 10KHz, and
it is designed to be more sensitive to human voice. Thus
the slight less tolerance to noises. However, both are quite
accurate, with 2.5 cm error at most. We also tested other
closer distances, there’s only < 2 cm impact by noise.

Impact of User Movement. The user’s walking causes
inevitable movements to the phone, thus disturbances to
distance measurements. We compare 3 scenarios with the
user standing still, walking stably/carefully, and walking
casually, along a straight line with 1 m distance to the right
sidewall. Figure 11 shows the CDF for measurement errors.
The maximum error is ∼ 1 cm for both microphones when
the user stands still. For careful walking it increases to 4 cm,
while casual walking further increases it to ∼ 9 cm. This
becomes comparable to door recession depth (∼ 10 cm),
and shows the necessity of sway compensation for robust
door detection.

8.2 Mapping Algorithm Evaluation
Probabilistic Evidence Accumulation. We collect data in
a corridor segment and show the distance-wall association
results with PEA. Figure 12(a), 12(b) show that each sound

(a) 6 distance candidates per
sample to left wall

(b) 10 distance candidates per
sample to right wall

(c) PEA distance estimation for
left wall

(d) PEA distance estimation for
right wall

Fig. 12. Measurement candidates in a corridor and PEA estimation
results for candidates from left and right under different conditions.

signal (emitted at ∼ 3 Hz) produces 6, 10 distance candi-
dates to the left/right sidewalls, and all but one of them
corresponds to respective ∼ 1.5 m,∼ 0.7 m ground truth.
Figure 12(c) shows candidates with the maximum probabil-
ity by different combinations of evidences in PEA. Using P3

has 10 outliers in 26 samples, and all of them are distance
to right wall (∼ 0.7 m). This is because the top microphone
is sensitive enough to produce high amplitudes for echoes
from both sidewalls. Using P3 · P4 filters most of them and
leaves only 2 outliers. Using P5 only also has 10 outliers and
combining P3 · P5 reduces to 5. In this example, P3 · P4 · P5

has 2 outliers. Later systematic evaluation (Figure 13) shows
it can further reduce outliers by 7−20% compared to P3 ·P4.
Figure 12(d) shows similar results. Using P1 or P2 only has
1, 3 outliers while combining P1 ·P2 completely eliminate all
outliers. Note this experiment is for a “clean” environment
without disturbances such as people passing by. In reality
more outliers will happen.

We systematically evaluate PEA performance by analyz-
ing data from corridor segments of three buildings, each has
a total number of 1015, 830, and 885 samples. Results show
that the number of outliers decreases as more evidences are
accumulated (Figure 13). For left wall distance candidates,
using P3, P5 only has on average 35%, 64.7% outliers. By
accumulating two evidences, P3 · P5 and P3 · P4 reduce
outliers to 25.57% and 35.42% respectively. Accumulating
all evidences reduces this ratio to 22.6%. For right wall
distance candidates, P1 and P2 has an average of 12%
and 45.35% outliers respectively, combining both evidences
reduces outliers to 10.5%.

Recursive Outlier Removal. The output of PEA is fed
to ROR to further remove outliers. We select a walk along a
corridor with a triangle area on one side, and illustrate re-
sults before and after ROR. Figure 14(a) shows the distances
to the left/right walls, their summations, and the measured
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Fig. 13. Outlier counts after different evidence combinations in PEA for
three buildings.

(a) Before ROR (b) After ROR

Fig. 14. After ROR, outliers are removed, and all measured width and
summation pairs match well.

corridor width by identifying echoes bouncing both walls in
PEA. Without outliers, the summation and measured width
should be the same. Although most left/right distances are
correct, there are quite some obvious outliers to the left, and
a few to the right before ROR, which are caused by wrong
data association. Thus they produce many unmatched sum-
mation and width measurements pairs.

Figure 14(b) shows the results after ROR. There are no
outliers for either side, and all summation and width mea-
surement pair match quite well. Besides, the ∼ 2 m width
jump around 6 s and gradual decrease till 22 s are pre-
served, showing clearly the triangle area. ROR can preserve
such sharp changes while replacing outliers with correct
candidates. Naive outlier removal methods such as moving
average will lose such abrupt distance variations, blurring
door frame boundaries critical for door detection. Methods
such as Kalman filters [26] are not suitable: they assume
the measurements follow a Gaussian distribution around
the true value. While outliers by wrong data association
are around distances to incorrect objects, thus not the true
values needed (i.e., distances to walls). Figure 15 shows the
number of remaining outliers after each iteration of ROR.
About half of the outliers are removed at first iteration. For
candidates to both sidewalls, the remaining outlier counts
are less than 25 (<∼ 2.5%) after all available candidates are
exhausted. They are further removed and replaced by the
average of respective non-outlier neighbors.

8.3 Mapping Performance
Corridor construction consists of door detection/location
and corridor shape. Corridor shape is the skeleton of the
whole map, and door locations indicate positions of each
room. They are the most critical components in the map.

Door Detection. We summarize door detection results
for 3 buildings in Table 1. Except main entrances, there
are 38, 47, and 30 doors in each building. True positive
(TP) denotes the number of correctly detected doors, false
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Fig. 15. Residual outlier counts of each iteration until ROR termination.

positive (FP) the number of falsely detected (non-existent)
doors, false negative (FN) denotes the number of missed
doors. Precision is defined as precision = TP/(TP + FP )
and recall is recall = TP/(TP + FN). Both precision and
recall are ∼ 90%, and office has slightly lower precision
because of the recessed poster windows along corridors.

TABLE 1
Door detection performance.

Building Total TP FP FN Precision Recall
Lab 38 34 2 4 94.44% 89.47%

Teaching 47 41 2 6 95.35% 87.23%
Office 30 26 5 4 83.87% 86.67%

0 1 2 3 4
Distance Error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F

Lab Building
Teaching Building
Office Building

Fig. 16. CDF of door location er-
rors for three buildings.

Fig. 17. CDF for room
length/depth measurements.

Door Location. Figure 16 shows the CDF for door
location errors in 3 buildings, and Figure 18 shows the
constructed map and respective ground truth. For teaching
and office building, the error is < 2 m at maximum, and
< 1m at 80-percentile. The error is slightly larger for the lab
building. This is due to longer user trajectory, and lack of
loop closure for calibration. A slight orientation deviation
in the long horizontal corridor segment can cause larger
location errors for doors at the end.

Corridor Shape Accuracy. Figure 18 shows constructed
corridor shapes are highly accurate. The corridor width
error is within 1 ∼ 3 cm centimeters, almost negligible. The
maps also show fine details. Recessed areas such as stairs,
water fountains, or triangle areas are detected, which are
difficult to identify using only trajectories.

Impact of Loop Closure. We use dead reckoning with
calibration for user trajectory construction, thus map build-
ing. Loop closure is encouraged during data collection,
which is used for user trajectory calibration. To evaluate the
impact of loop closure, we build maps for the same office
building with and without loop closure. Figure 19 shows the
result. Without loop closure, the error accumulation leads
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(a) Constructed lab building map. (b) Constructed teaching building map. (c) Constructed office building map.

(d) Ground truth of lab building. (e) Ground truth of teaching building. (f) Ground truth of office building.

Fig. 18. (a),(b),(c) are constructed maps: green line is user trace, solid line indicates corridor while dotted in open space; black lines are constructed
walls, doors are marked using red, thick line segments, and large recessions marked as blue. (d),(e),(f) are respective ground truth.

to a maximum error up to 4 meters, while loop closure
reduces the maximum error to around 2 meters. More
advanced tracking algorithms (SLAM [27] or augmented
reality tracking API [28]) can be used for accurate user
trajectory construction.

Regular Rooms. We measure 18 regular rooms which we
can access, with size from 2.32× 2.49 m2 up to 7.86× 7.28
m2. Figure 17 show the CDF of 36 length/depth measure-
ments. The 80-percentile error is around 0.3m, which shows
that the CR algorithm can obtain reasonable accuracy for
rooms. The error mainly comes from large objects (e.g.,
furniture) next to walls or recessions of windows. Large
errors 0.5 ∼ 1.5m are caused by false candidate association
(e.g., large furniture in the middle).

Irregular Rooms and Large Open Spaces. Due to in-
accessible areas (e.g., blocked by furniture), users may not
always walk close to the wall. Hence the trajectory cannot
accurately recover the actual shape. Acoustic measurements
can avoid many such issues and produce shapes much
closer to ground truth. Figure 20 shows the recall of 15 large
rooms with sizes from ∼ 5 × 5 m2 irregular shape rooms
to 18 × 22 m2 large lobbies. The median recall is improved
from 78% to 88%. The center part of the constructed map in
Figure 18(b) shows an example of large open space (a lobby
with size of 18× 22 m2).

Final Map. Overlaying room shapes to respective door
locations produces the final map. We are able to access only
some of the rooms in these three buildings. Due to space
limit, we omit such final maps.
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Fig. 19. Comparison of door location
errors with and without loop closure.
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Fig. 20. Recall of trace and
acoustic based room shapes.

8.4 Data Amount and User Effort

Table 2 shows the data amount and time for constructing
corridor areas in the three buildings. BatMapper only takes
1 ∼ 2.5 min to gather 1.5 ∼ 3.5 MB data for corridor
area construction, which incurs very little human effort and
overhead in data collection.

TABLE 2
Data amount/collection time for corridor construction by BatMapper.

Building Audio Inertial Total Time
Lab 2861 KB 657 KB 3518 KB 145s

Teaching (A) 2102 KB 470 KB 2572 KB 106s
Teaching (B) 1186 KB 276 KB 1462 KB 60s

Office 2427 KB 716 KB 3143 KB 122s

We also compare the data amount and time needed
of corridor area construction to five previous designs:
CrowdInside [6], Jigsaw [7], iMoon [9], CrowdMap [10]
and Walkie-Markie [29]. CrowdInside collects a number of
mobile traces (∼ 100) covering all corridor areas, and uses
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unique anchor points (e.g., locations with GPS reception or
special inertial data signature such as stairs) to enhance
dead-reckoning accuracy. Jigsaw and iMoon combine vi-
sion and mobile techniques and generate complete floor
plans or indoor 3D models. They both utilize Structure
from Motion [30], which is a compute-intensive technique
that requires many images. CrowdMap generates indoor
panorama via video. For three buildings, more than 60K
key frames are collected over six months. Walkie-Markie
requires dense Wi-Fi AP deployment and many user walk
rounds (e.g., 30), and it provides a rough corridor map
but not rooms. For a typical indoor scenario with 30 land-
marks/doors, assuming each photo at 816× 612 resolution,
the image storage of Jigsaw, iMoon and CrowdMap is
around 360MB, 180MB and 1.6 GB, respectively.

TABLE 3
Data amount/collection time and door location accuracy comparison.

Data Time Accuracy
CrowdInside [6] ∼ 100 MB ∼ 300 mins ∼ 5 m

Jigsaw [7] ∼ 360 MB ∼ 20 hours ∼ 2 m
iMoon [9] ∼ 180 MB ∼ 3 weeks ∼ 2 m

CrowdMap [10] ∼ 1.6 GB ∼ 2 months ∼ 1.5 m
Walkie-Markie [29] ∼ 30 MB ∼ 90 mins ∼ 1.5 m

BatMapper ∼ 4 MB ∼ 3 mins ∼ 1 m

Table 3 shows the comparison in data amount, time
needed and 80-percentile mapping accuracy. BatMapper cuts
down the data amount and data collection time by orders
of magnitude (4 MB vs. 30 MB ∼ 1.6 GB, 3 min vs.
hours, days), and provides accurate and complete floor
plans comparable to the state-of-the-art.

8.5 Map Refinement Evaluation

We evaluate the map refinement performance by apply-
ing the algorithm on the constructed map with rooms for
another 90×50m2 building, where we have access to each
room for data collection. To make it easier to compare,
we overlay the constructed map onto the ground truth to
achieve the maximum overlap by rotation and translation,
as shown in Figure 21. We can see obvious improvement
in maps after structure cue optimization: they match the
ground truth much better. Precision, recall and F-score are
again used for evaluating overall shapes and the results are
shown in Table 4. We get ∼8.5% and 4% improvements
in both precision and F-Score respectively, while a sightly
decrease (∼ 2.5%) in the recall, which is caused by missed
detection of small turn angle on the right bottom in Fig-
ure 21(a). However the final maps are improved overall, we
have up to 4% increase in F-score. In Figure 21(b), room
shape optimization results are much better as all the rooms
in office building are rectangles. The final map looks much
closer to ground truth.

TABLE 4
Shape evaluation of floor plans.

Precision Recall F-Score
Input 75.16% 95.96% 84.30%

Optimized 83.72% 93.42% 88.30%

10m 10m
90 x 50m 90 x 50m

(a) Input inaccurate map for of-
fice

10m 10m
90 x 50m 90 x 50m

(b) Map after structure cue op-
timization for office

Fig. 21. Final maps of the building with ground truth overlaid both for
inaccurate input map and map after structure cue optimization.

8.6 Miscellaneous
Energy. We test the power consumption of data collection
using a power monitor. The standby current consumption
with screen on is ∼ 150 mA with Wi-Fi, cellular off and
no applications running in the background. Data collection
for BatMapper requires accelerometer (∼ 0.25 mA), gyro-
scope (∼ 6.1 mA), and sound emitting/recording (∼ 20
mA). Considering the battery capacity of 3100 mAh, data
collection for one building (assuming 3 minutes for corridor,
30 minutes for 20 rooms) only consumes an additional 14.5
mAh, which is less than 0.47%. Considering the standby
current, total energy cost is ∼ 97 mAh, which is 3.1%,
negligible for daily use.

Different Phones. Smartphones have different physical
layouts, e.g., the speaker at the bottom instead of the back.
Such a phone can be held perpendicular to sidewalls, with
the speaker facing the right sidewall. A different set of
distance relationships can be derived to reconfigure the PEA
framework (mainly changes of phone length and covariance
parameters.). We select HuaWei P9, SamSung S8, and Sam-
Sung Note 3 as additional test phones, and collect data using
each device to build the map for lab building. The results are
shown in Table 5, which are comparable to the performance
we obtained with Honor 6. This shows the generality of our
design to different devices.

TABLE 5
Mapping performance of different smartphones.

Precision Recall F-Score
P9 85.16% 92.96% 88.34%
S8 83.12% 91.42% 88.07%

Note 3 80.72% 91.51% 85.78%
Honor 6 82.31% 93.75% 87.66%

9 DISCUSSION

Crowdsourcing. Crowdsourcing can collect large amounts
of data from many users. To ensure scalability and data
quality, effective incentive mechanisms are usually neces-
sary. The cognitive, time overheads and operational com-
plexity to users must be minimized. Compared to existing
work, BatMapper does not need effort intensive image-
taking; it cuts the data amount and collection time dramati-
cally. It can be used by a dedicated user, or used in crowd-
sourcing for greatly reduced user efforts and incentive.
Current design still requires a human to walk around the
building and every room for data collection. A system that
uses a drone to automatically survey the floor systematically
and collect all data would avoid such human efforts.

Map Labelling. Accurate user trajectories are impor-
tant to the overall shape and size of corridors. Although
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BatMapper can detect fine granularity geometry, it does not
yet reliably classify and label different functional areas (e.g.,
water fountains, stairs).

Complex Environments. For buildings with large open
spaces (e.g., shopping malls) instead of narrow corridors,
users need to walk extensively along the walls due to the
limited acoustic ranging distance; this may add to the user
effort. As long as the trajectories are accurate, the layout
of walls will be precise and reliable. Some learning meth-
ods [31] may be applied to recognize different features (e.g.,
wide openings as entrances to stores). Additionally, vision
based techniques (e.g., Jigsaw [7]) may be used to enhance
the map construction wherever limiting factors (e.g., glass
walls, dark lighting) do not exist.

10 RELATED WORK

Acoustic Sensing. Acoustics has been used for ranging,
localization, tracking, stress and encounter detection. Gra-
ham et al. [14] use smartphones to show echo peaks and
require the user to manually determine their association
to objects, which can be cumbersome for practical use.
Liu et al. [32] use cross-correlation to estimate arrival time
difference for keystrokes snooping. Liu et al. [11] use acous-
tic ranging estimates among peer phones as constraints to
improve their localization accuracy. For tracking, LLAP [33],
FingerIO [34] leverage phase shift in received signals and
achieve ∼ 1cm or higher accuracy for near field finger
gesture tracking. CAT [35] leverages external speakers and
uses FMCW [36] for phone movement tracking at mm-
level accuracy. BatTracker [37] leverages echoes from nearby
objects for infrastructure-free mobile device tracking. Ape-
naApp [38] and SonarBeat [39] monitor the minute chest and
abdomen breathing movements using FMCW and phase
shift on smartphones. StressSense [40] detects stress of users
unobtrusively in unconstrained acoustic environments us-
ing smartphones. EchoPrint [41] authenticates smartphone
users leveraging both acoustic and visual features, which
provides higher security compared to pure image/video
based face authentication. Compared to them, BatMapper
shares cross-correlation based echo detection similar to
some work [14], [32], [11]. However its focus is on automatic
echo-object association, which has not been addressed in
previous work.

Indoor Floor Plans. Indoor floor plan construction has
become an urgent problem for LBS. Robotic approaches can
produce accurate maps, but they usually require expensive
special hardware (e.g., laser rangers [3], depth cameras [4],
sonars [5]) and deploying robots in massive numbers is
logistically impractical. Vision based techniques [30], [42]
can generate 3D models of building interior, but they incur
high computing overhead, and face privacy and technical
limitations (e.g., glass walls, blurry images). Recent mobile
device based approaches largely rely on crowdsourcing to
achieve scalability. CrowdInside [6] uses inertial data with
anchor points to approximate shapes of accessible areas.
Jiang et al. [8] leverage Wi-Fi signatures to detect room and
hallway adjacency, and combine with user trajectories to
construct hallways. Walkie-Markie [29] recognizes points of
reversing Wi-Fi signal strength to calibrate trajectories for
corridors. Some recent work combines vision and mobile

techniques to produce fine-grained floor plans. Jigsaw [7]
leverages images to generate geometry attributes and spatial
constraints of indoor landmarks. Knitter [43], [44] constructs
fast, resilient indoor maps with single user efforts using
smartphones and the constructed map can be optimized
by leveraging the structure cues of the buildings [45].
iMoon [9] builds 3D models of indoor environment from
crowdsourced 2D photos, and compiles a navigation mesh
from the generated 3D models. CrowdMap [10] detects
line segments in such panoramic views and identifies room
corners for room reconstruction. Such work usually requires
significant amounts of data and crowdsourcing efforts; those
using images/videos also face privacy restrictions. Com-
pared to them, BatMapper cuts down data amount and
user efforts by orders of magnitude using acoustics, thus
avoiding privacy constraints while achieving comparable
accuracy to the state-of-the-art.

11 CONCLUSION

In this paper, we propose BatMapper, which leverages acous-
tics on commodity smartphones for fast, fine grained and
low cost floor plan construction. A 2 ∼ 3 minute walk
can produce fine grained corridor shapes, detect doors at
1 ∼ 2 m 90-percentile location error and ∼ 90% precision.
Accurate room geometries are derived using a measure-
ment gesture in tens of seconds. Compared to latest work,
BatMapper builds fine grained maps of comparable accuracy
at 1-2 orders of magnitude less data amounts and user
efforts.
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Using smartphones for image-based indoor navigation,” in Pro-
ceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems. ACM, 2015, pp. 85–97.



1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2892091, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 8, AUGUST 2017 14

[10] S. Chen, M. Li, K. Ren, and C. Qiao, “Crowd map: Accurate
reconstruction of indoor floor plans from crowdsourced sensor-
rich videos,” in Distributed Computing Systems (ICDCS), 2015 IEEE
35th International Conference on. IEEE, 2015, pp. 1–10.

[11] H. Liu, Y. Gan, J. Yang, S. Sidhom, Y. Wang, Y. Chen, and F. Ye,
“Push the limit of wifi based localization for smartphones,” in
ACM Mobicom 2012.

[12] D. Huang, R. Nandakumar, and S. Gollakota, “Feasibility and
limits of wi-fi imaging,” in Proceedings of the 12th ACM Conference
on Embedded Network Sensor Systems. ACM, 2014, pp. 266–279.

[13] M. H. Hennecke and G. A. Fink, “Towards acoustic self-
localization of ad hoc smartphone arrays,” in Hands-free Speech
Communication and Microphone Arrays (HSCMA), 2011 Joint Work-
shop on. IEEE, 2011, pp. 127–132.

[14] D. Graham, G. Simmons, D. T. Nguyen, and G. Zhou, “A software-
based sonar ranging sensor for smart phones,” IEEE Internet of
Things Journal, vol. 2, no. 6, pp. 479–489, 2015.

[15] E. C. Ifeachor and B. W. Jervis, Digital signal processing: a practical
approach. Pearson Education, 2002.

[16] S. J. Orfanidis, Optimum signal processing: An introduction. 2nd
Edition, Prentice-Hall, Englewood Cliffs, NJ, 1996.

[17] E. T. Jaynes, J. E. T., and G. L. Bretthorst, Probability Theory: The
Logic of Science. Cambridge University Press, 2003.

[18] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R.
Choudhury, “No need to war-drive: Unsupervised indoor local-
ization,” in MobiSys, 2012.

[19] N. Roy, H. Wang, and R. R. Choudhury, “I am a smartphone and i
can tell my users walking direction,” in Mobisys, 2014.

[20] P. Zhou, M. Li, and G. Shen, “Use it free: Instantly knowing
your phone attitude,” in Proceedings of the 20th annual international
conference on Mobile computing and networking. ACM, 2014, pp.
605–616.

[21] J. M. Coughlan and A. L. Yuille, “Manhattan world: Compass
direction from a single image by bayesian inference,” in Computer
Vision, 1999. The Proceedings of the Seventh IEEE International Con-
ference on, vol. 2. IEEE, 1999, pp. 941–947.

[22] D. Chaudhuri and A. Samal, “A simple method for fitting of
bounding rectangle to closed regions,” Pattern recognition, vol. 40,
no. 7, pp. 1981–1989, 2007.

[23] E. Welzl, “Smallest enclosing disks (balls and ellipsoids),” New
results and new trends in computer science, pp. 359–370, 1991.

[24] B. Zhou, M. Elbadry, R. Gao, and F. Ye, “Acoustic sensing based
indoor floor plan construction using smartphones,” in Proceedings
of the 23rd Annual International Conference on Mobile Computing and
Networking. ACM, 2017, pp. 519–521.

[25] G. Dubbelman, I. Esteban, and K. Schutte, “Efficient trajectory
bending with applications to loop closure,” in Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE,
2010, pp. 4836–4842.

[26] J.-A. Ting, E. Theodorou, and S. Schaal, “A kalman filter for robust
outlier detection,” in Intelligent Robots and Systems, 2007. IROS
2007. IEEE/RSJ International Conference on. IEEE, 2007, pp. 1514–
1519.

[27] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit et al., “Fastslam:
A factored solution to the simultaneous localization and mapping
problem,” Aaai/iaai, vol. 593598, 2002.

[28] A. Inc, “Apple arkit,” https://developer.apple.com/arkit/, 2018.
[29] G. Shen, Z. Chen, P. Zhang, T. Moscibroda, and Y. Zhang, “Walkie-

markie: Indoor pathway mapping made easy,” in NSDI, 2013.
[30] N. Snavely, I. Simon, M. Goesele, R. Szeliski, and M. Seitzs,

“Scene reconstruction and visualization from community photo
collections,” Proceedings of the IEEE, 1998.

[31] J. A. Suykens and J. Vandewalle, “Least squares support vector
machine classifiers,” Neural processing letters, vol. 9, no. 3, pp. 293–
300, 1999.

[32] J. Liu, Y. Wang, G. Kar, Y. Chen, J. Yang, and M. Gruteser,
“Snooping keystrokes with mm-level audio ranging on a single
phone,” in Proceedings of the 21st Annual International Conference on
Mobile Computing and Networking. ACM, 2015, pp. 142–154.

[33] W. Wang, A. X. Liu, and K. Sun, “Device-free gesture tracking us-
ing acoustic signals,” in Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking. ACM, 2016, pp.
82–94.

[34] R. Nandakumar, V. Iyer, D. Tan, and S. Gollakota, “Fingerio: Using
active sonar for fine-grained finger tracking,” in Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems.
ACM, 2016, pp. 1515–1525.

[35] W. Mao, J. He, and L. Qiu, “Cat: high-precision acoustic motion
tracking,” in Proceedings of the 22nd Annual International Conference
on Mobile Computing and Networking. ACM, 2016, pp. 69–81.

[36] A. G. Stove, “Linear fmcw radar techniques,” in IEE Proceedings F-
Radar and Signal Processing, vol. 139, no. 5. IET, 1992, pp. 343–350.

[37] B. Zhou, M. Elbadry, R. Gao, and F. Ye, “Battracker: High pre-
cision infrastructure-free mobile device tracking in indoor envi-
ronments,” in Proceedings of The 15th ACM Conference on Embedded
Networked Sensor Systems (SenSys). ACM, 2017.

[38] R. Nandakumar, S. Gollakota, and N. Watson, “Contactless sleep
apnea detection on smartphones,” in Proceedings of the 13th Annual
International Conference on Mobile Systems, Applications, and Services.
ACM, 2015, pp. 45–57.

[39] X. Wang, R. Huang, and S. Mao, “Sonarbeat: Sonar phase for
breathing beat monitoring with smartphones,” in Computer Com-
munication and Networks (ICCCN), 2017 26th International Conference
on. IEEE, 2017, pp. 1–8.

[40] H. Lu, D. Frauendorfer, M. Rabbi, M. S. Mast, G. T. Chittaranjan,
A. T. Campbell, D. Gatica-Perez, and T. Choudhury, “Stresssense:
Detecting stress in unconstrained acoustic environments using
smartphones,” in Proceedings of the 2012 ACM Conference on Ubiq-
uitous Computing. ACM, 2012, pp. 351–360.

[41] B. Zhou, J. Lohokare, R. Gao, and F. Ye, “Echoprint: Two-factor
authentication using acoustics and vision on smartphones,” in
Proceedings of the 24rd Annual International Conference on Mobile
Computing and Networking. ACM, 2018.

[42] “Project Tango,” 2017, https://get.google.com/tango/.
[43] R. Gao, B. Zhou, F. Ye, and Y. Wang, “Knitter: fast, resilient single-

user indoor floor plan construction,” in INFOCOM 2017-IEEE
Conference on Computer Communications, IEEE. IEEE, 2017, pp.
1–9.

[44] ——, “Fast and resilient indoor floor plan construction with a
single user,” in IEEE Transactions on Mobile Computing. IEEE, 2018.

[45] B. Zhou and F. Ye, “Explore hidden information for indoor floor
plan construction,” in Communications (ICC), 2017 IEEE Interna-
tional Conference on. IEEE, 2017, pp. 1–6.

Bing Zhou is a Ph.D. candidate in ECE de-
partment, Stony Brook University. His research
interests include mobile computing/sensing, in-
door location based services, computer vision
and augmented reality. He got a Bachelor from
University of Science and Technology of China
(USTC) and Master degree from University of
Chinese Academy of Sciences.

Mohammed Elbadry is a Ph.D candidate
in ECE department, Stony Brook University.
His research interests include mobile comput-
ing/senseing, vehicular wireless communication,
and systems security. He got a Bachelor of Sci-
ence from Stony Brook University.

Ruipeng Gao received his B.E. degree in Com-
munication Engineering from Beijing University
of Posts and Telecommunications in 2010, and
his Ph.D. degree in Computer Science from
Peking University in 2016. He is currently a
lecturer with the School of Software Engineer-
ing, Beijing Jiaotong University, China. His re-
search interests include wireless communica-
tion, mobile computing, and intelligent trans-
portation systems.

Fan Ye received the BE and MS degrees from
Tsinghua University, and the PhD degree from
the Computer Science Department, UCLA. He
is an associate professor in the ECE Depart-
ment, Stony Brook University. He has published
more than 90 peer reviewed papers that have
received more than 10,000 citations according to
Google Scholar. His research interests include
mobile sensing systems, with applications in lo-
cation based services and healthcare, Internet-
of-Things, wireless and sensor networks.


