
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 1, NO. 1, MARCH 2017 1

Smartphone-based Real Time Vehicle Tracking
in Indoor Parking Structures

Ruipeng Gao, Member, IEEE, Mingmin Zhao, Tao Ye, Fan Ye, Yizhou Wang, Guojie Luo, Member, IEEE

Abstract— Although location awareness and turn-by-turn instructions are prevalent outdoors due to GPS, we are back into the
darkness in uninstrumented indoor environments such as underground parking structures. We get confused, disoriented when driving
in these mazes, and frequently forget where we parked, ending up circling back and forth upon return. In this paper, we propose
VeTrack, a smartphone-only system that tracks the vehicle’s location in real time using the phone’s inertial sensors. It does not require
any environment instrumentation or cloud backend. It uses a novel “shadow” trajectory tracing method to accurately estimate phone’s
and vehicle’s orientations despite their arbitrary poses and frequent disturbances. We develop algorithms in a Sequential Monte Carlo
framework to represent vehicle states probabilistically, and harness constraints by the garage map and detected landmarks to robustly
infer the vehicle location. We also find landmark (e.g., speed bumps, turns) recognition methods reliable against noises, disturbances
from bumpy rides and even hand-held movements. We implement a highly efficient prototype and conduct extensive experiments in
multiple parking structures of different sizes and structures, and collect data with multiple vehicles and drivers. We find that VeTrack
can estimate the vehicle’s real time location with almost negligible latency, with error of 2 ∼ 4 parking spaces at the 80th percentile.

Index Terms—Vehicle real time tracking, indoor environments.

�

1 INTRODUCTION

Thanks to decades of efforts in GPS systems and devices,
drivers know their locations at any time outdoors. The
location awareness enables drivers to make proper decisions
and gives them a sense of “control.” However, whenever
we drive into indoor environments such as underground
parking garages, or multi-level parking structures where
GPS signals can hardly penetrate, we lose this location
awareness. Not only do we get confused, disoriented in
maze-like structures, frequently we do not even remember
where we park the car, ending up circling back and forth
searching for the vehicle.

Providing real time vehicle tracking capability indoors
will satisfy the fundamental and constant cognitive needs
of drivers to orient themselves relative to a large and un-
familiar environment. Knowing where they are generates
a sense of control and induces calmness psychologically,
both greatly enhancing the driving experience. In smart
parking systems where free parking space information is
available, real time tracking will enable turn-by-turn in-
structions guiding drivers to those spaces, or at least areas
where more spaces are likely available. The final parking
location recorded can also be used to direct the driver back
upon return, avoiding any back and forth search.

• R. Gao is with the School of Software Engineering, Beijing Jiaotong
University, Beijing 100044, China. Email: rpgao@bjtu.edu.cn

• M. Zhao is with the Computer Science and Artificial Intelligence Labora-
tory, MIT, Cambridge, MA 02142, USA. Email: mingmin@mit.edu

• T. Ye, Y. Wang and G. Luo are with the EECS School, Peking
University, Beijing 100871, China. Email: {pkuyetao, yizhou.wang,
gluo}@pku.edu.cn

• F. Ye is with the ECE Department, Stony Brook University, Stony Brook,
NY 11794, USA. Email: fan.ye@stonybrook.edu

However, real time vehicle tracking indoors is far from
straightforward. First, mainstream indoor localization tech-
nology leverages RF signals such as WiFi [1], [2] and
cellular [3], which can be sparse, intermittent or simply
non-existent in many uninstrumented environments. Instru-
menting the environment [4], [5] unfortunately is not always
feasible: the acquisition, installation and maintenance of
sensors require significant time, financial costs and human
efforts; simply wiring legacy environments can be a major
undertaking. The lack of radio signals also means lack of
Internet connectivity: no cloud service is reachable and all
sensing/computing have to happen locally.

In this paper, we propose VeTrack, a real time vehicle
tracking system that utilizes inertial sensors in the smart-
phone to provide accurate vehicle location. It does not rely
on GPS/RF signals, or any additional sensors instrumenting
the environment. All sensing and computation occur in the
phone and no cloud backend is needed. A driver simply
starts the VeTrack application before entering a parking
structure, then VeTrack will track the vehicle movements,
estimate and display its location in a garage map in real
time, and record the final parking location, which can be
used by the driver later to find the vehicle.

Such an inertial and phone-only solution entails a series
of non-trivial challenges. First, many different scenarios
exist for the phone pose (i.e., relative orientation between its
coordinate system to that of the vehicle), which is needed to
transform phone movements into vehicle movements. The
phone may be placed in arbitrary positions - lying flat on a
surface, slanted into a cup holder. The vehicle may drive on
a non-horizontal, sloped surface; it may not go straight up or
down the slope (e.g., slanted parking spaces). Furthermore,
unpredictable human or road condition disturbances (e.g.,
moved together with the driver’s pants’ pockets, or picked
up from a cupholder; speed bumps or jerky driving jolting

2 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 1, NO. 1, MARCH 2017

the phone) may change the phone pose frequently. Despite
all these different scenarios and disturbances, the phone’s
pose must be reliably and quickly estimated.

Second, due to the lack of periodic acceleration patterns
like a person’s walking [6]–[8], the traveling distance of a ve-
hicle cannot be easily estimated. Although landmarks (e.g.,
speed bumps, turns) causing unique inertial data patterns
can calibrate the location [9], distinguishing such patterns
from other movements robustly (e.g., driver picking up and
then laying down the phone), and recognizing them reliably
despite different parking structures, vehicles and drivers,
remain open questions.

Finally, we have to balance the conflict between tracking
accuracy and latency. Delaying the location determination
allows more time for computation and sensing, thus higher
tracking accuracy. However, this delay inevitably increases
tracking latency, which adversely impacts real time per-
formance and user experience. How to develop efficient
tracking algorithms to achieve both reasonable accuracy and
acceptable latency, while using resources only on the phone,
is another great challenge.

VeTrack consists of several components to deal with the
above challenges to achieve accurate, real time tracking.
First, we propose a novel “shadow” trajectory tracing method
that greatly simplifies phone pose estimation and vehicle
movements computation. It can handle slopes and slanted
driving on slopes; it is highly robust to inevitable noises, and
can quickly re-estimate the pose after each disturbance. We
devise robust landmark detection algorithms that can reli-
ably distinguish landmarks from disturbances (e.g., drivers
picking up the phone) causing seemingly similar inertial
patterns. Based on the vehicle movements and detected
landmarks, we develop a highly robust yet efficient prob-
abilistic framework to track a vehicle’s location.

In summary, we make the following contributions:

• We develop a novel robust and efficient “shadow”
trajectory tracing method. Unlike existing meth-
ods [10]–[12] that track the 3-axis relative angles
between the phone and vehicle, it only tracks a
single heading direction difference. To the best of our
knowledge, it is the first that can handle slopes and
slanted driving on slopes, and re-estimates a changed
pose almost instantaneously.

• We design states and algorithms in a Sequential
Monte Carlo framework that leverages constraints
from garage maps and detected landmarks to reli-
ably infer a vehicle’s location. It uses probability dis-
tributions to represent a vehicle’s states. We further
propose a one-dimensional road skeleton model to
reduce the vehicle state complexity, and a prediction-
rollback mechanism to cut down tracking latency,
both by one order of magnitude to enable real time
tracking.

• We propose robust landmark detection algorithms to
recognize commonly encountered landmarks. They
can reliably distinguish true landmarks from distur-
bances that exhibit similar inertial data patterns.

• We implement a prototype and conduct extensive
experiments with different parking structures, ve-
hicles and drivers. We find that it can track the

Inertial data

Floor map Road Skeleton Model

Probabilistic Real-
time Tracking

Landmark
Detection

Shadow Trajectory Tracing

Inputs

3D tracing

2D tracing

2D roads

1D roads

Prediction Rollback

Sequential Monte Carlo

Data Transformation Tracking

Fig. 1. In data transformation stage, the shadow trajectory tracing sim-
plifies 3D vehicle tracing into 2D shadow tracing while road skeleton
model further reduces 2D tracing into 1D. In tracking stage, VeTrack
represents vehicle states probabilistically and uses a Sequential Monte
Carlo framework for robust tracking. It also uses landmark detection to
calibrate vehicle states and prediction/rollback for minimum latency.

vehicle in real time against even disturbances such
as drivers picking up the phone. It has almost neg-
ligible tracking latency, 10◦ pose and 2 ∼ 4 parking
spaces’ location errors at the 80th percentile, which
are sufficient for most real time driving and parked
vehicle finding.

Next, we give a brief overview (Section 2), describe
the shadow trajectory tracing (Section 3), Sequential Monte
Carlo algorithm design and the simplified road skele-
ton model (Section 4), landmark detection algorithms and
prediction-rollback (Section 5). We report evaluation (Sec-
tion 6), review related work (Section 7). After a discussion
of limitations (Section ??), we conclude the paper.

2 DESIGN OVERVIEW

VeTrack utilizes smartphone inertial data and garage floor
maps (assumed already available) as inputs, and simplifies
the 3D vehicle tracing problem in the data transformation
stage (Figure 1). It leverages the probabilistic framework
with landmark detection results and prediction/rollback
mechanism for robust and real time tracking.

The data transformation stage contains two components,
i.e., shadow trajectory tracing and road skeleton model.
Shadow trajectory tracing tracks the vehicle’s shadow’s
movements on 2D plane instead of the vehicle in 3D space;
the road skeleton model abstracts 2D strip roads into 1D line
segments to remove inconsequential details while keeping
the basic shape and topology. They together simplify the 3D
vehicle tracing problem into 1D.

To deal with noises and disturbances in data, VeTrack
explicitly represents the states of vehicles (e.g., locations)
with probabilities and we develop algorithms in a Sequen-
tial Monte Carlo framework for robust tracking. We also
leverage landmark detection results to help calibrate the
vehicle locations to where such landmarks exist, and the
prediction/rollback mechanism to generate instantaneous
landmark recognition results while the vehicle has only
partially passed landmarks.

3 TRAJECTORY TRACING

3.1 Conventional Approaches
Inferring a vehicle’s location via smartphone inertial sensors
is not trivial. Naive methods such as double integration of

GAO et al.: SMARTPHONE-BASED REAL TIME VEHICLE TRACKING IN INDOOR PARKING STRUCTURES 3

m m

mm

GT GT

GTGT
BumpBump Bump

(a) Motion transformation (b) 3D trajectory tracing

(c) Shadow trajectory tracing (d) Shadow tracing with landmarks

Fig. 2. Illustration of vehicle tracing using different methods: (a) motion
transformation; (b) 3D trajectory tracing with gyroscope; (c) shadow
trajectory tracing; (d) shadow trajectory tracing with landmarks.

3D accelerations (−→x (t) =
∫∫ −→a (t)dt) generate chaotic 3D

trajectories due to the noisy inertial sensors. Below we list
two conventional approaches.

Method 1: motion transformation. It is a straight for-
ward approach that transforms the motion information (i.e.,
acceleration and orientation) from a phone to a vehicle, and
eventually to that in the global 2D coordinate system. This
requires the vehicle’s acceleration in the global coordinate
system G be estimated. After measuring the phone’s accel-
eration from inertial sensors, existing work [10]–[12] usually
take a three-step approach to transform it into vehicle’s
acceleration.

Assume the 3 axes of the vehicle’s coordinate system
are XV , Y V and ZV . First the gravity direction is obtained
using mobile OS APIs [13] that use low-pass Butterworth
filters to remove high frequency components caused by
rotation and translation movements [14]. It is assumed to be
the direction of ZV in the phone’s coordinate system (i.e.,
vehicles moving on level ground).

Next the gravity direction component is deducted to ob-
tain the acceleration on the horizontal plane. The direction
of maximum acceleration (caused by vehicle accelerating or
decelerating) is estimated as Y V (i.e., forward direction).
Finally, XV is determined as the cross product of Y V and
ZV using the right-hand rule. The XV , Y V and ZV direc-
tions in the phone’s coordinate system give a transformation
matrix that converts the phone’s acceleration into that of the
vehicle.

Figure 2(a) shows the result of tracing a vehicle on a
straight road via motion transformation. During investi-
gation we find several limitations. First, when a vehicle
is on a slope (straight up/down or slanted), the direction
of gravity is no longer the Z-axis of the vehicle. Second,
accelerometers are highly noisy and susceptible to various
disturbances from driving dynamics and road conditions.
Thus the direction of the maximum horizontal acceleration
may not always be the Y -axis. In experiments we find
that it has around 40o errors at the 80th percentile (Section
6.2). Finally, to reliably detect the direction of maximum
horizontal acceleration, a changed phone pose must remain
the same at least 4s [12], which may be impossible when
frequent disturbances exist.

Method 2: 3D trajectory tracing. Instead of direct double
integrating on the original acceleration vector (−→x (t) =∫∫ −→a (t)dt), it uses the moving direction of the vehicle
(unit length vector

−→
T (t)) and its speed amplitude s(t):

−→x (t) =
∫ −→
T (t) · s(t)dt, where s(t) can be computed as∫

a(t)dt, integration of the acceleration amplitude along
moving direction. Although there are still two integrations,

3D trajectory

2D trajectory

(a)

1

2

34

(b)

Fig. 3. (a) Intuition: points O and O′ are the positions of vehicle and its
shadow.

−−→
OV and

−→
OA are the velocity and acceleration of vehicle in the

3D space. V ′ and A′ are the projection of V and A onto the 2D ground.
(b) Illustration of the method to estimate ∠1 from ∠2, ∠3 and ∠4.

the impact of vertical direction noises is eliminated due
to the projection, and the moving direction

−→
T (t) can be

measured reliably by gyroscope.
Figure 2(b) shows the result for 3D trajectory tracing.

We observe that it obtains better orientation accuracy than
motion transformation, i.e., 3o errors of the example trace,
but it assumes fixed phone pose in car. In addition, raw
gyroscope readings suffer linear drifts [14], and reach 32o

angle errors after an 8-minute driving in our measurements.

3.2 Shadow Trajectory Tracing
To overcome the above limitations, we propose a “shadow”
trajectory tracing method that traces the movement of the
vehicle’s shadow projected onto the 2D horizontal plane
(Figure 3(a)). Points O and O′ represent the positions of
the vehicle and its shadow.

−−→
OV and

−→
OA are the velocity

and acceleration of the vehicle in 3D space. V ′ and A′

are the projection of V and A onto the 2D ground. It
can be shown easily that

−−−→
O′V ′ and

−−→
O′A′ are the velocity

and acceleration of the shadow. This is simply because the
projection eliminates the vertical direction component but
preserves those on the horizontal plane, thus the shadow
and vehicle have the same horizontal acceleration, and thus
the same 2D plane velocity and coordinates.

Shadow tracing algorithm: We need to estimate three
variables in this method (Figure 3(b)): 1) the shadow’s
moving direction

−−−→
O′V ′ (i.e.,

−→
T (t)) in the global coordinate

system. 2) the horizontal (i.e., shadow’s) acceleration
−−→
O′A′.

3) angle ∠V ′O′A′ (∠1), the angle between the horizontal
acceleration vector and vehicle’s shadow’s heading (i.e.,
moving) direction; this is used to project the shadow’s
acceleration along the vehicle moving direction

−−−→
O′V ′ to get

tangential acceleration amplitude |−−−→O′A′′|(i.e., s(t)).
Next we explain how to estimate them in three steps.
1) When the vehicle is driving straight, the shadow’s

moving direction is approximated by the direction of the
road, which can be obtained from the garage map and
the current location estimation. When the vehicle is turn-
ing around a corner, VeTrack accumulates the gyroscope’s
“yaw” (around gravity direction) to modify the heading
direction until the vehicle goes straight again. We develop
robust algorithms to distinguish straight driving from turn-
ing and disturbances (Section 5).

2) From existing mobile OS APIs [13], the gravity di-
rection can be detected. We deduct the gravity direction
component from the phone’s acceleration vector to obtain
the horizontal acceleration vector

−−→
O′A′.

4 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 1, NO. 1, MARCH 2017

3) Figure 3(b) illustrates how to calculate ∠1 (∠V ′O′A′):
∠1 = ∠2 +∠3−∠4 (i.e.,∠V ′O′A′ = ∠GO′P ′ +∠P ′O′A′ −
∠GO′V ′).

−−→
O′G,

−−−→
O′P ′,

−−−→
O′V ′ are the Y-axes of the global,

phone’s shadow’s and vehicle’s shadow’s coordinate sys-
tem. 3.1) ∠2 is the phone’s shadow’s heading direction in
the global coordinate system. Its relative changes can be
obtained reliably from the gyroscope’s “yaw”, and we use
a distribution around the compass’ reading upon entering
the garage to initialize it. Because the Sequential Monte
Carlo framework can calibrate and quickly reduce the error
(Section 4), an accurate initial direction is not necessary.
3.2) ∠3 is essentially the horizontal acceleration direction in
the phone’s shadow’s coordinate system, which is already
obtained in step 2). 3.3) ∠4 is the vehicle’s shadow’s moving
direction in the global coordinate system, already obtained
in step 1).

Observation: Figure 2(c) shows the result for shadow
trajectory tracing. We observe that the vehicle’s mov-
ing direction is measured reliably by the map (i.e., for-
ward/backward along pathways only) while phone’s short-
time movement in car is monitored by gyroscope, thus our
method achieves better angle accuracy and robustness than
the conventional approaches. However, vehicle’s distance
error is still larger than 14m due to noisy accelerometer
on smartphone, thus we identify landmarks (three bumps
in Figure 2(d)) to calibrate the vehicle’s position. From the
combination of shadow tracing and landmark calibration,
the vehicle’s position error is 3m with no angle error.

3.3 Equivalence Proof
Here we regard the 3D trajectory tracing method as the base-
line, and prove that our shadow trajectory tracing method is
equivalent to it in most cases and with only a small bounded
difference in other cases. Note that the theoretical model
and proof provide more confidence about the applicability
of our approach, and a way to validate if it can be applied
in certain environments.

Modeling. We denote the notations as follows. Assume
P , V are the phone’s, vehicle’s local coordinate systems,
G the global one. When used as superscripts, they denote
in which coordinate system a variable is defined. V ′ is the
vehicle’s local coordinate system V rotated such that the
XY-plane become horizontal1, and the 3 × 3 transformation
matrix from coordinate system C1 to C2 as RC2

C1
. Also, two

projection matrices will be used, E1 = diag([0, 1, 1]) and
E3 = diag([1, 1, 0]) where diag(·) represents a diagonal
square matrix with the specified elements on the diagonal.

1) Baseline: 3D trajectory tracing. First we convert the
phone’s acceleration in its coordinate system P into that in
the vehicle’s coordinate system V , i.e. aP0 → aV0 (shown
on the left part in Figure 4), then extract the tangential
acceleration (i.e., acceleration along the vehicle’s instanta-
neous moving direction) which will be transformed into the
global coordinate system and integrated over time for speed
and thus 3D trajectory. The pipeline of 3D trajectory tracing
method has 4 stages:

1) aP
0 , phone’s acceleration in P .

2) aV
0 = RV

Pa
P
0 , vehicle’s acceleration in V .

1. This is done by pitching X-axis horizontal then Y -axis horizontal.

XP

YPZP
a0

P

V

V

XV

YV

XV

ZV

a0

a1 YV

Shadow trajectory tracing3D trajectory tracing

YV'

a0
V'

a1
V'

a2
V'

XG

ZG

YG

a1
G

a2
G

XV

XV'

Fig. 4. Illustration of 3D trajectory tracing and shadow trajectory tracing.
Left part: 3D trajectory tracing, aP

0 → aV
0 → aV

1 → aG
1 ; right part:

shadow trajectory tracing, aP
0 → aV ′

0 → aV ′
1 → aV ′

2 → aG
2 .

3) aV
1 = E1a

V
0 , vehicle’s tangential acceleration after

eliminating radial acceleration.
4) aG

1 = RG
V a

V
1 , vehicle’s tangential acceleration in G.

Let Γ(t) denotes the projection of vehicle’s tangential
acceleration on horizontal plane at time t, which can be
represented as:

Γ(t) = E3R
G
V (t)E1R

V
P (t)a

P
0 (t) (1)

where E3 is the projection.
2) Our shadow trajectory tracing method simply tracks

the vehicle’s shadow on horizontal plane, and its process
has 5 steps (shown on the right part in Figure 4):

1) aP
0 , phone’s acceleration in P .

2) aV ′
0 = RV ′

P aP
0 , vehicle shadow’s acceleration in V ′.

3) aV ′
1 = E3a

V ′
0 , vehicle shadow’s horizontal acceler-

ation in V ′.
4) aV ′

2 = E1a
V ′
1 , vehicle shadow’s tangential acceler-

ation in V ′.
5) aG

2 = RG
V ′aV ′

2 , vehicle shadow’s tangential acceler-
ation in G.

Similarly, we denote Δ(t) as the shadow’s tangential
acceleration on horizontal plane, which is computed as:

Δ(t) = RG
V ′(t)E1E3R

V ′
P (t)aP

0 (t) (2)

Theorem: The baseline 3D trajectory tracing method and
our shadow trajectory tracing method are equivalent when
the X-axis or Y -axis of the vehicle (XV or Y V) is hori-
zontal. Otherwise their tangential accelerations’ difference is
bounded by vehicle’s radial acceleration times sin2φ

1+cosφ , i.e.,

|Γ(t)−Δ(t)| ≤ sin2φ

1 + cosφ
· |av

0 − av
1|,

where φ is the inclination angle of the slope.
We prove some Lemmas before proving the Theorem.

Lemma 1. E1 and E3 are commutable.

Proof. Diagonal matrices are commutable.

Lemma 2. E3 is commutable with RG
V ′(t).

Proof. RG
V ′(t) is degenerated rotation along the Z-axis (ZG

and ZV ′
). Thus it is commutable with E3 which eliminates

the Z-axis component.

GAO et al.: SMARTPHONE-BASED REAL TIME VEHICLE TRACKING IN INDOOR PARKING STRUCTURES 5

Fig. 5. (a) Driving a vehicle O on the slope with acceleration a; (b) 3D
view, the inclination angle of slope is φ, and vehicle’s heading direction−→
OT is at angle θ to the direction of slope; (c) horizontal plane view.

Lemma 3. E1 and RV
V ′(t) are commutable when the X-axis or

Y -axis of the vehicle is horizontal, otherwise |Γ(t) − Δ(t)| ≤
sin2φ
1+cosφ · an, where φ is the inclination angle of the slope and an
is the vehicle’s radial acceleration.

Proof. As shown in Figure 5(a), we assume the vehicle O
is moving on a slope (tangent plane) with inclination angle
of φ, and its heading direction at angle θ to the direction
of slope. a = (at, an) = (|−→OT |, |−−→ON |) are the vehicle’s
tangential and radial accelerations.

Next, we build the spatial and plane geometry models
for the two tracing methods (shown in Figure 5(b)(c)). In
3D trajectory tracing, the vehicle’s tangential acceleration
on horizontal plane is calculated as

−−→
OT ′ ; while in shadow

trajectory tracing, it is computed as
−−→
OT ′ +

−−−→
ON ′′ where N ′′

denotes the projection of N ′ onto line
−−→
OT ′ (the direction

of vehicle’s shadow). The cause of their difference
−−−→
ON ′′, is

that the projection of a right angle (∠TON) onto horizontal
ground is no longer a right angle (∠T ′ON ′ = δ), thus
vehicle’s radial acceleration

−−→
ON also produces horizontal

acceleration component.
Then we compute their difference value

−−−→
ON ′′. From

Figure 5(b), we count that |OL| = an cos θ, |OR| = at sin θ,
|LN ′| = an sin θ cosφ, |RT ′| = at cos θ cosφ. Thus

−−−→
ON ′′ in

Figure 5(c) can be computed via the cosine theorem:

−−−→
ON ′′ = |ON ′| cos δ =

−an sin θ sin
2 φ√

cos2 φ+ tan2 θ
(3)

From Equation 3, we observe that the difference between
two tracing methods does not rely on the vehicle’s tangen-
tial acceleration, and they have no differences when the
vehicle drives on horizontal plane (φ = 0◦), or either of
X , Y -axis of the vehicle is horizontal (θ = 0◦ or 90◦).

Furthermore, we leverage algebraic formulas to compute
the maximum value of |−−−→ON ′′|, i.e., the bound of difference
between two tracing methods. Given a fixed slope with
inclination angle of φ, the maximum value of |−−−→ON ′′| is
computed as:

|−−−→ON ′′| = an sin
2 φ√

cos2 φ
sin2 θ

+ 1
cos2 θ

≤ sin2 φ

1 + cosφ
· an (4)

and its maximum value is obtained when θ =
arcsin

√
cosφ

1+cosφ .

Thus when the X-axis or Y -axis of the vehicle is horizon-
tal, two tracing methods are equivalent and RV

V ′(τ) is de-
generated rotation along X-axis or Y -axis thus commutable
with matrice E1, which is similar to the case in Lemma 2.

Otherwise, those two matrices are not commutable since
projections of two perpendicular lines to horizontal plane
is no longer perpendicular. However, the difference is
bounded based on the inclination angle of the slope. Most
garage paths have small degrees of slope, if any. For ex-
ample, for 10◦ and 20◦ slopes, the difference between two
tracing methods is less than 2% and 7% of vehicle’s radial
acceleration, respectively.

Now we prove the Theorem, i.e., the equivalence be-
tween Γ(t) in 3D trajectory tracing and Δ(t) in shadow
trajectory tracing when X-axis or Y -axis of the vehicle is
horizontal.

Proof. When X-axis or Y -axis of the vehicle is horizontal,

Δ(t) = RG
V ′(t)E1E3R

V ′
P (t)aP

0 (t)(Equation 2)

= RG
V ′(t)E3E1R

V ′
P (t)aP

0 (t)(Lemma 1)

= E3R
G
V ′(t)E1R

V ′
P (t)aP

0 (t)(Lemma 2)

= E3R
G
V (t)R

V
V ′(t)E1R

V ′
P (t)aP

0 (t)

= E3R
G
V (t)E1R

V
V ′(t)RV ′

P (t)aP
0 (t)(Lemma 3)

= E3R
G
V (t)E1R

V
P (t)a

P
0 (t) = Γ(t)(Equation 1)

(5)

Thus Γ(t) in 3D trajectory tracing and Δ(t) in shadow
trajectory tracing are equivalent in this case.

Comparison: Despite their equivalence in most cases,
shadow tracing needs much less variables and is subject to
less noises, thus more robust than 3D tracing. 1) Shadow
tracing does not need to track variables in the vertical
dimension (e.g., altitude, angle, speed and acceleration). All
of them are subject to noises and require more complexity to
estimate. 2) On the horizontal plane, the moving direction
can be estimated accurately based on the prior knowledge of
road directions (Section 4.4). The distance is computed using
the acceleration amplitude along the moving direction. Thus
inertial noises perpendicular to the moving direction do
not impact the distance estimation. 3) Shadow tracing uses
gyroscopes to estimate pose, while conventional approaches
use accelerometers that are more susceptible to external dis-
turbances. Therefore, shadow tracing is much less complex,
subject to less noises, and thus achieves better accuracy and
higher robustness.

During experiments, we find that: our shadow tracing
method can handle arbitrary phone and vehicle poses and
the vehicle can go straight up/down or slanted on a slope.
It has much smaller errors (5 ∼ 10◦ at the 80th percentile)
and better robustness. It also re-estimates a changed phone
pose almost instantaneously because gyroscopes have little
latency; thus it can handle frequent disturbances.

4 REAL TIME TRACKING

4.1 Intuition
The basic idea to locate the vehicle is to leverage two
types of constraints imposed by the map, namely paths and
landmarks. Given a trajectory estimated from inertial data

6 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 1, NO. 1, MARCH 2017

+
Detected

Fig. 6. Using both map constraints and detected landmarks can narrow
down the possible placement of the trajectory more quickly.

(Figure 6), there are only a few paths on the map that can
accommodate the trajectory. Each detected landmark (e.g.,
a speed bump or turn) can pinpoint the vehicle to a few
possible locations. Jointly considering the two constraints
can further reduce the uncertainty and limit the possible
placement of the trajectory, thus revealing the vehicle loca-
tion. We will first describe the tracking design here, then
landmark detection in Section 5.

To achieve robust and real time tracking, we need to
address a dual challenge. First, the inertial data have signif-
icant noises and disturbances. Smartphones do not possess
a speedometer or odometer to directly measure the velocity
or distance; they are obtained from acceleration integration,
which is known to generate cubic error accumulation [9].
External disturbances (e.g., hand-held movements or road
conditions) cause sudden and drastic changes to vehicle
movements. Together they make it impossible to obtain
accurate trajectories from inertial data only. Second, the
requirement of low latency tracking demands efficient al-
gorithms that can run on resource-limited phones. We have
to minimize computational complexity so no cloud backend
is needed.

To achieve robustness, we use probability distributions
to explicitly represent vehicle states (e.g., location and
speed) and the Sequential Monte Carlo (SMC) method
to maintain the states. This is inspired by probabilistic
robotics [15]: instead of a single “best guess”, the probability
distributions cover the whole space of possible hypotheses
about vehicle locations, and use evidences from sensing
data to validate the likelihoods of these hypotheses. This
results in much better robustness to noises in data. To
achieve efficiency, we use a 1D “road skeleton” model that
abstracts paths into one dimensional line segments. We find
this dramatically reduces the size of vehicle states. Thus
the number of hypotheses is cut by almost one order of
magnitude, which is critical to achieve real time tracking
on resource limited phones. Next we will describe the road
skeleton model and the detailed SMC design.

4.2 Road Skeleton Model
The road skeleton model greatly simplifies the represen-
tation of garage maps. It abstracts away inconsequential
details and keeps only the essential aspects important to
tracking. Thus it helps reduce computational overheads in
the probabilistic framework. We assume that garage maps
are available (e.g., from operators), while how to construct
them is beyond the scope of this paper.

Given a map of the 3D multi-level parking structure, we
represent each level by projecting its map onto a 2D hori-
zontal plane perpendicular to the gravity direction. Thus the

vehicle location can be represented by a number indicating
the current level, and a 2D coordinate for its location on
this level. To accommodate changes when a vehicle moves
across adjacent levels, we introduce “virtual boundaries” in
the middle of the ramp connecting two levels. As shown
in Fig.7(b), a vehicle crossing the dash line of the virtual
boundary between levels will be assigned a different level
number. This kind of 2D representation suits the needs for
shadow tracing while retaining the essential topology and
shape for tracking.

Note that we call it 2D representation because the floor
level remains unchanged and does not need detection most
of the time. It is updated only when the vehicle crosses
virtual boundaries between levels. Its estimation is also
much simpler and easier than accurate 2D tracking, where
most challenges exist.

The key insight for the skeleton model is that the road
width is not necessary for tracking vehicle locations. Since
the paths are usually narrow enough for only one vehicle in
each direction, the vehicle location has little freedom in the
width direction. Thus we simplify the road representation
with their medial axis, and roads become 1D line segments
without any width.

We have tried several geometrical algorithms to extract
the road skeleton from garage floor map. A naive method
is to extract the road boundary, then leverage Voronoi
diagram [16] to generate the middle line inside the road
boundary (shown in Figure 7(c)). However, we observe that
there are superfluous and deformed, non-straight 1D line
segments on the skeleton. Those mistakes are difficult to
remove by simple geometrical algorithms.

Thus we leverage a robust thinning method [17] to
extract the road skeleton (Figure 7(d)) and eliminate such
problems. Then we project the bumps from garage floor
map onto the road skeleton, and use a 3×3 pixel template to
find road turns on the skeleton map. The final road skeleton
model with landmarks are shown in Figure 7(e).

Compared to a straightforward 2D strip representation
of roads, the skeleton model reduces the freedom of vehicle
location by one dimension, thus greatly cutting down the
state space size in the probabilistic framework and resulting
in one order of magnitude less complexity.

4.3 Probabilistic Tracking Framework
The tracking problem is formulated as a Sequential Monte
Carlo (SMC) problem, specifically, the particle filtering
framework [15]. The vehicle states (e.g., location, speed)
at time t are represented by a multi-dimensional random
variable s(t). Each hypothesis (with concrete values for each
dimension of s(t)) is called a “particle” and a collection of J
particles {s(j)t }Jj=1 are used to represent the distribution of
possible vehicle states at time t.

The framework operates on discrete time {1, ..., t −
1, t, ...} and repeats three steps for each time slot. Without
loss of generality, we assume J particles {s(j)t−1}Jj=1 already
exist at t− 1 and describe the progress from t− 1 to t.

State update predicts the set of states {ŝ(j)t }Jj=1 at time
t based on two known inputs, the previous state {s(j)t−1}Jj=1

and most recent movement mt such as the speed, accelera-
tion that govern the movement of the vehicle. For example,

GAO et al.: SMARTPHONE-BASED REAL TIME VEHICLE TRACKING IN INDOOR PARKING STRUCTURES 7

(a) 3D floor plan (b) 2D floor plan

road

No straight road

(c) Voronoi diagram (d) Thinning method (e) Road skeleton model

Fig. 7. (a) shows the 3D floor plans of a multi-level parking structure. A vehicle enters the entrance on the floor B1, goes down to other two levels
crossing the virtual boundaries. (b) shows the 2D projection of Floor B2 in (a). (c) shows the road skeleton via Voronoi diagram, and there are
superfluous and non-straight 1D lines. (d) shows the road skeleton via a robust thinning method. (e) shows the final 1D road skeleton model, with
points representing landmarks (corresponding to bumps and turns).

given the previous location and most recent speed, one can
predict a vehicle’s next location. To capture uncertainties in
movement and previous states, a random noise is added
to the estimated location. Thus J predictions {ŝ(j)t }Jj=1 are
generated.

Weight update uses measurements zt made at time t
to examine how much evidence exists for each prediction,
so as to adjust the weights of particles {ŝ(j)t }Jj=1. The
likelihood p(zt|st), how likely the measurement zt would
happen given state st, is the evidence. A prediction ŝ

(j)
t

with a higher likelihood p(zt|st = ŝ
(j)
t) will receive a

proportionally higher weight w
(j)
t = w

(j)
t−1p(zt|st = ŝ

(j)
t).

Then all weights are normalized to ensure that {w(j)
t }Jj=1

sum to 1.
Resampling draws J particles from the current state

prediction set {ŝ(j)t }Jj=1 with probabilities proportional to
their weights {w(j)

t }Jj=1, thus creating the new state set
{s(j)t }Jj=1 to replace the old set {s(j)t−1}Jj=1. Then the next
iteration starts.

Note that the above is only a framework. The critical
task is the detailed design of particle states, update, resam-
pling procedures. Thus we cannot simply copy what has
been done in related work, and have to carefully design
algorithms tailored to our specific problem.

4.4 Tracking Algorithms
4.4.1 State and Initialization
Our particle state is a collection of factors that can impact
the vehicle tracking. Since the number of particles grows
exponentially with the dimensionality of the state, we select
most related factors to reduce the complexity while still
preserving tracking accuracy. Our particle states include:

• level number k,
• position on 2D floor plane X = (x, y),
• speed of the vehicle v,
• α/β, phone/vehicle shadows’ 2D heading direc-

tions.

The first dimension k is introduced for multi-level struc-
tures. Position of the vehicle is represented as a 2D co-
ordinate X = (x, y) for convenience. In reality, due to
the 1D skeleton road model, the position actually has only
one degree of freedom. This greatly reduces the number of
particles needed.

Initialization of particles: We use certain prior knowl-
edge to initialize the particles’ state. The last GPS location
before entering the parking structure is used to infer the
entrance, thus the level number k and 2D entrance location

(x, y). The vehicle speed v is assumed to start from zero.
The vehicle heading direction β is approximated by the
direction of the entrance path segment, and the phone head-
ing direction α is drawn from a distribution based on the
compass reading before entering the garage. As shown later
(Section 6), the phone’s heading direction can be calibrated
to within 15◦, showing strong robustness against compass
errors known to be non-trivial [18].

4.4.2 State Update
For a particle with state (kt−1, xt−1, yt−1, vt−1, αt−1,
βt−1), we create a prediction (k̂t, x̂t, ŷt, v̂t, α̂t, β̂t) given
movement mt = (ax, ay, ωz) where ax, ay and ωz are X, Y-
axis accelerations and Z-axis angular speed in the coordinate
system of the phone’s shadow.

First, (x̂t, ŷt) is updated as follow:

x̂t = xt−1 + vt−1Δt · cosβt−1 + εx, (6)

ŷt = yt−1 + vt−1Δt · sinβt−1 + εy, (7)

where εx, εy are Gaussian noises. If (x̂t, ŷt) is no longer
on the skeleton, we project it back to the skeleton. Level
number k̂t is updated when a particle passes through a vir-
tual boundary around the floor-connecting-ramp, otherwise
k̂t = kt−1.

Next, velocity vt is updated as follow:

ât = ay · cos γt − ax · sin γt + εa, (8)

v̂t = vt−1 + at ·Δt+ εv, (9)

where γt is the angle between the Y axes of the two shad-
ows’ coordinate systems and εa, εv are Gaussian noises.

Finally, αt and βt are updated as follows:

α̂t = αt−1 + ωzΔt+ εα, (10)

β̂t =

{
βt−1 + ωzΔt+ εβ , if turn = True;
road direction at (kt, xt, yt), otherwise.

(11)
where εα, εβ are random Gaussian noises. The above

allows the phone to change its angle α to accommodate
occasional hand-held or jolting movements, while such
movements will not alter the vehicle’s angle β if the vehicle
is known to travel straight.

4.4.3 Weight Update
Weight update uses detected landmarks and floor plan
constraints to recalculate the “importance” of the current
particle states. The basic idea is to penalize particles that
behave inconsistently given the floor plan constraints. For
example, since a vehicle cannot travel perpendicularly to

8 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 1, NO. 1, MARCH 2017

path direction, a particle with velocity orthogonal to the
road direction will be penalized. It will have much smaller
weights and less likely to be drawn during resampling.

We compute the weight wt as

wt := wt−1

2∏
i=0

wti, (12)

Each wti is described as follows.

• Constraints imposed by the map. We define wt0 =
cos2(βt − βt−1). It is designed to penalize particles
that have a drastic change in the vehicle heading
direction, since during most of the time a vehicle
does not make dramatic turns.

• Detected landmarks. When an i-th type landmark
2 is detected, wti of the current state is updated as
N (Di(xt, yt); 0, σ

2
i) where Di(xt, yt) is the distance

to the closest landmark of the same type and σ2
i

is a parameter controlling the scale of the distance.
If no landmark is detected, wti = 1. This method
penalizes the predicted states far away from detected
landmarks.

Finally all weights are normalized so they sum up to 1.

4.4.4 Resampling
A replacement particle is selected from the predicted parti-
cle set {ŝ(j)t }Jj=1 where each particle ŝ(j)t has probability w

(j)
t

being selected. This is repeated for J times and J particles
are selected to form the new state set {s(j)t }Jj=1. Then the
next iteration starts.

5 LANDMARK DETECTION

A parking structure usually has a limited number of land-
marks (e.g., speed bumps and turns), and their locations can
be marked on the garage map. When a vehicle passes over a
landmark, it causes distinctive inertial data patterns, which
can be recognized to calibrate the vehicle’s location.

However, realizing accurate and realtime landmark de-
tection is not trivial because: 1) road conditions and hand
movements impose disturbances on inertial sensor readings;
and 2) to minimize delay, landmark recognition results are
needed based on partial data before the vehicle completely
passes a landmark. We present landmark detection algo-
rithms robust to noises and hand movements, and a pre-
diction and rollback mechanism for instantaneous landmark
detection.

5.1 Types of Landmarks
Speed bumps generate jolts, hence acceleration fluctuations
in the Z-axis when a vehicle passes over. Note that drainage
trench covers, fire shutter bottom supports may also cause
similar jolting patterns. We include them as “bumps” as well
in the garage map.

Many factors can cause ambiguities in bump detection.
For example, Figure 8 shows the acceleration signal along
the Z-axis as a vehicle starts and passes over four bumps

2. We use only bump and corner here because their locations are
precise; turns are used in vehicle angle β update in Eqn 11.

J

B1 B2 B3 B4
M

B: bump; J: jerking during start; M: hand movement

Ac
ce

le
ra

tio
n

(m
/s

2)

9.8

-9.8

0

0 20s 40s 60s 80s

Fig. 8. Acceleration along the Z-axis. There are starting acceleration (J),
four bumps (B1-B4) and one hand movement (M) along the trajectory.

Detected turns

Fetch phone
from pocket Hand movement

No

Yes

(a) Turn detection

Detected corners

Yes

No

(b) Corner detection
Fig. 9. Turn and corner detection. (a) Three turn periods are correctly
detected, even there are several different hand movements. (b) 4 cor-
ners are correctly separated, even when only 3 turned are detected.

along a straight road. The first tremor in the left green
box (around 10 ∼ 17s marked with “J”) is caused by
the vehicle’s starting acceleration. It lasts longer but with
smaller magnitude compared to those caused by the bumps
(in red boxes marked “B1”-“B4”). The tremor in the right
green box (around 60s marked “M”) is due to the user’s
action - holding the phone in hand, then uplifting the phone
to check the location. They generate vertical acceleration
that may be confused with those by bumps.

Turns are defined as durations in which a vehicle con-
tinuously changes its driving direction, usually around road
corners. They can be detected from the gyroscope read-
ings of angular velocities around the gravity direction (i.e.,
“yaw”). During turns a vehicle’s direction differs from the
road direction. Its direction changes in such periods are
accumulated to track the vehicle’s heading direction.

There exists work [12] using simple thresholding on
turning angles to detect turns. However, we find they cannot
reliably distinguish vehicle turns from hand movements
(e.g., putting the phone on adjacent seat and picking it up
to check the location).

Corners. A turn may span over an extended period, from
its start to the end. The corner where two road segments join
can be used to precisely calibrate the vehicle’s location. The
main challenge is consecutive turns: they might be detected
as a single one, hence missing some corners. For example,
in Figure 9(a), the first two turns may be detected as only
one turn period.

We observe that when a vehicle passes at a corner, its
angular velocity usually is at a local maxima, corresponding
to the maximum turn of the steering wheel. To identify
corners precisely, we use a sliding window to find local
maxima of angular velocities within each turning period.
Each local maxima is marked as a corner. Figure 9(b) shows
that the left most two consecutive corners within the same
turn period are properly separated.

GAO et al.: SMARTPHONE-BASED REAL TIME VEHICLE TRACKING IN INDOOR PARKING STRUCTURES 9

5.2 Feature and Classification Algorithm
We use machine learning techniques to recognize bumps
and turns. Corners are detected within turns using the above
local maxima searching. The critical issue is what features
should be used. Although one may feed the raw signal
directly to these algorithms, it is usually much more efficient
to design succinct, distinctive features from raw signals.

For bumps, we divide acceleration along the Z-axis into
2-second windows sliding at 0.2s intervals. This window
size is chosen empirically such that both front and rear
wheels can cross the bump for complete bump-passing.
For turns, we use gyroscope angular velocities around the
vertical direction, and divide the signal the same way. We
observe that smaller windows lead to drastic accuracy drop,
while larger ones incurs more delay.

We observe that there are two kinds of common hand
movements that may be confused with bumps or turns: 1)
hold the phone in hand, and occasionally uplift it to check
the location; 2) put the phone in pockets/nearby seat, pick
up the phone to check the location and then lay it down.
The first causes a jitter in Z-axis acceleration, and might be
confused with bumps; the second also has Z-axis gyroscope
changes, and might be confused with turns.

We have tried a number of different feature designs,
both time-domain and frequency-domain, to help distin-
guish such ambiguities. We list five feature sets which are
found to have considerable accuracy and low computation
complexity (detailed performance in Section 6).

(1) STAT35 (35 dimensions): we equally divide one
window into 5 segments, and compute a 7-dimensional
feature [19] from each segment, including the mean, max-
imum, second maximum, minimum, and second minimum
absolute values, the standard deviation and the root-mean-
square.

(2) DSTAT35 (70 dimensions): In addition to STAT35,
we also generate a “differential signal” (i.e., the difference
between two consecutive readings) from the raw signal, and
extract a similar 7-dimensional feature from each of its 5
segments.

(3) FFT5 (5 dimensions): we do FFT on the raw signal in
the whole window, and use the coefficients of the first five
harmonics as a 5-dimensional feature.

(4) S7FFT5 (35 dimensions): in addition to FFT5, we also
extract the same 5 coefficients from each of two half-size
windows, and four quarter-size windows. Thus we obtain
35 dimensions from 7 windows.

(5) DFFT5 (10 dimensions): the first five FFT coefficients
of both raw and differential signals.

We explore a few most common machine learning al-
gorithms, Logistic Regression (LR) [20] and Support Vector
Machine (SVM) [20]. After feature extraction, we manually
label the data for training. We find that SVM has higher
accuracy with slight more complexity than LR, while both
can run fast enough on the phone. So we finally decide
to use SVM in experiments. We find it has bump and
turn detection accuracies (percentage of correctly labeled
samples) around 93% (details in Section 6.2).

We have also tried some threshold-based methods on
temporal [21] and frequency domain [22] features, but find it
is impossible to set universally effective thresholds, and the
frequency power densities by hand movements can be very

similar to those of landmarks. Thus they are not sufficiently
robust.

5.3 Prediction and Rollback
The reliability of landmark detection depends on the “com-
pleteness” of the signal. If the window covers the full
duration of passing a landmark, more numbers of distinc-
tive features can be extracted, and the detection would be
more reliable. In reality, this may not always be possible.
The landmark detection is repeated at certain intervals, but
many intervals may not be precisely aligned with complete
landmark-passing durations. One naive solution is to wait
until the passing has completed. Thus more features can
be extracted for reliable detection. However, this inevitably
increases tracking latency and causes jitters in location esti-
mation and display, adversely impacting user experience.

We use a simple prediction technique to make decisions
based on data from such partial durations. To identify
whether a car is passing a landmark at time t, assume that
the signal spanning from t− τ to t+ τ covering the full 2τ
landmark-passing duration is needed for best results. At any
time t, we use data in window [t−2τ, t] to do the detection.
The results are used by the real time tracking component to
estimate the vehicle location. At time t + τ , the data of full
landmark-passing duration become available. We classify
data in [t − τ, t + τ] and verify if the prediction made at t
is correct. Nothing needs to be done if it is. If it was wrong,
we rollback all the states in the tracking component to t,
and repeat the computation with the correct detection to re-
estimate the location.

This simple technique is based on the observation that
most of the time the vehicle is driving straight and land-
marks are rare events. Thus the prediction remains cor-
rect most of the time (i.e., during straight driving), and
mistakes/rollbacks happen only occasionally (i.e., when a
landmark is encountered). From our experiments, rollbacks
happen in a small fraction (∼ 10%) of the time. Thus
we ensure low latency most of the time because there is
no waiting, while preserving detection accuracy through
occasional rollback, which incurs more computation but is
found to have acceptable latency (0.05 ∼ 0.2s) (Section 6).

6 PERFORMANCE EVALUATION

6.1 Methodology
We implement VeTrack on iOS 6/7/8 so it can run on
iPhone 4/4s/5/5s/6. Our code contains a combination of
C, C++ for algorithms and Objective C for sensor and GUI
operations. A sensor data collector sends continuous data to
landmark detectors to produce detection results. Then the
real time tracking component uses such output to estimate
the vehicle’s location, which is displayed on the screen.
The initialization (e.g, loading map data) takes less than 0.5
second. Sensors are sampled at 50Hz and the particle states
are evolved at the same intervals (20ms). Since each land-
mark lasts for many 20ms-intervals, the detectors classify
the landmark state once every 10 samples (i.e., every 0.2
second), which reduces computing burden.

We conduct experiments in three underground parking
lots: a 250m× 90m one in an office building, a 180m× 50m
one in a university campus and a 3-level 120m×80m one in

10 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 1, NO. 1, MARCH 2017

Fig. 10. Floor maps of three underground parking lots: (a) university
campus: 180m × 50m with 79 parking spots, 12 bumps and 11 turns.
(b) office building: 250m × 90m with 298 parking spots, 19 bumps and
10 turns. (c) shopping mall: 3-level 120m× 80m with 423 parking spots,
10 bumps and 27 turns. The chosen parking spots and entrance are
marked for each lot.

A

B

C

D
E

O

Fig. 11. Driving trajectories and test spots. Each trajectory begins at the
entrance O and ends at one of the test spots (A to E).

a shopping mall. Before the experiments, we have measured
and drawn their floor plans (shown in Figure 10). There are
298, 79, 423 parking spots, 19, 12, 10 bumps, 10, 11, 27 turns
and 4, 2, 6 slopes, respectively.

For each parking lot, we collect 20 separate trajectories
each starting from the entrance to one of the parking spots
(shown in Figure 10) for inertial sensor data at different
poses. The average driving time for trajectories is 2∼3 min-
utes, and the longest one 4.5 minutes. Exemplar trajectories
to five test spots are illustrated in Figure 11.

For all three lots, we use a mould to hold 4 iPhones with
4 different poses: horizontal, lean, vertical and box (Fig-
ure 12(a)). To further test the performance and robustness
of our system, we use 4 more iPhones for the challenging 3-
level parking lot with one in driver’s right pants’ pocket,
one in a bag on a seat and two held in hand. The one
in pocket is subject to continuous gas/brake pedal actions
by the driver, while the one in bag to vehicle movements.
Once in a while, one hand-held phone is picked up and
put down on the user’s thigh, causing Z-axis accelerations
similar to those by bumps; the other is picked up from and
laid down to adjacent seat, causing Z-axis angular changes
similar as those by turns. These 8 poses hopefully cover all
common driving scenarios. The UI of VeTrack is shown in
Figure 12(b).

We use video to obtain the ground truth of vehicle
location over time. During the course of driving, one person
holds an iPad parallel to the vehicle’s heading direction to
record videos from the passenger window. After driving,
we manually examine the video frame by frame to find
when the vehicle passed distinctive objects (e.g., pillars)
with known locations on the map. Such frames have those
objects in the middle of the image, thus the error is bounded
by 0.5 vehicle length and usually much better.

To align inertial data and video collected from different

Front of vehicle

(a) Mould (b) VeTrack UI
Fig. 12. Mould and VeTrack UI.

devices temporally, we first synchronize the time on all the
iPhones and iPad. Then different people holding different
devices will start the data collecting/recording applications
at the same time. These operations establish the correspon-
dence of data in the time series of different devices.

6.2 Evaluation of Individual Components
Landmark classification accuracy. To train landmark detec-
tors and test their performance, we use recorded videos to
find encountered landmarks and label their locations on the
whole trajectory. Then we use sliding windows to generate
labeled segments of sensor readings. Note that disturbances
caused by hand movements are labeled as non-bump and
non-turn because they should not be confused with bumps
or turns. In total we generate 14739 segments for bump
detector and 57962 segments for turn detector.

We evaluate classification accuracy (percentage of test
samples correctly classified) of six different sets of features
(described in Section 5). We randomly choose 50% of the
whole dataset to train the SVM classifier and others to
test the performance. We repeat it 20 times and report the
average performance in Table 1. It shows that they all have
high accuracy around 90%. We decide to use DFFT5 with
relatively high accuracies (93.0% and 92.5% for bump and
turn) and low complexity in further evaluation.

TABLE 1
Accuracies of different feature sets.

dimension bump turn
STAT35 35 92.7% 92.8%

DSTAT35 70 92.6% 93.4%
FFT5 5 91.8% 92.2%

S7FFT5 35 92.5% 92.6%
DFFT5 (chosen) 10 93.0% 92.5%

We repeat the test across different garages: using the data
from one as training and another as testing. In reality, we
can only obtain data from a limited number of garages for
training, at least initially. Thus this test critically examines
whether high accuracies are possible for vast numbers of
unknown garages. Table 2 shows the cross-test accuracies of
bump and turn detection, respectively. Each row represents
training data and column test data. We observe that the
accuracies are around, and some well above 90%. This
encouraging evidence shows that it is very possible to retain
the accuracy when training data are available from only
limited numbers of garages.

Precision and recall of landmark detection.
After training landmark detectors, we further test their

precision (ratio of true detections among all detected land-
marks) and recall (ratio of true detections to groundtruth
number of such landmarks) over whole traces. They tell how

GAO et al.: SMARTPHONE-BASED REAL TIME VEHICLE TRACKING IN INDOOR PARKING STRUCTURES 11
TABLE 2

Cross-test of bump/turn detection (%)

train/test office campus mall
office 95.5/93.6 91.9/95.6 90.1/90.3

campus 93.7/94.1 93.9/96.3 88.5/90.8
mall 94.1/92.3 90.6/94.6 91.5/91.0

Office Campus Mall
0.8

0.85

0.9

0.95

1
Bump Detection

Precision
Recall

(a)

Office Campus Mall
0.8

0.85

0.9

0.95

1
Turn Detection

Precision
Recall

(b)
Fig. 13. Precision and recall of bump and turn detection in three different
garages.

likely the detector makes mistakes (high precision means
less chances for mistakes), and how close all groundtruth
ones are detected (high recall means more real ones are
detected). An ideal detector would have 100% precision and
recall.

The precision and recall of bump and turn detection are
shown in Figure 13. Both prediction and recall of bump
detection are over 91% and those of turn are over 96%. Turn
detection has better performance because it uses features
from more reliable gyroscope data. We also find that poses
in the mould has the best performance because they have
the least disturbances; those in pocket and bag are better
than in those in hand because they do not experience
disturbances from hand movements.

Accuracy of shadow tracing. The performance of tra-
jectory tracing highly depends on the accuracy of phone
pose estimation (relative orientation between the phone and
vehicle’s coordinate systems). We compare its accuracy in
3D and 2D tracing methods. Similar to other work [10], [11],
we use principle component analysis (PCA) in 3D method
to find the maximum acceleration direction as Y -axis. To
obtain the ground truth, we fix a phone to the vehicle and
align its axes to those of the vehicle. The error is defined as
the angle between the estimated and ground truth Y -axis of
the phone. For fair comparison, we project the 3D pose to
horizontal plane before calculating its error.

The CDFs of errors (Figure 14) show that: 1) Our 2D
method is more accurate, with the 90th percentile error at
10 ∼ 15o while that of the 3D method is around 50o ∼ 70o,
which in reality would make accurate tracking impossible.
2) The 2D method is more robust to disturbances in unstable
poses such as pocket/bag and hand-held, whereas the 3D
method has much larger errors for the latter two. This shows
that our shadow tracing is indeed much more practical for
real driving conditions. In addition, we find that the PCA
needs a window of 4s for unchanged pose, while the 2D
method is almost instantaneous.

6.3 Realtime Tracking Latency
Realtime tracking latency is the time the tracking compo-
nent needs to finish computing the location after obtaining
sensor data at t. When there are prediction mistakes, it
also includes latencies for detecting mistakes, rollback and

0 20 40 60 800

0.2

0.4

0.6

0.8

1

Pose estimation error in PCA(degree)

C
D

F

Mould
Pocket & Bag
Hand

(a) 3D trajectory tracing

0 20 40 60 800

0.2

0.4

0.6

0.8

1

Pose estimation error in VeTrack(degree)

C
D

F

Mould
Pocket & Bag
Hand

(b) shadow trajectory tracing

Fig. 14. CDFs of pose estimation error: (a) 3D method. (b) Our 2D
method.

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

Number of particles

co
m

pu
ta

tio
na

l o
ve

rh
ea

d
of

 ro
llb

ac
k(

s) Corner prediction error
Bump prediction error
Turn prediction error

Fig. 15. Latency by different rollback
types and numbers of particles.

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

Number of particles

A
ve

ra
ge

 lo
ca

liz
at

io
n

er
ro

rs
(p

ar
ki

ng
 s

pa
ce

)

Baseline
VeTrack

Fig. 16. Tracking error by num-
bers of particles.

re-computing of the current location. This is measured on
iPhone 4s, a relatively slower model. As shown in Table 3,
landmark detection for bump, turn and corner each cost
∼ 0.2ms. In almost ∼ 90% of time where predictions are
correct, one round of tracking is computed within 1.7ms.
The 2.3ms computing finishes within the 20ms particle
state update interval, causing no real time delay. For about
∼ 10% of time, recovering for bump, turn and corner errors
(each ∼3%) take 64ms, 47ms and 193ms. The worst case is
less than 0.2s, hardly noticeable to human users.

TABLE 3
Realtime Tracking Latency.

bump turn corner
landmark detection 0.21ms 0.22ms 0.22ms

90% realtime tracking 1.7ms
10% rollback 47ms 64ms 193ms

Figure 15 shows the latency as a function of number
of particles, each curve for one different type of wrong
predictions resulting in rollback. All curves grows linearly,
simply because of the linear overhead to update more par-
ticles. Note that the difference between latencies of different
curves is caused by different sizes of rollback windows (1s,
1s and 3s for bump, turn and corner detection errors, respec-
tively). Although bump and turn detection have the same
rollback window sizes, recovering turn errors has slightly
higher computation overhead. In experiments we find that
100 ∼ 200 particles can already achieve high accuracy,
which incurs only 0.05 ∼ 0.2s) latency. Such disruptions
are minimal and not always perceptible by users.

6.4 Tracking Location Errors
Parking location errors. The final parking location is impor-
tant because drivers use it to find the vehicle upon return.
We use the number of parking spaces between the real and
estimated locations as the metric, since the search effort
depends more on how many vehicles to examine, not the
absolute distance.

In order to compare all 8 poses, we show the results
in the mall garage. Figure 17(a) shows the 4 phones in the

12 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 1, NO. 1, MARCH 2017

0 1 2 30

0.2

0.4

0.6

0.8

1

Localizarion error(parking space)

C
D

F

Horizontal
Lean
Vertical
Box

(a)

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

Localizarion error(parking space)

C
D

F

Mould
Pocket & Bag
Hand

(b)

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

Localizarion error(parking space)

C
D

F

Driver 1
Driver 2
Driver 3
Driver 4

(c)

0 2 4 60

0.2

0.4

0.6

0.8

1

Localizarion error(parking space)

C
D

F

Office garage
Campus garage
Mall garage

(d)

0 2 4 60

0.2

0.4

0.6

0.8

1

Realtime localization error(parking spaces)

C
D

F

Horizontal
Lean
Vertical
Box

(e)

0 2 4 60

0.2

0.4

0.6

0.8

1

Realtime localization error(parking spaces)

C
D

F

Mould
Pocket & Bag
Hand

(f)

0 2 4 60

0.2

0.4

0.6

0.8

1

Realtime localization error(parking spaces)

C
D

F

Driver 1
Driver 2
Driver 3
Driver 4

(g)

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

Realtime localization error(parking spaces)

C
D

F

Office garage
Campus garage
Mall garage

(h)
Fig. 17. Final parking location errors (1st row) and realtime tracking location errors (2nd row). (a)(e) 4 phones in the mould. (b)(f) in mould,
pocket&bag, and hands. (c)(g) different drivers. (d)(h) different garages.

ABC

D

Average realtime localization errors
(unit in meters) are shown in circles.

Arrows represent road directions.

Fig. 18. Average realtime tracking errors on different garage locations.

mould. They have relatively small errors: all four poses have
similar performance, with the 90th percentile error less than
2 parking spaces. The maximum error is less than 3 parking
spaces, which is sufficient for remote keys to trigger a honk
to locate the car.

Figure 17(b) shows results for different pose categories.
Poses in the mould category achieve the best performance,
i.e., ∼ 2 parking spaces at the 90th percentile, with max-
imum error of 3 parking spaces. Those in the pocket or
bag endure small disturbances thus achieve performance
that is a little worse than mould category, i.e., ∼ 2 parking
spaces at the 90th percentile, with maximum error of 4
parking spaces. Those in hand have largest errors, i.e., ∼ 4
parking spaces at the 90th percentile, with maximum error
of 5 parking spaces. These larger errors are due to hand
disturbances causing more incorrect landmark detections.

We also evaluate the impact of different drivers. Fig-
ure 17(c) shows those of two taxi drivers (1 and 3) driving
cabs and two volunteer drivers (2 and 4) driving their own
cars. The results do not differ too much among different
drivers; all have 1.5 ∼ 3 parking space errors at the 80th

percentile, while the maximum error of 5 parking spaces
is from a taxi driver who drives very aggressively, which
causes more incorrect detections.

Finally we evaluate impact of the type of parking garage.
The 90th percentile errors are around 2,3 and 5 parking
spaces, respectively, and maximum errors are 3, 5 and 6
parking spaces, respectively. The difference is caused by dif-

ferent structures. The office garage has best results because
it has regular shapes (10(b)) and smooth paved surfaces
which minimize road disturbances. The campus garage is
the worst because of its irregular shape (10(a)), especially the
“Z”-junction of two consecutive turns where many drives
take a shortcut instead of two 90-degree turns.

Real time location error. We present the CDFs of real
time tracking error in the second row of Figure 17, arranged
the same as the first row. The trends are similar in general,
but real time errors are generally 50 ∼ 100% larger than
corresponding parking errors. For example, Figure 17(e)
shows all 4 poses in the mould have the 90th percentile
error around 4 parking spaces. The maximum error is ∼
5 parking spaces. While those in Figure 17(a) are 2 and 3
parking spaces. Figure 17(f) shows that poses in the mould
have the least errors, while those in hand have largest errors,
the same trend as Figure 17(b) while all errors are about 60%
larger than those in Figure 17(b). Figure 17(g) and (h) are
similar as well.

This is because: 1) For final parking location we penalize
particles still having non-negligible speeds after the vehi-
cle has stopped. Thus remaining particles are those that
have correctly “guessed” the vehicle states. 2) Real time
errors include many locations in the middle of long straight
driving, where no landmarks are available for calibration.
Such locations tend to have larger errors. 3) The vehicle
location has much larger uncertainty at the beginning. Thus
relatively greater errors are included in real time results.
But final location is usually after multiple calibrations, thus
better accuracy.

Spatial distribution of real time tracking errors on a
garage map with 3 bumps and 8 turns is shown in Figure 18.
Each circle has a number, the error averaged over different
traces and poses for that location. We observe that in general
the error grows on straight paths, and is reduced after
encountering landmarks (e.g., from 4.9m after a corner A,
growing to 7.9m then reduced to 4.6m after a bump B; 9.7m
at C before a corner to 3.9m at D).

The number of particles also impact tracking accuracy.
We compare VeTrack with a straightforward baseline that

GAO et al.: SMARTPHONE-BASED REAL TIME VEHICLE TRACKING IN INDOOR PARKING STRUCTURES 13

uses 3D tracing and 2D road strips, without two critical
components of 2D tracing and 1D roads, Figure 16 shows
results for the mall. VeTrack’s average localization error
quickly converges to ∼ 2.5 parking spaces when there are
200 particles (the office and campus garages need only
100 ∼ 150 particles). More particles do not further decrease
the error because they are still subject to landmark detec-
tion mistakes. The baseline needs about 1000 particles to
stabilize, and it is around 5 parking spaces. This shows that
VeTrack needs about one order of magnitude less particles,
thus ensuring efficient computing for real time tracking on
the phone; it also has better accuracy because of the two
critical components.

7 RELATED WORK

Phone pose estimation. Existing work [10], [11], [23] esti-
mates the 3D pose of the phone. The latest one, A3 [14],
detects high confidence compass and accelerometer mea-
surements to calibrate accumulative gyroscope errors. The
typical approach [10] in vehicular applications is to use the
gravity direction as the Z-axis of the vehicle, assuming it is
on level ground; gyroscope is used to determine whether the
vehicle is driving straight; and the direction of maximum
acceleration is assumed to be the Y-axis of the vehicle. As
explained in Section 3, it cannot handle vehicles on a slope,
and the direction of maximum acceleration may not be
vehicle forwarding direction. The estimation also requires
long time of unchanged pose, unsuitable under frequent
disturbances.

Landmark detection. Distinctive data patterns in differ-
ent sensing modalities of smartphones have been exploited
for purposes including indoor localization [9], [24] and map-
ping [25]. Similarly, VeTrack detects distinctive inertial sen-
sor patterns by road conditions (e.g., bumps and turns) to
calibrate the location estimation. Its algorithms are designed
specifically for robustness against noises and disturbances
on inertial data from indoor driving.

Dead-reckoning. Dead reckoning is a well explored
approach that estimates the future location of a moving
object (e.g., ground vehicle [26]) based on its past position
and speed. Compared with them, VeTrack does not have
special, high precision sensors (e.g., odometer in robotics or
radar [26] for ground vehicles), while the required accuracy
is much higher than that of aviation.

Dead reckoning has been used for indoor localization
using smartphones equipped with multiple inertial sen-
sors [27], [28]. Its main problem is fast error accumulation
due to inertial data noises and a lot of work has attempted to
mitigate the accumulation. Foot-mounted sensors have been
shown effective in reducing the error [29]. Smartphones
are more difficult because their poses are unknown and
can change. UnLoc [9] replaces GPS with virtual indoor
landmarks with unique sensor data patterns for calibration.

To prevent the error accumulation, VeTrack simulta-
neously harnesses constraints imposed by the map and
environment landmarks. Landmark locations most likely
remain unchanged for months or even years. The 2D pose
estimation handles unknown and possibly changing phone
poses. Their output provide calibration opportunities in the
SMC framework to minimize error accumulation.

Estimation of vehicle states. There have been many
research efforts using smartphones’ embedded sensors to
monitor the states of vehicles (e.g. dangerous driving
alert [7] and CarSafe [30]); sense driver phone use (e.g., car
speaker [31]); inspect the road anomaly or conditions (e.g.,
Pothole Patrol [21]); and detect traffic accidents (Nericell
[23] and WreckWatch [32]). The vehicle speed is a critical
input in many such applications. While it is easy to cal-
culate the speed using GPS outdoors [33], the signal can
be weak or even unavailable for indoor parking lots. Some
alternative solutions leverage the phone’s signal strength to
estimate the vehicle speed [34]. VeTrack uses inertial data
only, thus it works without any RF signal or extra sensor
instrumentation.

8 CONCLUSIONS

In this paper we describe VeTrack which tracks a vehicle’s
location in real time and records its final parking location.
It does not depend on GPS or WiFi signals which may be
unavailable, or additional sensors to instrument the indoor
environment. VeTrack uses only inertial data, and all sens-
ing/computing happen locally on the phone. It uses a novel
shadow trajectory tracing method to convert smartphone
movements to vehicle ones. It also detects landmarks such
as speed bumps and turns robustly. A probabilistic frame-
work estimates its location under constraints from detected
landmarks and garage maps. It also utilizes a 1D skeleton
road model to greatly reduce the computing complexity.

Prototype experiments in three parking structures and
with several drivers, vehicle make/models have shown that
VeTrack can track the vehicle location around a few park-
ing spaces, with negligible latency most of the time. Thus
it provides critical indoor location for universal location
awareness of drivers. Currently VeTrack still has quite some
limitations, such as manual feature design, simultaneous
disturbances as discussed previously. We plan to further
investigate along these directions to make it mature and
practical in the real world.

ACKNOWLEDGMENTS

This work is supported in part by NSF CNS 1513719, and
NSFC 61625201, 61231010.

REFERENCES

[1] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-
based user location and tracking system,” in IEEE INFOCOM,
2000, pp. 775–784.

[2] M. Youssef and A. Agrawala, “The horus wlan location determi-
nation system,” in ACM MobiSys, 2005, pp. 205–218.

[3] V. Otsason, A. Varshavsky, A. LaMarca, and E. De Lara, “Accurate
gsm indoor localization,” in ACM UbiComp, 2005, pp. 141–158.

[4] “SFpark,” http://sfpark.org/how-it-works/the-sensors/.
[5] “Parking sensors mesh network,”

http://www.streetline.com/parking-analytics/parking-sensors-
mesh-network/.

[6] S. Nawaz, C. Efstratiou, and C. Mascolo, “Parksense: A smart-
phone based sensing system for on-street parking,” in ACM Mobi-
Com, 2013, pp. 75–86.

[7] J. Lindqvist and J. Hong, “Undistracted driving: A mobile phone
that doesn’t distract,” in ACM HotMobile, 2011, pp. 70–75.

[8] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooper-
ative transit tracking using smart-phones,” in ACM SenSys, 2010,
pp. 85–98.

14 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 1, NO. 1, MARCH 2017

[9] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R.
Choudhury, “No need to war-drive: Unsupervised indoor local-
ization,” in ACM MobiSys, 2012, pp. 197–210.

[10] Y. Wang, J. Yang, H. Liu, Y. Chen, M. Gruteser, and R. P. Martin,
“Sensing vehicle dynamics for determining driver phone use,” in
ACM MobiSys, 2013, pp. 41–54.

[11] J. Yu, H. Zhu, H. Han, Y. J. Chen, J. Yang, Y. Zhu, Z. Chen, G. Xue,
and M. Li, “Senspeed: Sensing driving conditions to estimate
vehicle speed in urban environments,” IEEE Transactions on Mobile
Computing, vol. 15, no. 1, pp. 202–216, 2016.

[12] M. Zhao, R. Gao, J. Zhu, T. Ye, F. Ye, Y. Wang, K. Bian, G. Luo, and
M. Zhang, “Veloc: finding your car in the parking lot,” in ACM
SenSys, 2014, pp. 346–347.

[13] “Apple Developer Center,” https://developer.apple.com/.
[14] P. Zhou, M. Li, and G. Shen, “Use it free: Instantly knowing your

phone attitude,” in ACM MobiCom, 2014, pp. 605–616.
[15] S. Thrun, W. Burgard, D. Fox et al., Probabilistic robotics. MIT press

Cambridge, 2005, vol. 1.
[16] M. de Berg et al., Computational Geometry. Springer, 2000, vol. 2.
[17] “Zhang-suen thinning algorithm,” http://rosettacode.org/wiki/

Zhang-Suen thinning algorithm/.
[18] R. Gao, Y. Tian, F. Ye, G. Luo, K. Bian, Y. Wang, T. Wang, and

X. Li, “Sextant: Towards ubiquitous indoor localization service
by photo-taking of the environment,” IEEE Transactions on Mobile
Computing, vol. 15, no. 2, pp. 460–474, 2016.

[19] S. Preece, J. Goulermas, L. Kenney, and D. Howard, “A compari-
son of feature extraction methods for the classification of dynamic
activities from accelerometer data,” IEEE Transactions on Biomedical
Engineering, vol. 56, no. 3, pp. 871–879, 2009.

[20] C. M. Bishop et al., Pattern recognition and machine learning.
springer New York, 2006, vol. 1.

[21] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Bal-
akrishnan, “The pothole patrol: Using a mobile sensor network for
road surface monitoring,” in ACM MobiSys, 2008, pp. 29–39.

[22] K. Li, M. Lu, F. Lu, Q. Lv, L. Shang, and D. Maksimovic, “Per-
sonalized driving behavior monitoring and analysis for emerging
hybrid vehicles,” in Pervasive Computing, 2012, pp. 1–19.

[23] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell: Using
mobile smartphones for rich monitoring of road and traffic condi-
tions,” in ACM SenSys, 2008, pp. 357–358.

[24] M. Azizyan, I. Constandache, and R. Roy Choudhury, “Surround-
sense: Mobile phone localization via ambience fingerprinting,” in
ACM MobiCom, 2009, pp. 261–272.

[25] R. Gao, M. Zhao, T. Ye, F. Ye, G. Luo, Y. Wang, K. Bian, T. Wang,
and X. Li, “Multi-story indoor floor plan reconstruction via mobile
crowdsensing,” IEEE Transactions on Mobile Computing, vol. 15,
no. 6, pp. 1427–1442, 2016.

[26] D. H. Nguyen, J. H. Kay, B. J. Orchard, and R. H. Whiting,
“Classification and tracking of moving ground vehicles,” Lincoln
Laboratory Journal, vol. 13, no. 2, pp. 275–308, 2002.

[27] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen,
“Zee: Zero-effort crowdsourcing for indoor localization,” in ACM
MobiCom, 2012, pp. 293–304.

[28] I. Constandache, X. Bao, M. Azizyan, and R. R. Choudhury, “Did
you see bob?: Human localization using mobile phones,” in ACM
MobiCom, 2010, pp. 149–160.

[29] P. Robertson, M. Angermann, and B. Krach, “Simultaneous lo-
calization and mapping for pedestrians using only foot-mounted
inertial sensors,” in ACM UbiComp, 2009, pp. 93–96.

[30] C.-W. You, N. D. Lane, F. Chen, R. Wang, Z. Chen, T. J. Bao,
M. Montes-de Oca, Y. Cheng, M. Lin, L. Torresani, and A. T.
Campbell, “Carsafe app: Alerting drowsy and distracted drivers
using dual cameras on smartphones,” in ACM MobiSys, 2013, pp.
461–462.

[31] J. Yang, S. Sidhom, G. Chandrasekaran, T. Vu, H. Liu, N. Cecan,
Y. Chen, M. Gruteser, and R. P. Martin, “Sensing driver phone use
with acoustic ranging through car speakers,” IEEE Transactions on
Mobile Computing, vol. 11, no. 9, pp. 1426–1440, 2012.

[32] J. White, C. Thompson, H. Turner, B. Dougherty, and D. C.
Schmidt, “Wreckwatch: Automatic traffic accident detection and
notification with smartphones,” Mob. Netw. Appl., vol. 16, no. 3,
pp. 285–303, 2011.

[33] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J.-C. Herrera,
A. M. Bayen, M. Annavaram, and Q. Jacobson, “Virtual trip lines
for distributed privacy-preserving traffic monitoring,” in ACM
MobiSys, 2008, pp. 15–28.

[34] G. Chandrasekaran, T. Vu, A. Varshavsky, M. Gruteser, R. P.
Martin, J. Yang, and Y. Chen, “Vehicular speed estimation using
received signal strength from mobile phones,” in ACM UbiComp,
2010, pp. 237–240.

Ruipeng Gao (M’16) received his B.E. de-
gree in Communication Engineering from Beijing
University of Posts and Telecommunications in
2010, and his Ph.D. degree in Computer Science
from Peking University in 2016. He is currently a
lecturer with the School of Software Engineering,
Beijing Jiaotong University, Beijing, China. His
research interests include wireless communica-
tion and mobile computing.

Mingmin Zhao received the B.S. degree in
Computer Science from Peking University in
2015. He is currently working toward the Ph.D.
degree in Computer Science and Artificial Intelli-
gence Laboratory at MIT. His research interests
include wireless sensing, machine learning, and
mobile computing.

Tao Ye is currently pursuing his B.S. degree in
Computer Science from Peking University, Bei-
jing, China. His research interests include mobile
computing and artificial intelligence.

Fan Ye is an Assistant Professor in the ECE
department of Stony Brook University. He got his
Ph.D. from the Computer Science Department of
UCLA, M.S. and B.E. from Tsinghua University.
He has published over 60 peer reviewed papers
that have received over 7000 citations according
to Google Scholar. He has 21 granted/pending
US and international patents/applications. His
research interests include mobile sensing plat-
forms, systems and applications, Internet-of-
Things, indoor location sensing, wireless and

sensor networks.

Yizhou Wang is a Professor of Computer Sci-
ence Department at Peking University, Beijing,
China. He received his Bachelors degree in
Electrical Engineering from Tsinghua University
in 1996, and his Ph.D. in Computer Science from
University of UCLA in 2005. Dr. Wang’s research
interests include computational vision, statistical
modeling and learning, pattern analysis, and dig-
ital visual arts.

Guojie Luo (M’12) received the B.S. degree in
Computer Science from Peking University, Bei-
jing, China, in 2005, and the M.S. and Ph.D.
degrees in Computer Science from UCLA, in
2008 and 2011, respectively. He obtained the
2013 ACM SIGDA Outstanding Ph.D. Disserta-
tion Award in Electronic Design Automation and
the 10-year Retrospective Most Influential Paper
Award at ASP-DAC 2017. He is currently an
Assistant Professor in the School of EECS at
Peking University. His research interests include

FPGA design automation, FPGA acceleration for imaging and sensing,
and design technologies for 3D ICs.

