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Abstract—Several recent works have studied mobile vehicle scheduling to recharge sensor nodes via wireless energy transfer

technologies. Unfortunately, most of them overlooked important factors of the vehicles’ moving energy consumption and limited

recharging capacity, which may lead to problematic schedules or even stranded vehicles. In this paper, we consider the recharge

scheduling problem under such important constraints. To balance energy consumption and latency, we employ one dedicated data

gathering vehicle and multiple charging vehicles. We first organize sensors into clusters for easy data collection, and obtain theoretical

bounds on latency. Then we establish a mathematical model for the relationship between energy consumption and replenishment, and

obtain the minimum number of charging vehicles needed. We formulate the scheduling into a Profitable Traveling Salesmen Problem

that maximizes profit - the amount of replenished energy less the cost of vehicle movements, and prove it is NP-hard. We devise and

compare two algorithms: a greedy one that maximizes the profit at each step; an adaptive one that partitions the network and forms

Capacitated Minimum Spanning Trees per partition. Through extensive evaluations, we find that the adaptive algorithm can keep the

number of nonfunctional nodes at zero. It also reduces transient energy depletion by 30-50 percent and saves 10-20 percent energy.

Comparisons with other common data gathering methods show that we can save 30 percent energy and reduce latency by two orders

of magnitude.

Index Terms—Wireless rechargeable sensor networks, perpetual operations, mobile data collection, recharge scheduling, adaptive

network partitioning

Ç

1 INTRODUCTION

WIRELESS charging has opened up a new dimension to
power Wireless Sensor Networks (WSNs) and these

networks are referred as Wireless Rechargeable Sensor Net-
works (WRSNs) [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18]. Compared to environmental energy
harvesting techniques, where sensors scavenge energy from
ambient sources such as solar, wind and thermal, which
may not always be available, wireless charging provides a
reliable energy source without wires or plugs. For high
charging efficiency, charging vehicles equipped with resonant
coils that can move close to nodes are usually adopted [11],
[12], [13], [14], [15], [16], [17]. Recharge sequences are calcu-
lated such that nodes are recharged before energy deple-
tion. Ideally, the lifetime of a WRSN can be extended to
infinitely long for perpetual operations.

However, most of the previous works have ignored the
moving energy consumption of the charging vehicle and its
limited charging capacity. These simplifications may lead to
serious problems in reality. First, they may cause impracti-
cal schedules where charging vehicles deplete their energy,
become stranded and unable to return to the base station.

The network would eventually use up energy and stop
operation completely. Second, they tend to overestimate the
vehicle’s recharge capability and nodes’ lifetimes. Real
vehicles have limited battery capacity. They have to spend
time returning to the base station for battery replacement
and cannot keep recharging nodes continuously. Third,
they may result in inefficient recharge scheduling and node
selection. They may choose nodes faraway simply because
they have lower energy levels, and subsequently vehicles
travel back-and-forth over long distances, wasting signifi-
cant amounts of energy.

For WRSNs, energy replenishment cannot be considered
separately from energy consumption patterns, which rely
on how data is gathered in the network. Previous works in
[14], [17] simply utilize a static data sink to gather packets
over multi-hops. It is subject to the infamous energy hole
problem [3] where nodes near the base station consume
energy and deplete batteries much faster, causing service
interruptions. A single vehicle that gathers data and charges
nodes simultaneously [15] can mitigate the problem. How-
ever, it causes high data collection latency due to the non-
negligible battery recharge time. A battery requires nontriv-
ial recharge time (e.g., 30 to 90 min) whereas gathering data
takes only a few minutes (e.g., 1.6 min for transmitting 3
MBytes at 250 kbps). Thus the waiting time for completing
recharge increases dramatically when more nodes need
recharge. The gathered data would inevitably experience
long latency and may be of little value when delivered to
the base station. We propose a comprehensive framework
that solves both data collection and recharge scheduling
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problems. The framework can be applied to many applica-
tion scenarios such as environmental monitoring, target sur-
veillance and disaster relief. A mobile vehicle can collect
and deliver data to the base station in such infrastructure-
less ad hoc networks. At the same time, mobility enables
charging vehicles to move around to replenish sensor
nodes’ energy around the network.

To eliminate the entanglement between recharging and
latency, we employ a separate, dedicated data gathering vehi-
cle. Thus the data latency only depends on the mobility pat-
tern (e.g., dispatching frequency, number of stops, speed) of
this vehicle. This avoids long latency caused by slow
recharging processes [15]. To prevent stopping at every
node thus prolonging the tour length and latency, we let
nodes form clusters and forward data to cluster heads. Thus
only stops at these cluster heads are needed. A series of
interesting questions arise in this new scheme. First, what
should be the appropriate cluster size such that all nodes
are covered while there are not too many clusters causing
long latency? Second, what is the minimum number of
charging vehicles to cover all the nodes given a bounded
cluster size? To answer these questions, we establish a
mathematical model for the energy neutral condition to
characterize the trade-off between data collection latency
and the number of charging vehicles, both related to the
cluster size. A small cluster size leads to more stops, thus
higher latency. In the extreme case of single-hop clusters,
the vehicle has to traverse through every other node to
obtain all the data. A large cluster size reduces latency, but
incurs more relaying traffic and more energy consumption.
Our model successfully quantifies such trade-offs.

Next, we consider charging vehicles’ limited battery
capacity and their moving energy consumptions in recharge
scheduling. We maximize recharge profit (i.e., the recharged
energy less the traveling cost), while meeting nodes’ battery
deadlines and vehicles’ capacity constraints. These con-
straints bring us new challenges. On one hand, recharging
nearby nodes reduces a vehicle’s moving cost. On the other
hand, faraway nodes, not just nearby ones, need recharge
once in a while. We have to balance between the need to
recharge the whole network and the desire to minimize the
traveling cost. In particular, we need to answer the follow-
ing questions: How to schedule charging vehicles so they
will not waste energy traveling back and forth over long dis-
tances? Which nodes a charging vehicle should select to
ensure it has enough energy to return, and in what orders
so as to meet nodes’ battery deadlines? We formulate the
recharge scheduling problem into an optimization of Profit-
able Traveling Salesmen Problem with Capacity and Battery
Deadline Constraints, which was studied before but has only
computationally intensive solutions.

We propose two efficient algorithms. The first is a simple
Greedy Algorithm (GA) that maximizes a charging vehicle’s
profit at each step. However, it may lead to long traveling
distances. We further propose a three-step Adaptive Algo-
rithm (AA). After collecting recharge requests, it partitions
the network into several regions using the K-means algo-
rithm [36]. Each charging vehicle is assigned a region and
its movements are confined within the region, so long-dis-
tance travels are avoided. Then each charging vehicle works
independently to construct Capacitated Minimum Spanning

Trees in its designated region where edges in the tree have
the minimum traveling cost. This ensures that the charging
vehicle’s capacity is not exceeded so it can return to its start-
ing position. Finally, the algorithm performs route improve-
ments to meet nodes’ battery deadlines. It categorizes nodes
according to their lifetimes. An initial route containing
nodes that do not need prioritized recharge is first con-
structed using Traveling Salesmen Problem algorithms.
Then it inserts nodes that need prioritized recharge into the
route while ensuring each insertion retains time feasibility
of the whole recharge sequence.

The contributions are summarized as follows. First, we
point out limitations in the existing works on important
issues of data latency, vehicle’s moving cost, recharge
capacity, and their impact on existing recharge scheduling
algorithms. We establish a mathematical model to quantify
the relationship between data latency and the number of
charging vehicles needed. We also present several theoreti-
cal results such as node lifetime and adaptive recharge
thresholds. Second, we formulate recharge optimization
into a Profitable Traveling Salesmen Problem with Capacity
and Battery Deadline constraints, and propose two algo-
rithms. The Adaptive Algorithm takes a systematic
approach to capture all constraints in the problem. Finally,
we conduct extensive simulations comparing the two pro-
posed algorithms. Although we are not able to prove
approximation bounds for the Adaptive Algorithm theoreti-
cally, simulations show that it is only 1.06 to the optimal
solutions and saves an additional 8 percent on vehicle’s
moving energy compared to the weighted-sum algorithm in
[12]. Moreover, when the number of charging vehicles is
sufficient, the Adaptive Algorithm can keep all the nodes
alive at all times. Compared to the Greedy Algorithm, the
Adaptive Algorithm can reduce nonfunctional nodes by 30-
50 percent while saving 10-20 percent energy on charging
vehicles. We validate our theoretical results and justify the
system cost, data latency of our framework compared to
other schemes. To the best of our knowledge, this is the first
work to explore recharge schedules when both charging
vehicles’ energy and dynamic sensor battery deadlines
are considered. This is also the first work that provides a
mathematical model to calculate the minimum number of
charging vehicles where detailed communication energy
consumption is considered.

The rest of the paper is organized as follows. Section 2
presents literature reviews of the previous works. Section 3
outlines the framework, network components and assump-
tions. Section 4 describes the main design of low latency
mobile data collection. A mathematical model with a set of
theoretical results are derived in Section 5. Section 6 formal-
izes the recharge optimization problem and proposes
two algorithms. Finally, Section 7 provides the evaluation
results, Section 8 discusses possible improvements and
Section 9 concludes the paper.

2 RELATED WORKS

2.1 Radiation-Based Wireless Charging

Applications of radiation-based wireless charging have
grown rapidly from infancy to maturity recently. Popular
commercial products from Powercast [2] can provide
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energy to nodes in a few meters. Extensive efforts applying
the technology to renovate traditional battery-powered
WSNs are sought in [4], [5], [6], [7], [8], [9]. In [4], impact
from wireless charging technology on WSNs is studied
based on Powercast device models; the sensor deployment
and routing problems are solved by new heuristic algo-
rithms. In [5], a greedy algorithmwith complexityOðk2k!Þ (k
is the number of nodes) was designed to find a recharge
sequence to maximize the lifetimes of sensor nodes using
Powercast chargers [2]. Although energy of mobile chargers
is considered in [5], no stepwas taken tominimize the travel-
ing energy of the chargers. In [6], a joint routing and wireless
charging scheme is proposed to improve network utilization
and prolong network lifetime. Similarly, in [7], deployment
problems of wireless chargers are studied to extend network
lifetime. Another problem of using sensors’ battery recharge
times for localization is studied in [8]. In [9], safety issues
using radiation-based wireless charging are studied. The
problem is formulated into a placement problem to guaran-
tee no location is exposed to electromagnetic radiation above
a threshold. In [10], a similar problem to optimize the
amount of “useful” energy under safety concerns is formu-
lated. In general, these works utilize commercial radiation-
basedwireless charging products to power sensor nodes.

However, a limitation of this technique is imposed by
Federal Communication Commission’s (FCC) regulatory
maximum effective isotropic radiated power (EIRP) of 4 W
[19]. Omnidirectional emitting patterns may further exacer-
bate charging efficiencies as the electromagnetic energy
attenuates rapidly over distances. As a result, it can only sup-
port low-power, infrequent sensing applications such as
temperature reading and is unable to power nodes with
more complicated sensingmissions, e.g., imaging, video sur-
veillance, tracking, etc. For this reason, in the rest of this
paper, wemainly focus on resonant-basedwireless charging.

2.2 Resonant-Based Wireless Charging

In contrast to radiation-based technique, resonant-based
wireless charging can deliver high amounts of energy at
high efficiency [11], [12], [13], [14], [15], [16]. In [11], batter-
ies can be partially charged and various recharging schemes
to traverse the sensing field are explored. In [12], [13], a
real-time energy information gathering protocol is proposed
to obtain accurate energy status of the network. An on-line
algorithm is devised to schedule multiple vehicles to
recharge sensor nodes. In [14], a near-optimal solution that
dispatches one vehicle to recharge all sensor nodes is pro-
vided. However, data is collected by a static data sink,
which is less energy efficient. Upon realizing this problem,
Zhao et al. [15] use a single vehicle for both wireless charg-
ing and data collection to achieve higher efficiency. An algo-
rithm that selects recharging nodes is first proposed
followed by a system-wide optimization to maximize the
network utility. In [16], a similar approach uses a mobile
base station to process data immediately without latency. It
requires mobile base station to possess intensive computa-
tional capabilities for processing and dissemination of gath-
ered data. Designing such mobile entities would incur
much higher manufacturing cost. Although some previous
works accounted for charging vehicle’s battery energy [5],

their strategy is to simply direct the vehicle back to the
base station when it depletes energy. In other words, they
just passively react upon energy depletion; they do not pro-
actively optimize the recharge schedule under limited
energy resources. In contrast, we take a vehicle’s recharge
capacity and moving cost into problem formulations, and
consciously optimize the recharge schedule such that the
limited resources are best utilized.

2.3 Mobile Data Gathering

How data is gathered determines energy efficiency and data
latency in the network. Mobile data gathering has been
studied extensively [20], [21]. In [20], path-planning algo-
rithms are proposed for mobile collectors to collect data
from sensors through single or multi-hop relays within a
time constraint. In [21], mobile relays are used for relaying
packets from energy-rich nodes to normal nodes, and a
joint mobility and routing algorithm is proposed to extend
network lifetime. For WRSN, previous works either uses
static data sink [14], [17], which is less energy efficient, or
combine data gathering and wireless charging on a single
vehicle [15], which incurs high latency. To achieve a bal-
ance, we employ a dedicated data gathering vehicle to over-
come these drawbacks.

Scheduling mobile data gathering vehicles is studied in
[22], [23]. In [22], several scheduling methods are proposed
to dispatch vehicles so that no buffer overflow could occur
on sensor nodes. In [23], the network is partitioned into dif-
ferent sectors based on nodes’ buffer overflow times. A 2D-
tree method further partitions using location information
within sectors. To guarantee no buffer overflow, the mini-
mum traveling speed of the vehicle is found. However,
such algorithms may not be applied to WRSN directly. First,
vehicles need to stop and recharge nodes, which takes sig-
nificantly longer time than data transmission. Thus vehicles
cannot perform data collection continuously as assumed in
these algorithms. Second, they do not consider vehicles’
traveling costs. Thus a node can be visited repeatedly in
short intervals, incurring extra energy consumption that
should be avoided.

3 PRELIMINARIES

In this section, we present an overview of the components,
network model and assumptions.

3.1 Network Components

Fig. 1 gives a pictorial illustration of the network. Sensory
data is generated at normal nodes and aggregated at anchor
points (i.e., cluster heads) in a multi-hop fashion. A data gath-
ering vehicle traverses the sensing field periodically and
stops at anchor points to collect data. It uploads the collected
data to the base station at the end of each data collection
tour. The base station also provides basic maintenance of
the network by offering battery replacement. It can be com-
manded by network administrators remotely to perform
computations such as network partitioning in the Adaptive
Algorithm proposed later.

Meanwhile, a fleet of charging vehicles query the network
for energy information using the mechanism introduced in
[12]. The charging vehicles send those queries periodically,
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make recharge decisions (i.e., which nodes to recharge, in
which order) and recharge nodes accordingly. Once a
charging vehicle fulfills all requests, it sends out a query to
see whether there is new energy request. Both types of
vehicles return to the base station and have their own bat-
teries replaced when their energy is low.

3.2 Network Model and Assumptions

We assume a number of Ns sensor nodes are uniformly ran-
domly scattered in a square sensing field with side length L.

Node density of the network is r ¼ Ns
L2 . In this paper, we

focus on event-driven sensing applications and assume
events occur at every location with equal probability, spa-
tially and temporally independent of each other. Thus, the
data generation process can be modeled as a Poisson pro-
cess with average rate � [26]. All sensors transmit at the
same power level with fixed transmission range dr. The
energy consumed for transmitting/receiving a packet of
length l, denoted by et; er, is modeled as in [27], i.e.,
et ¼ ðe1dar þ e0Þl, where e1 is the loss coefficient per bit, a is
the path loss exponent (usually from 2 to 4) and e0 is energy
consumed on sensing, coding, modulations. In this paper,

we use e0 ¼ 50� 10�8 J/bit, e1 ¼ 10� 10�8 J/bit, a ¼ 4.
The network is split into a number c clusters. A cluster is

formed in a way such that the maximum hop count from a
node to the anchor point (cluster head) is k. When a node falls
within k-hops of multiple anchor points, it will join the clus-
ter with the least number of hops. A data gathering vehicle
starts from the base station every Tc time period, stops at
anchor point location i for time ti to gather all sensed
data and returns to the base station after all anchor points
have been visited. The dispatch interval Tc is greater than
the duration of the data gathering tour. The data gathering
vehicle visits anchor point locations directly to minimize
transmission energy consumption on these nodes. The
transmission bit rate is B.

There are also m charging vehicles working together to
replenish sensor batteries. A number of nodes are selected
for a vehicle to form its recharge set. If a node cannot sur-
vive the time needed to recharge all the other nodes in the
set, it needs prioritized recharge (i.e., it should be charged ear-
lier in the recharge sequence). Charging vehicles bring sen-
sor batteries from zero to full capacity Cs in Tr time which is
governed by battery characteristics (e.g., for a Panasonic Ni-

MH AAA battery [24] of battery capacity Cs = 780 mAh
and Tr = 78 min.). All the vehicles are equipped with high-
capacity batteries of Ch capacity and consume at ec J/m
while moving at speed v m/s. In this paper, we have made
the following assumptions: 1) we assume the energy con-
sumption during transmission and reception of a packet is
equivalent (er � et); 2) the vehicles have positioning systems
and know their locations; 3) the locations of all the sensor
nodes are known to the vehicles (e.g., through a one-time
effort during network initialization). Finally, important
notations used in this paper are summarized in Table 1.

4 LOW LATENCY MOBILE DATA COLLECTION

IN WRSNS

We now study how to minimize data collection latency
given k-hop clusters. To minimize delay, it is desirable to
have the data gathering vehicle stop at fewer anchor points.
To ensure all data can be collected, the k-hop coverage areas
of these anchor points should collectively cover the entire
network. The delay mainly depends on three variables: sum
of stopping time at anchor points, traveling time through all
anchor points and data uploading time to the base station.

The stopping time at each anchor point depends on the
amount of data generated during two consecutive visits of
the data gathering vehicle. The traveling time depends on
the number of anchor points and vehicle’s speed. Hence, let
us first determine the number of anchor points that can
cover the entire sensing field in k hops. As studied in [3], a
k-hop cluster can be closely approximated by a circle with
radius r ¼ kdr with k coronas as shown in Fig. 2. Then, find-
ing the minimum number of anchor points is equivalent to
finding a complete coverage of the sensing field with mini-
mum number of circles of radius r. The problem is closely
related to the circle covering problem studied by Kershner
[25], which gives the minimum number of circles needed to
cover a rectangular region in the following lemma.

Lemma 1. The number of circles c to cover a sensing field with area

L2(L is the side length of the field) has the lower bound of ([25])

Fig. 1. Illustration of the network architecture and components.

TABLE 1
List of Notations

Notation Definition

Ns Number of sensor nodes
L Side length of squared sensing field
c Number of clusters in the network
k Cluster size in terms of communication hop

count
m Number of charging vehicles
dr Transmission range of sensor nodes
et; er Energy consumptions for transmitting and

receiving a packet
ec Energy consumption of charging vehicle

while moving
� Average packet rate of Poisson distributed traffic
Tc Data collection period
B Data uploading bit rate
Cs Battery capacity of sensor nodes
Ch Battery capacity of charging vehicles
Tr Recharge time of sensor’s battery
v Moving speed of vehicles
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c >
2p

ffiffiffi
3
p ðL2 � 2pr2Þ

9pr2
: (1)

Although the exact placement pattern to achieve this
lower bound was not given in [25], it has been proved in
[20] that the maximum coverage is achieved when we tes-
sellate the sensing area with equilateral triangles of side
length

ffiffiffi
3
p

kdr and place the centers of circles at the vertices
of triangles. However, how to place these clusters in a
square sensing field considering the effects of boundaries
was not discussed in [20] so we introduce a placement pat-
tern first. For a square sensing field with the origin (0,0) at
the left bottom, we place I circles parallel to the x-axis and
J circles parallel to the y-axis, then the cartesian coordinates
of centers of circles at the ith row, jth column are

½Xij; Yij� ¼
½ ffiffiffi

3
p ðj� 1Þr; 32 ði� 1Þr�
i ¼ f2uþ 1;8u 2 Zg
½
ffiffi
3
p
2 rþ ffiffiffi

3
p ðj� 1Þr; 32 ði� 1Þr�

i ¼ f2u; 8u 2 Zg:

8>><
>>: (2)

After the deployment pattern has been determined, the
number of circles I to cover each row can be calculated as

I ¼
bL3
2r
c þ 1; L3

2r
� bL3

2r
c � 1

2

bL3
2r
c þ 2; otherwise.

8<
: (3)

The number of circles J to cover each column with an odd
index i ¼ f2uþ 1;8u 2 Zg is

J ¼ b Lffiffi
3
p

r
c þ 1; Lffiffi

3
p

r
� b Lffiffi

3
p

r
c � 1

2

b Lffiffi
3
p

r
c þ 2; otherwise.

(
(4)

The number of circles J to cover each column with an even
index i ¼ f2u; 8u 2 Zg is

J ¼ b Lffiffi
3
p

r
c; Lffiffi

3
p

r
� b Lffiffi

3
p

r
c ¼ 0

b Lffiffi
3
p

r
c þ 1; otherwise.

(
(5)

Fig. 2 shows an example of equilateral triangular tessella-
tion of 14 clusters covering a square sensing field with

k ¼ 3; L ¼ 3
ffiffiffi
3
p

r. Compared to the lower bound of c > 7:97
obtained from Eq. (1), an additional 6 clusters are needed to
cover the boundaries of the field. Given a field length L, the
number of clusters c (number of anchor points), coverage of
the entire sensing field can be obtained from Eqs. (3), (4)
and (5). Then we derive an upper bound of mobile data
gathering latency in the following lemma.

Lemma 2. The mobile data gathering latency is bounded by

Td � Tc þ ðc� 1ÞTs þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc� 3Þ

p
Lþ 4LÞ=v (6)

where Td is the data latency, Ts ¼ F�1� ð�Þrr2plTc=B, F�1� ðxÞ
is the inverse CDF of Poisson distribution with average rate �,
� is a value close to 1 but not equal to 1 (e.g. � ¼ 0:99), v is the
vehicle’s speed.

Proof. Fig. 3 shows a timing diagram of mobile data gath-
ering. tni is the stopping time at the ith anchor point
during the nth round of data gathering. We observe
that the maximum latency occurs when a packet
arrives at the first anchor point in the visiting
sequence after the data gathering vehicle has left.
Then the packet has to be buffered and wait for
another collection period after time Tc, plus sum of
stopping time at subsequent anchor points, traveling
time to the base station through the rest of anchor
points. The maximum stopping time Ts at an anchor
point occurs when each node generates at maximum

data rate F�1� ð�Þ. Note that � is a value very close to 1

but not equal to 1 (e.g., � ¼ 0:99) because F�1� ð1Þ ! 1.

For each cluster with a number of rr2p sensors,

Ts ¼ F�1� ð�Þrr2p=B. Therefore, the sum of stopping
time at subsequent anchor points is bounded by
ðc� 1ÞTs.

To traverse ðc� 1Þ nodes, a deterministic upper
bound on the shortest tour length was given in [39]. That
is, for n points in a rectangle with size a� b, the shortest

tour length s <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn� 2Þabp þ 2ðaþ bÞ. Here, a ¼ b ¼ L,

n ¼ c� 1, so the upper bound of traveling time is

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc� 3Þp

Lþ 4LÞ=v. By summing by this result with

maximum stopping time at subsequent anchor points
ðc� 1ÞTs and Tc, we have derived an upper bound of
mobile data gathering latency. tu

From Lemma 2, we can compare the data gathering
latency with the combined approach in [15] numerically.
For charging vehicles of battery capacity 12 Ah of 5 V
(Ch ¼ 216KJ), a recharge tour would take around
ChTr
Cs
¼ 32 hours to finish. This amounts to at least 32 hours

waiting time for the data to be delivered to the base sta-
tion till the vehicle returns to the base station for battery
replacement. For our approach, we set Ns ¼ 500, Tc ¼ 60
mins, r ¼ 45 m, c ¼ 14, L ¼ 160 m, B ¼ 250 Kbps, l ¼ 10
bytes, � ¼ 3 and after plug into Eq. (6), we have Td � 1:65
hours which is significantly less than the combined
approach about an order of magnitude. For further
improvement of latency, we can dispatch the data gather-
ing vehicle more frequently by using a small Tc. We will
use different Tc to see their average latencies and corre-
sponding upper bounds in the simulations.

Fig. 2. Example of equilateral triangular tessellation of clusters covering
a sensing field with hop count k ¼ 3.

Fig. 3. A timing diagram of two consecutive mobile data gathering tours.
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5 NUMBER OF CHARGING VEHICLES FOR k-HOP

WRSN

Having discussed k-hop cluster formation and data
latency in our framework, we now analyze the minimum
number of charging vehicles needed to fulfill all energy
requests given the number of clusters c obtained from
Eqs. (3), (4), (5).

5.1 Number of Charging Vehicles

In an earlier work [12], we have proposed the energy neu-
tral condition that must hold in a long time period for the
perpetual operation of the network,

EðT Þ � RðT Þ þ E0 (7)

in which T is a large time, EðT Þ is the total energy con-
sumption of the network up to T , RðT Þ is the total energy
replenished into the network by the charging vehicles up
to T and E0 is the initial energy of all the sensor nodes.
The energy neutral condition states that the energy con-
sumption of all the sensor nodes must be less than or
equal to the total energy available in long term. Other-
wise, sensor nodes would eventually deplete energy.
Note that for the network to function, it is not necessary
for the condition to hold at every single moment. In prac-
tice, a small fraction of the network may consume more
energy in a short time window due to external activities,
leading to temporary unbalance between energy con-
sumption and replenishment. As long as there are enough
charging vehicles, these nodes will be recharged, and
such unbalance is transient, not permanent.

Our objective is to obtain the minimum number of charg-
ing vehicles m needed for Eq. (7) to hold. First, we estimate
RðT Þ which is the amount of energy that can be replenished
into the network. The maximum recharge capacity of a
charging vehicle is achieved when it recharges sensor nodes
continuously without any idling time. The longest recharg-
ing time for a sensor occurs when a node’s energy is
brought from zero energy to full capacity which takes Tr

time plus the longest moving time between two consecutive
sensors in the recharge sequence (moving on the diagonal
of the square sensing field). Therefore, in the worst scenario,

it takes
ffiffiffi
2
p

L=vþ Tr time to recharge each sensor. Then we
can estimate the energy replenished into the network in T
time bym charging vehicles,

RðT Þ ¼ mCbTffiffiffi
2
p

L=vþ Tr

: (8)

Next, we need to derive EðT Þ on the left hand side of
Eq. (7) which is a random variable. Given the structure of
the cluster of radius r ¼ kdr, each corona carries traffic loads
from all outer coronas. The number of nodes in the ith

corona, is Ni ¼ ð2i� 1Þd2rpr for 0 < i � k. Since the out-
most kth corona only needs to send out its own data and
data is generated independently, the mean of energy con-
sumption at the kth corona mk in time period T is,

mk ¼ Ni�Tet ¼ ð2k� 1Þd2rpr�Tet: (9)

For the ith corona (0 < i < k), it carries all the traffic from
the outer coronas so the mean energy consumption is,

mi ¼ Ni�Tet þ
Xk
j¼iþ1

Nj�T ðet þ erÞ

¼ d2rpr�T
�ðk2 � i2Þðet þ erÞ þ ð2i� 1Þet

�
:

(10)

Then we can compute the mean of network energy con-
sumptions EðT Þ,

EðT Þ ¼
�Xk�1

i¼1

�ðk2 � i2Þðet þ erÞ þ ð2i� 1Þet
�

þ ð2k� 1Þet þ k2ðet þ erÞ
�
d2rpr�Tc

¼ 2

3
k3 � 1

2
k2 � 1

6
k

� �
ðet þ erÞ þ k2et

� �
d2rpr�Tc:

(11)

Based on the energy neutral condition, by combiningRðT Þ in
Eq. (8) andEðT Þ in Eq. (11), we have the following lemma.

Lemma 3. The probability for the energy neutral condition to
hold is

Pop ¼ F
RðT Þ þ E0 � EðT Þffiffiffiffiffiffiffiffiffiffiffi

EðT Þ
q

0
B@

1
CA; (12)

where RðT Þ and EðT Þ are obtained in Eq. (8) and Eq. (11),
respectively. Fð�Þ denotes the Cumulative Distribution Func-
tion of the Normal distribution.

Proof. Energy consumption of a cluster can be described by
the sum of independent Poisson variables over T . When
T is observed over a long time period, we can use the
Central Limit Theorem to approximate Poisson distribu-

tion by a Normal distribution NðEðT Þ; EðT ÞÞ(the mean
and variance of a Poisson distribution is the same) [29]. tu
From Lemma 3, we immediately get the following

Proposition.

Proposition 1. The minimum number of charging vehicles
required to achieve perpetual operation is

m ¼
ðF�1ð�Þ

ffiffiffiffiffiffiffiffiffiffiffi
EðT Þ

q
þ EðT Þ � E0Þð

ffiffiffi
2
p

L=vþ TrÞ
CsT

2
666

3
777; (13)

whereF�1ð�Þ is the inverse cumulative distribution function of
Normal distribution, � is a value very close to 1 but not equal
to 1.

Proof. Since F�1ð1Þ ! 1, we consider the network
achieves perpetual operation with very high probability

approaches 1 but not equal to 1, e.g., � ¼ 0:99;F�1

ð0:99Þ � 2:33. From Eq. (12), we have

mCbTffiffi
2
p

L=vþTr þ E0 � EðT Þffiffiffiffiffiffiffiffiffiffiffi
EðT Þ

q 	 2:33;
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after some manipulations we can obtain the minimum
number of charging vehicles m needed to satisfy the
energy neutral condition. tu
Based on the results from Proposition 1 and Lemma 2, we

demonstrate the trade-off between number of charging
vehicles and data latency. For L ¼ 400 m, we change the
number of cluster hop count k and plot the corresponding
number of vehicles needed as well as upper bound of data
latency in Fig. 4. We can see a trade-off point around k ¼ 3.
It means when k ¼ 3, we can minimize the number of charg-
ing vehicles without sacrificing too much from the data col-
lection latency.

5.2 Estimate Node Lifetime

To devise effective recharging schedules, we need to know
how long a sensor node can survive after it has requested
for recharge. Such information is vital in making recharge
decisions in the next section. Since a node’s energy con-
sumption rate is a random variable and depends on traffic
patterns, it is important for each node to know its traffic
burden which is determined by the number of hops from
base station. This information can be obtained by message
propagation from the base station in various routing proto-
cols and adjusted accordingly during operation.

From Eqs. (9) and (10), we know the average traffic rate
of a node in the jth corona (1 � j � k) is, �j ¼ �ð1þ ðk2�
j2Þ=ð2j� 1ÞÞ. Given residual energy Er, the maximum num-

ber of packets the node can transmit is n ¼ b Er
ðetþerÞc.

Lemma 4. Given a recharge sequence of N nodes in which a node
at the jth corona waiting to be recharged, it will survive time t
with probability (lifetime Lj > t),

P ðLj > tÞ ¼ 1� gðN;�jtÞ
GðNÞ ; (14)

where gð�; �Þ and Gð�Þ are the lower incomplete gamma function
and complete gamma function[29], respectively.

Proof. Since sensor nodes are randomly deployed in the
field, and the data generation process is independent of
each other, the summation of packet interarrival times
until the sensor node can no longer transmit packets is
the lifetime of the sensor node. Because data generation
is Poisson distributed with rate �j, the interarrival time

of packets is exponentially distributed. It is known that
the sum of independently identically distributed expo-
nential variables results a Gamma distribution with proba-
bility density function

fLj
ðxÞ ¼ �je

��jx ð�jxÞN�1
ðN � 1Þ! ; x 	 0; (15)

and the Cumulative Distribution Function of Gamma
distribution is

P ðx < tÞ ¼
Z t

0

�je
��jx ð�jxÞN�1
ðN � 1Þ! dx ¼

gðN; �jtÞ
GðNÞ : (16)

tu
Proposition 2. For the recharge sequence of N nodes, if a node at

the jth corona has probability
gðN;�jTlÞ

GðNÞ � 0, Tl ¼ ðN � 1ÞðTrþffiffiffi
2
p

L=vÞ, no matter where the node is placed in the recharge
sequence, it will not deplete battery energy before its recharg-
ing starts.

Proof. The worst case occurs when the node is placed at
the end of the recharge sequence. The longest waiting
time to get recharged is Tl ¼ NTr þ ðN � 1Þ ffiffiffi

2
p

L=v

since there areN � 1 nodes ahead with
ffiffiffi
2
p

L=vmaximum

traveling time between two sensor nodes and
ffiffiffi
2
p

L is

the diagonal of the square field. Once
gðN;�jTlÞ

GðNÞ � 0,

P ðLj > TlÞ approaches probability 1 so it is guaranteed
to recharge the node before it depletes battery energy. tu
Based on Proposition 2, given a recharge sequence, we can

calculate the possibility that a node can survive the entire
recharging process. This lays the theoretical foundations to
solve the recharge scheduling problem in the next section.

5.3 Adaptive Recharge Threshold

We observe that the difference of energy consumptions
between nodes at different locations is mainly caused by
data communications. Although the hop count for clusters k
should not be too large to avoid the energy hole problem on
anchor points, it is inevitable to have higher data traffic in
the inner coronas. If all the nodes follows a universally
same recharge threshold, it may result some nodes close to
the anchor point nodes to deplete energy very soon and
lead to unfair service for nodes with higher consumption
rates. To this end, the recharge thresholds should be made
adaptive and proportional to energy consumption rates at
different coronas. In other words, nodes closer to the anchor
points should request recharge more frequently than others.

Let tið0 < tj < 1Þ denote the recharge thresholds for
nodes at the jth corona. We make the ratio between the
recharge thresholds of corona i and j equal to that between
their energy consumptions due to data transmission.
Assume we have set the recharge threshold of the first
corona to be t1. The thresholds for other coronas are,

ti ¼ ðk
2 � i2Þðet þ erÞ þ etð2i� 1Þ
ðk2 � 1Þðet þ erÞ þ et

t1 � 2k2 � ði� 1Þ2 � i2

2k2 � 1
;

(17)

Fig. 4. Trade-off between number of charging vehicles and data collec-
tion latency.
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where 0 < i < k. The approximation is taken under the
assumption that et � er. To illustrate Eq. (17), e.g., k ¼ 5,

after t1 is set, we obtain t2 ¼ 45
49 t1, t3 ¼ 37

49 t1, t4 ¼ 25
49 t1 and

t5 ¼ 9
49 t1.

6 CAPACITATED MULTI-VEHICLE RECHARGE

PROBLEM WITH BATTERY DEADLINES

During operation, the charging vehicles query sensors for
recharge and they usually engage in multiple recharge tasks
at different locations. In this section, we study a Capacitated
Multi-Vehicle Recharge Problem with Battery Deadlines
(CaMP-BaD) and consider practical constraints from real
sensing applications. The first challenge is the constant
changes (i.e., decrease) of charging vehicles’ energy due to
moving and recharging sensor nodes. The recharge route
should be planned carefully to reflect charging vehicles’s
current energy status and traveling costs to nodes’ locations.
The second challenge is the nonuniform energy consump-
tion due to data transmissions. Some nodes consume energy
at higher rates and should be taken care of more frequently
than others to maintain the functionality of the network. The
recharge routes should reflect all aforementioned concerns.
The difficulty of the problem lies in achieving conflicting
goals—the need to keep the whole network running pushes
the charging vehicles to recharge as many sensor nodes as
possible while the desire to reduce cost means that charging
vehicles should minimize traveling distances to save energy
cost. Therefore, an ideal solution should achieve a good bal-
ance between the twowithout sacrificing either.

Next we show the recharge problem can be formulated
into a Profitable Traveling Salesmen Problem with Capacity and
Battery Deadline constraints (PTSP). In the Profitable Travel-
ing Salesmen Problem [30], a reward is collected by visiting
a city while the objective is to maximize the profit which is
defined as the reward minus cost. In our problem, the
reward represents the amount of energy that can be replen-
ished into a sensor node and the cost measures the energy
cost in traveling to that node’s location.

To tackle the problem, we first present a straightforward
Greedy Algorithm. After realizing that the greedy algorithm
might incur extra movements of charging vehicles, we fur-
ther propose a three-step Adaptive Algorithm through 1)
adaptive network partition using K-means algorithm, 2)
Capacitated Minimum Spanning Tree (CMST) formation
and 3) route improvements using node insertions. By parti-
tioning the network, the charging vehicles are confined in
their own regions so traveling back and forth through the
entire field is avoided. Then we form CMST for each charg-
ing vehicle. The trees indicate which subset of sensor nodes
the charging vehicle should select to minimize traveling
cost and ensure the total weight of the tree is within the
charging vehicle’s recharge capacity. After that, we perform
route improvements on nodes in CMST to capture sensor
nodes’ dynamic battery deadlines. Finally, we analyze the
complexity of the proposed algorithms.

6.1 Problem Formulation

The recharge optimization problem can be defined as fol-
lows. Given a set of charging vehicles S ¼ f1; 2; . . . ;mg and

a set of recharge node list N ¼ f1; 2; . . . ; ng, we formulate
the CaMP-BaD problem into a PTSP problem. Consider a
graph G ¼ ðV;EÞ, where Vi (i 2 N ) is the location of sensor
node i to be visited, and E is the set of edges. We add a ver-
tex V a

0 as the starting position of vehicle a. Each edge Eij is
associated with a traveling energy cost cij, which is propor-
tional to the distance between nodes i and j, ca0i represents
the cost from initial position V a

0 of vehicle a to node i. A
charging vehicle a has recharge capacity Ca (� Ch) that
determines the maximum number of nodes it can recharge
before it goes back to the base station for its own battery
replacement. Different charging vehicles might have differ-
ent recharge capacities during the run. Each sensor node i
has lifetime Li and demand (reward) for energy recharge ri
(demand equals the total battery capacity of a sensor node
minus its residual energy). Ai specifies the arrival time for a
vehicle at sensor node i.

We introduce two decision variables xa
ij for edge Eij and

yia for vertex Vi. The decision variable xa
ij is 1 if an edge is

visited by vehicle a, otherwise it is 0. The decision variable
yia is 1 if and only if node i is served by vehicle a, otherwise
it is 0. ui is the position of vertex i in the path. Our objective
is to maximize the total amount of energy recharged minus
total traveling energy cost of the charging vehicles while
ensuring the recharge capacities of charging vehicles are not
exceeded and no sensor node depletes battery energy

P1 : max
Xm
a¼1

Xn
i¼1

riyia �
Xm
a¼1

Xn
i¼1

Xn
j¼1

cijx
a
ij �

Xm
a¼1

Xn
i¼1

ca0ix
a
0i

( )
:

(18)

Subject toXn
j¼1

xa0j ¼ 1; a 2 S (19)

Xn
i¼1

xik ¼
Xn
j¼1

xkj ¼ 1; k 2 N (20)

Xn
i¼1

riyia þ
Xn
i¼1

Xn
j¼1

cijx
a
ij þ

Xn
i¼1

ca0ix
a
0i � Ca; a 2 S (21)

Xm
a¼1

yia ¼ 1; i 2 N (22)

Ai � Li; i 2 N (23)

xa
ij 2 f0; 1g; i; j 2 N ; a 2 S (24)

yia 2 f0; 1g; i 2 N ; a 2 S (25)

1 � ui � nr; i 2 N (26)

ui � uj þ ðnr �mÞxij � nr �m� 1; i; j 2 N ; i 6¼ j: (27)

In the above formulation, constraint (19) states that the
recharge tour for each charging vehicle starts at initial posi-
tion 0. Constraint (20) ensures the connectivity of the path
and every vertex is visited at most once. Constraints (21)
and (22) guarantee the vehicle’s capacity is not violated and
each vertex is visited by only one charging vehicle. Con-
straint (23) guarantees the arrival time of the charging vehi-
cle is within each sensor’s residual lifetime. Constraints (24)
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and (25) impose xij and yia to be 0-1 valued. Constraints (26)
and (27) eliminate the subtour in the planned route, which
is formulated according to [31]. The classic TSP with Profits
can be considered as a special case of CaMP-BaD with
unlimited capacity and unspecified deadlines. Since TSP
with Profits is well known to be NP-hard [30], CaMP-BaD is
also NP-hard.

A direct solution to the CaMP-BaD is difficult to obtain
and rare in existing literature. Hence, we review some liter-
ature that has partially solved the problem. In [32], a survey
of different approaches to TSP with profits is presented.
Lagrangian decomposition method and approximated algo-
rithms developed based on existing solutions can provide
solutions very close to optimality. However, adding capac-
ity (Eq. (21)) and time (Eq. (23)) constraints makes the prob-
lem more complicated. A great deal of research efforts on
these two constraints are devoted in the context of Vehicle
Routing Problem, in which a number of vehicles start from
a depot to visit client locations and the objective is to mini-
mize the total traveling cost of the vehicles. In [35], the
Capacitated Vehicle Routing Problem where each vehicle
has a fixed capacity is considered. Time constraints are
studied in Vehicle Routing Problem with Time Windows
[33]. A local search algorithm is proposed in [33] based on
the k-exchange concept, and reduction of the computation
for checking feasibility constraint is also studied. A theoreti-
cal approach to obtaining 3logn-approximation algorithm is
sought in [34] (n is the number of nodes). However, subrou-
tines from existing solutions visit the node with the smallest
deadline last, which contradicts to our problem where such
nodes should be serviced earlier.

Due to the nature of our problem, it is not realistic to use
standard optimization techniques [32], [35] because these
methods deal with datasets of static inputs and the optimi-
zation is usually done offline through a one-time effort. In
contrast, energy consumption in our framework is probabi-
listic in nature. A charging vehicle’s recharge capacity
declines after recharging sensor nodes, so the input to our
problem is more dynamic than that most existing solutions
have considered. Furthermore, existing algorithms require
high computation power that may not be available on
charging vehicles. Therefore, we need to design algorithms
suitable to our problem context. Next, we present two such
algorithms.

6.2 Greedy Algorithm

The simplest approach is a greedy algorithm which selects
the node with the maximal recharge profit (i.e., recharge
reward less traveling cost) for each node selection. After a
charging vehicle finishes recharging a node, it picks the
next available node with the maximal profit. When the
charging vehicle’s energy falls below a threshold x, it
returns to the base station for battery replacement and then
resumes recharge in the same fashion.

Despite of its simplicity, GA may have some problems in
practice. The first problem is that the charging vehicle might
move back and forth over long distances, thereby increasing
the traveling energy cost. This happens when the node with
the maximum profit lies faraway, and the energy efficiency
of charging vehicles can deteriorate. Second, because the

only consideration is profit, it may not fulfill a recharge
request in a fixed time. These observations offer us room
for further improvements. To prevent charging vehicles
from traveling long distances, we can confine the scope of
movements by partitioning the network into several regions
adaptively and assigning each charging vehicle to one of
the regions. Second, a more sophisticated scheduling
method should be developed to capture charging vehicles’
capacity as well as sensors’ battery deadline constraints. In
the next subsection, we will introduce an Adaptive Algo-
rithm to address the limitations in GA.

6.3 Recharge by Adaptive Algorithm

6.3.1 Adaptive Network Partitioning

In the first step, the base station requests sensor nodes for
energy information periodically using the method in [12].
Then it adaptively partitions the network into m regions
according to the originating locations of requests. The result
of partitions is disseminated to the charging vehicles using
long range radio. We utilize the well-known K-means algo-
rithm to perform the partition [36]. Using the K-means algo-
rithm would allow the charging vehicles to adaptively
select a subset of nodes with their square sum of distance
minimized regarding to the centroid of each region so the
charging vehicle would only move in a confined scope, and
most likely with less distances. For each region, our objec-
tive is to minimize the intra-region square sum of inter-
node distance

S ¼
Xm
j¼1

Xnr
i¼1
knðjÞi � mðjÞk2 (28)

in which knðjÞi � mðjÞk2 is the square distance between a

recharge node ni of region j to the region’s centroid mðjÞ

(computed by taking the mean of x; y coordinates of all the
nodes in the region). Now we briefly explain the partition-
ing process.

Initially, we select a number of m sensor nodes with the
minimum lifetime from N to be the centroid of regions. We
assign each node to the closest centroid. After all the nodes
have been associated with a centroid, we re-calculate cen-
troid positions taking the average value of x and y coordi-
nates of nodes in the region. This process is repeated until
the centroids no longer change. After the partition, the cen-
troid of each region represents a virtual position that has
the minimal sum of distances to all the nodes in its region.
This position can be used as the starting position for the
charging vehicle to recharge nodes in its region.

6.3.2 Generating Capacitated Minimum Spanning Tree

In the first step, m regions are generated and each charging
vehicle only needs to take care of the nodes in its region. To
decide the route to recharge sensor nodes, we need to
ensure each charging vehicle’s recharge capacity is not
exceeded (Eq. (21)). At the same time, we also want to mini-
mize the traveling energy cost for the charging vehicle.
These requirements lead to finding Capacitated Minimum
Spanning Tree (CMST)[37] where the total sum of demands
from nodes does not exceed the charging vehicle’s capacity
and the minimum traveling energy cost can be found by

WANG ETAL.: A MOBILE DATAGATHERING FRAMEWORK FORWIRELESS RECHARGEABLE SENSOR NETWORKS WITH VEHICLE MOVEMENT... 2419



constructing the minimum spanning tree. In this way, we
can ensure sensor nodes close to each other are placed in
the same tree and later covered by the same recharge route.

The exact solution to CMST requires us to go over all
possible tree setups and pick the one with the lowest cost,
which involves exponential computation. Fortunately, an
efficient algorithm by Esau-Williams (EW) can find a subop-
timal solution very close to the exact solution in polynomial
time [37]. The EW algorithm merges any two subtrees when
there is a “saving” in the total cost of two trees.

Nevertheless, there are some limitations of the original
EW algorithm when applied for our problem. First, when
determining whether two subtrees can be merged, only the
demands from sensor nodes are counted whereas the travel-
ing costs on edges are not considered. Second, multiple such
trees can be generated. How does the charging vehicle
decide which tree to pick? To overcome these limitations, we
extend the original EW algorithm. As mentioned earlier, a
deterministic upper bound on the shortest tour length is
developed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn� 2Þabp þ 2ðaþ bÞ for a rectangle of side

length a, b and n nodes. For the square sensing field with L
side length and subtree of nb nodes, we have a loose upper

bound on the traveling cost, ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnb � 2Þp þ 2ÞLec. Second,

whenmultiple trees are generated, we select a tree that maxi-
mizes the ratio of total energy demand to traveling cost. In
this way, we can exploit limited resources on charging
vehicles better and improve energy efficiency of the network.

Next, we explain our extension to the EW algorithm in
detail. Each charging vehicle computes CMST indepen-
dently by iteratively updating a distance matrix. The dis-
tance matrix facilitates the computation process by
maintaining costs of tree nodes. Let us denote recharge set

N a with na nodes for charging vehicle a (
S m

a¼1N a ¼ N r).

We define trade-off function ti for each node in its recharge

set N a, ti ¼ minðcðaÞij Þ � c
ðaÞ
0i and j 2 Pi, where Pi is the neigh-

boring set of node i, minðcðaÞij Þ finds the minimum cost from

node i to its neighbor j in Pi and c
ðaÞ
0i is the cost from node i

to charging vehicle’s starting position (i.e., the root).1 The
trade-off function evaluates whether it is beneficial to merge
subtrees of nodes i and j. A positive ti indicates that it
incurs smaller cost for the charging vehicle to directly travel
from the root to node i so merging subtrees of nodes i and j
is not preferred. A negative ti indicates how much it can be
saved by connecting subtrees of i and j. Thus the most nega-
tive ti results in the most savings in an iteration.

After ti has been computed, we search through all trade-
offs tið8i ¼ 1; . . . ; na), looking for the minimum trade-off
(i.e., the most negative value). Assume tk is the most nega-
tive trade-off and j is k’s minimum cost neighbor. To cap-
ture charging vehicle’s capacity constraint in Eq. (21), if the
sum of total demands from the subtrees of k and j plus
upper bound of their traveling cost is less than the recharge
capacity (which means we can cover the subtrees of k and j
under the current recharge capacity), we merge the subtrees
of k and j. Since the action of merging k and j has resulted
in a lower total traveling cost to k, direct traveling from the

root to reach k has higher cost and should be avoid. So we

remove the edge from node k to the root by setting c
ðaÞ
0k in

the distance matrix to1.
At this point, two subtrees satisfying the recharge capacity

with minimum sum of cost have been merged, and we need
to update the minimum cost of the newly merged tree to the
root. It is done by updating the minimum cost in the distance
matrix from the tree to the root by setting the value to

minðcðaÞ0i Þ, where i is the node in the newlymerged tree.
On the other hand, if merging subtrees of k and j violates

charging vehicle’s recharge capacity, we need to restrict any
further actions to merge j to k because these two trees can-
not be covered by the charging vehicle in a single run. Then
we recompute the trade-off function tk to search for the next
neighboring node that results in minimum trade-off until
the next valid neighboring node j is found and merged to
the existing trees. The iteration continues until all the trade-
offs become nonnegative, in other words, no more saving
can be made.

After the CMST has been generated, the charging vehicle
selects a tree with the maximal ratio of recharge demand to
sum of tree’s edge cost and utilizes the route improvement
algorithm to form the final recharge sequence among the
tree nodes. After the charging vehicle finishes recharging
nodes in a tree, it checks whether its energy falls below a
threshold. If so, it returns to the base station for battery
replacement. Table 2 shows the pseudo-code of our
extended EW algorithm.

6.3.3 Insertion Algorithm for Route Improvement

After the CMST has been obtained, next we want to produce
a recharge sequence for nodes such that for each node the
charging vehicle arrives before its battery deadline. Let us
denote the result from CMST to be a recharge node set N ðaÞr

TABLE 2
Extended Esau-Williams Algorithm

input: recharging node setN r, distance matrix DðaÞ,
recharge capacity Ca, demand of nodes di, i 2 N a.
output: CMST nodes need to recharge.

Initialize tðaÞ < 0, weight of tree, CðaÞ ¼ 0.
while (tðaÞ < 0)
Find neighbormi of i results min cost,min

mi

DðaÞði;miÞ.
Compute trade-off value list t

ðaÞ
i ¼ DðaÞði;miÞ �DðaÞð1; iÞ.

Find k and j resulting most negative trade-off value,

k min
i
ðtðaÞÞ; j mk:

do
Add new nodesNnew  kþ j if not exist in current trees
ifweight of merging subtree of Nnew < Ca

Add Nnew to corresponding tree i
Update cumulative weight of corresponding tree i, C

ðaÞ
i .

Declare Nnew is accepted.
else
update DðaÞðk; jÞ  1
Search for next min cost neighbor for k,

mk  min
mk

DðaÞðk;mkÞ.
Recompute trade-off for k, t

ðaÞ
k ¼ DðaÞðk;mkÞ �DðaÞð1; kÞ.

Declare Nnew rejected.
until (Nnew is accepted) or (all t

ðaÞ
i 	 0)

end while
Select a tree results maximum energy efficiency.

1. In order to reduce intra-region traveling cost, we set the centroid
output from K-means algorithm to be the root.
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(N ðaÞr 
 N a). Recall that if the condition in Proposition 2 is
satisfied, a node can be placed anywhere in the recharge

sequence. We call such a set of nodes a feasible node set N ðaÞf .

Otherwise, a node may need prioritized treatment to meet
its battery deadline. We denote such a set of nodes as a pri-

oritized setN ðaÞp (N ðaÞf [ N ðaÞp ¼ N ðaÞr ).

Intuitively, we first use a Traveling Salesman Problem
algorithm (e.g., the Oðn2Þ nearest neighbor heuristic algo-
rithm [38], where n is the number of nodes) to find a feasible
solution as the initial sequence C for nodes in the feasible

set N ðaÞf . Then we insert nodes from the prioritized set N ðaÞp

into C while ensuring the battery deadline in Eq. (23) for all

nodes are still met. To this end, we sort the nodes in N ðaÞp in

a descending order of residual lifetimes and denote the
sorted sequence as V. We insert these nodes starting from
the first node V1. Let Ai denote the arrival time of the charg-
ing vehicle at the ith node in the shortest path C,

i ¼ f1; 2; . . . ; nðaÞf g.
To insert the jth node Vj from V into C, we first find

positionmt inC such that Amt � lVj
and Amtþ1 > lVj

where

lVj
is Vj’s lifetime. We call mt the temporary maximum posi-

tion to insert Vj. It indicates the maximum number of nodes
in C that can be served before node Vj depletes its battery.
To accommodate the remaining jVj � j nodes, we need to
find a position such that even all the remaining nodes are
inserted before Vj, Vj can still meet its battery deadline. We
find the maximum position m such that Am � Amt�Pnap

i¼jþ1 ti and Amþ1 > Amt �
Pnap

i¼jþ1 ti, where ti is the

recharge time of Vj. Now, the maximum position m repre-
sents the rightmost position Vj can be inserted if all remain-
ing nodes are later inserted before Vj.

For each of the m possible positions that Vj can be
inserted, a total traveling cost is computed and the one that

minimizes the traveling cost is selected as the final insertion
position for Vj. Then we obtain a new sequence C and
remove Vj from V. The iteration continues until we exhaust
V or an infeasible situation is encountered. Table 3 shows
the pseudo-code of the insertion algorithm.

We briefly illustrate how the insertion algorithm works
in Fig. 5. We consider two nodes V1, V2 with lifetime 104
and 90 mins that need to be inserted into a feasible recharge
sequence. We find the position k to insert V1 is between
node 6 and 7 since A6 < lV1

< A7. To ensure V1 can sur-

vive when V2 is later inserted before V1, k
0 can only be

between node 3 and 4 (since A3 < A6 � TV1
< A4). Then

we search all the four possible locations (before node 1, 2, 3,
4) and find that the position before node 3 minimizes the
traveling cost. Thus V1 is inserted between node 2 and 3.
We repeat the procedure for V2. Since it is the last node, we
can directly calculate the rightmost insertion position k0 and
find the minimum cost among possible inserting positions.

Remarks. Due to the randomness in sensors’ lifetimes, it
is very difficult to derive a theoretic performance bound of
the algorithm. However, we have conducted simulations in
Section 7.1 and find our algorithm has about 1.06 approxi-
mation ratio to the optimal solution.

6.4 Complexity Analysis

We now analyze the complexity of our algorithms. The com-
plexity of the greedy algorithm is OðnÞ because it only
selects the maximum profitable node at each step. For the
adaptive algorithm, the base station has abundant resources
and it performs the k-means algorithm. So we focus on the
computing burdens on charging vehicles for calculating
CMST and route improvements. In the worst case, there is
only one charging vehicle to recharge n nodes. For the
extended EW algorithm, finding the minimum trade-off

value requires n2 þ 2n iterations at the outer loop. In the
inner loop, the worst case is that for a node with the mini-
mum trade-off value, every minimum-cost neighbor is
rejected due to capacity violations. So n iterations are

required. In sum, its time complexity is Oðn3Þ.
For the route improvement algorithm, running a TSP

algorithm requires Oðn2Þ time. Sorting nodes’ lifetimes

requires Oðn log nÞ time. Then, insertion requires Oðn2Þ

TABLE 3
Insertion Algorithm

input: CMSTN ðaÞr , lifetime li and recharge time ti, i 2 N ðaÞr ,

distance matrixDðaÞ, feasible setN ðaÞf satisfying Proposition 2.
output: resultant recharge sequenceC.
Compute shortest path in the feasible set,C TSP(N ðaÞf )

Sort N ðaÞp in a descending order of lifetime as V
Initialize i 1, last step node position k 1.
while V 6¼ ;
Find temporary max positionmt inC such that
Amt � lVi

and Amtþ1 > lVi

Find the max insertion positionm such that

Am � Amt �
Pn

p
r

k¼iþ1 tk and Amþ1 > Amt �
Pn

p
r

k¼iþ1 tk.
if Cannot findm 	 0. break,return infeasible and report.end
if
Set minimum cost cmin  1:
for x from 0 tom
Insert node Vi intoC, get temporary sequenceCt

Calculate cost c PjCtj�1
j¼1 Daðj; jþ 1Þ:

if c < cmin,C Ct, cmin  c, k x. end if
end for
i iþ 1, update V V� i
end while
Return recharge sequenceC, minimum cost cmin.

Fig. 5. Illustration of insertion algorithm.
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time. Hence, the total time complexity of route improve-

ment algorithm is Oðn2Þ and the adaptive algorithm takes

Oðn3Þ time. Note that although the proposed algorithms are
centralized, they run on the charging vehicles that usually
have much higher computation and energy resources than
common sensor nodes. It is not difficult for them to handle
computations for large networks.

6.5 An Example of Algorithms

To illustrate operations of the algorithms, we show an
example in Figs. 6 and 7. A snapshot of 70 recharge requests
from sensors during the operation is presented in Fig. 6a
when three charging vehicles cooperate to recharge these
nodes. Fig. 6b demonstrates the recharge routes using the
Greedy Algorithm with a total distance of 3,272 m. We can
see the charging vehicles travel long distances to take care
of energy requests in the field, which matches our analysis
in Section 6.2. Fig. 7a shows an adaptive network partition-
ing of the recharge requests into three regions. Then the
charging vehicles compute the CMST in parallel fashion in
Fig. 7b. Note that two trees are generated for charging
vehicle 1 due to limited recharge capacity. The tree with
higher ratio between energy demands and sum of edge
costs is chosen first. The uncovered nodes will be recharged
in the next round after the charging vehicle has replenished
its own battery at the base station. Next, each charging vehi-
cle calculates an improved recharge route on the selected
tree shown in Fig. 7c. Charging vehicle 1 has to return to
base station for battery replacement before recharging
nodes on the second tree (edges shown as dashed line). In
contrast to the Greedy Algorithm, charging vehicles only
travel a distance of 993 m which suggests great potentials of
the Adaptive Algorithm to reduce system cost.

7 PERFORMANCE EVALUATIONS

We have developed a discrete event-driven simulator using
POSIX multi-thread programming in C language. In our
simulator, packet transmissions between nodes are modeled
by inter-thread communications and each vehicle also
calculates the recharge decisions by exchanging informa-
tion. To model WRSNs with high accuracy, the simulator
takes real parameters such as battery recharge times.

A number of N ¼ 500 sensor nodes are uniformly ran-
domly deployed over a square sensing field with side length
L ¼ 160 m. All sensors transmit at the same power level
with fixed transmission range dr ¼ 15m. The choice of max-
imum cluster hop-count k will have a direct impact on
energy consumption and data gathering latency. On one
hand, a large k would result in large intra-cluster energy
consumptions due to more traffic relays, especially on
anchor points which aggregate all the packets. This would
potentially increase the load on charging vehicles. On the
other hand, a small k will generate more clusters. To cover
all the nodes, the data collection tour would be elongated
and cause higher latency. Through trials we find that when
k ¼ 3, c � 5 clusters are needed to cover the entire field, and
the intra-cluster energy consumptions are not too large.
Thus we set k ¼ 3. Dijkstra’s shortest path algorithm is used
to route packets from sensors to their corresponding anchor
points at an average rate of � ¼ 3 pkt/min and 30 bits per
packet following a Poisson process. Each time slot is 1 min.
The bit rate is 250 Kbps. Since a higher initial energy takes
longer time for the network to achieve equilibrium, we set
all sensors to start from 50 percent battery initially to make
the network enter equilibrium faster. The charging vehicles
collect energy information every 12 hours and each time it
finishes fulfilling all the energy requests.

Sensor nodes have adaptive recharge thresholds regard-
ing their communication hop counts to anchor points
following Eq. (17). Given t1 ¼ 0:75, we can calculate
t2; t3 ¼ 0:57; 0:22, respectively. The battery’s recharge time
is modeled from [24]. We assume charging vehicles are elec-
tric-powered vehicles carrying computing, communication
modules and high density battery packs (e.g., 12 A, 5 V stan-
dard ones). The vehicle can weight tens of pounds and we
assume it is 20 lbs. Using the method in [28], we estimate
that a vehicle consumes energy at a rate of 5.59 J/m. To
evaluate how the number of charging vehicles affects sys-
tem performance as well as validate theoretical results in

Fig. 6. An example of the Greedy Algorithm: (a) a snapshot of recharge
request, (b) recharge routes from the Greedy Algorithm.

Fig. 7. An example of the Adaptive Algorithm: (a) adaptive network partitioning regarding recharge request, (b) establish CMST, (c) improve recharge
route.

2422 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 8, AUGUST 2016



Proposition 1, we vary the number of charging vehicles m
from 1 to 5 and set the simulation time to four months.

7.1 Evaluation of Algorithm and Energy
Consumption Model

We first evaluate the performance of the adaptive algorithm
by comparing with the optimal solution and weighted-sum
algorithm proposed in [12]. The weighted-sum algorithm
finds the shortest recharge sequence based on traveling
time and residual lifetime of sensor nodes through a
weighted parameter. It tries different weighted parameters
and chooses the best solution among all the trials. Both the
weighted-sum and adaptive algorithms aim to capture the
battery deadline constraints.

Due to the NP-hardness of our problem, it is very diffi-
cult to obtain optimal solutions using brute force for large
networks. To provide a baseline for comparison, we have
managed to obtain optimal solutions for networks up to 30
nodes by pruning solutions that lead to infeasibility or sub-
optimality. We set the residual energy of sensor nodes uni-
formly randomly distributed from zero to 20 percent and
compare different approaches that form recharge routes
through all the nodes. The simulation results are averaged
over 100 datasets. Fig. 8a shows the moving energy con-
sumption of charging vehicles. We can see that for a small
network size (1-5 nodes), the gaps between our adaptive
algorithm and the optimal solution is small. This is because
the number of different possible schedules is small. Our
algorithm may find the optimal schedule, or one very close.
What is interesting is that the ratio remains almost the same
as we increase the number of nodes. The maximum ratio of
1.10 appears when the number of nodes is 14. On average,
the ratio is 1.065 to the optimal solution, which offers a
good approximation. This shows our algorithm can still
find schedules very close to optimal even when the search
space has grown dramatically. For the weighted-sum algo-
rithm, the maximum ratio is 1.22 when we have 8 nodes,
and the average approximation ratio is 1.16. The results
indicate that the adaptive algorithm saves an additional 8
percent energy cost compared to the weighted-sum algo-
rithm. Besides, the selection of weight parameter in [12]
may not be easy in real applications. The adaptive algorithm
utilizes an existing solution from the TSP problem without
the complexity to examine various weight values.

We also evaluate the correctness and accuracy of the
energy consumption model shown in Fig. 8b. To examine
our model over different network field sizes, we first set

N ¼ 500, L ¼ 160m (node density r ¼ 0:019 nodes/m2) and

increase L from 160�400 m while keeping node density the
same. The theoretical results show the average energy con-
sumptions with variations along the curve. That is, if we
use the lower bound of Eq. (1) to calculate the number of
anchor points, we have a lower limit for the energy con-
sumption. On the other hand, if we count anchor points
according to actual layouts governed by Eqs. (3), (4) and (5),
an upper bound on energy consumption is derived (it
overestimates partial clusters on the boundaries). It is
observed that our energy consumption model can achieve
very high accuracy (falls within theoretical variations). For
L ¼ 160�280, the simulation results almost match our theo-
retical model and for L ¼ 320�400m, the simulation results
are within 15 percent of the average theoretical numbers.
The inaccuracies are due to an increasing number of clusters
on the field boundaries, which are not complete circles caus-
ing overestimates. Next, we will validate the entire theoreti-
cal model on the minimum number of charging vehicles.

7.2 Evaluation of Network Performance

In this subsection, we evaluate the performance of proposed
algorithms in terms of the number of nonfunctional nodes,
energy consumption versus replenishment, recharge fair-
ness, duration of nonfunctional nodes, data collection
latency and operating energy cost.

7.2.1 Nonfunctional Nodes

First, we examine the evolution of the number of nonfunc-
tional nodes.When a sensor node depletes its battery energy,
it becomes nonfunctional until recharged. Fig. 9 presents the
results of nonfunctional nodes by proposed algorithms.

For the Greedy algorithm (GA), whenm ¼ 1, the number
of nonfunctional nodes surges dramatically around 18 days
to over 80 percent until it slowly decreases and stabilizes
at 55 percent around 37 days. Similar phenomenons
are observed for m ¼ 2; 3. This is because the charging
vehicles favor nodes closer to the anchor points with more
recharge profits. Thus they do not serve nodes in the out-
most corona of clusters fast enough after their requests.
Charging vehicles only cover them when their batteries
nearly deplete. By then, their recharge capacity (m ¼ 2) is
temporarily exceeded, which causes the big spike. Although
m ¼ 1� 3 charging vehicles can gradually resolve most
nonfunctional nodes, it is observed that there is persistently
more than 50, 20 and 10 percent nonfunctional nodes for
m ¼ 1; 2; 3, respectively. In contrast, the Adaptive Algo-
rithm provides more stability. When m ¼ 2; 3, there is no
such huge spike. For m 	 3, nonfunctional nodes are within
10 percent at network equilibrium. This is because AA

Fig. 8. Evaluation of algorithms and validation of theoretical model: (a)
comparison of different algorithms, (b) validation of energy consumption
model.

Fig. 9. Evolution of nonfunctional nodes. (a) GA. (b) AA.
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captures the sensor battery deadlines. When m ¼ 5, AA can
reduce the nonfunctional nodes to zero.

We observe that m ¼ 5 is likely to be a threshold since
four charging vehicles still result in sporadic 5 percent non-
functional nodes. From Proposition 1, after plugging in the
experimental parameters, we obtain m ¼ d4:72e ¼ 5. Thus
m ¼ 4 can barely satisfy the energy neutral condition. This
calculation matches our observations in Fig. 9b, validating
the correctness of our theoretical results.

7.2.2 Energy Consumption versus Recharge

In this subsection, we demonstrate the evolution of energy
consumption vs. replenishment. Since GA and AA have
similar curve shapes, we illustrate the energy changes of
AA only. In Fig. 10a, we trace the evolution of consumed
and replenished energy when m ¼ 1; 4. For m ¼ 1, it is defi-
nitely not enough to sustain network operations. Thus
nodes continuously deplete battery and no longer consume
energy, which causes the drop in energy consumption at
the very beginning. Since the recharge capacity of one vehi-
cle puts an upper limit on the energy consumption, the two
curves reach an equilibrium and converge after 30 days. For
m ¼ 4, about four times the energy is replenished compared
to m ¼ 1, thus the large gap in between. We also observe
that when there is a drop in energy consumption, the energy
replenishment correspondingly jumps up, which represents
four vehicles acting in response to battery depletions.

To illustrate energy balance in the network, we also show
the cumulative energy evolution in Fig. 10b. For clarity and
better observing the gaps and intersections between curves,
we plot 40 days’ simulation time. If the energy replenish-
ment curve is above the consumption curve, more energy
has been refilled into the network than consumed, and vice
versa. For m ¼ 1, the energy consumption curve is above
the energy replenishment curve. A larger gap is observed at
the first 10 days, indicating energy replenishment can barely
keep up with consumptions. In contrast, with m ¼ 4, the
energy consumption curve stays above replenishment until
the two curves first cross each other around six days. This is
because from the very beginning, more energy is consumed
than replenished. Around six days, a few nodes have
depleted energy and stopped consuming more, which
brings down the consumption curve. The replenishment
curve stays above the consumption curve until the next
crossing around 20 days. Therefore, the evolution of net-
work energy also validates m ¼ 4 is a threshold case since
sporadic battery depletions are observed.

7.2.3 Recharge Fairness

Recharge fairness indicates whether charging vehicles
recharge nodes commensurate to their workloads. Those
having more workload (e.g., nodes near the base station)
should be recharged more frequently. This is reflected from
the functional time of sensor nodes. To quantify recharge
fairness, we leverage the fairness index from [40],

F ¼ ð
Pn

i¼1 xiÞ2
n
Pn

i¼1ðxiÞ2
; (29)

in which xi is a normalized indicator whether a node is
functional in a time slot. xi equals 1=Ns if i is functional in a
time slot, otherwise, it is zero. The fairness index F ranges
from 0 (worst case if all nodes are nonfunctional) to 1 (best
case if all the nodes are functional). In Fig. 11a, when nodes
in the outmost ring become nonfunctional, the fairness of
GA algorithm severely degrades as vehicles only recharge
nodes with maximum profits. We can see from Fig. 11b that
AA can distribute energy resources fairly among the nodes
especially whenm ¼ 4; 5 (F ¼ 1).

7.2.4 Nodes’ Nonfunctional Periods

Fig. 12 plots the percentage of nonfunctional durations of
nodes as a function of their locations. Using GA, nodes near
the anchor points have a maximum of 22.47 percent time in
nonfunctional states whereas AA is only 6.02 percent. Fur-
ther, AA spreads nonfunctional durations across the field
while the spikes of GA are highly concentrated around
anchor point locations. This is because nodes close to anchor
points consume energy faster and are more prone to become
nonfunctional. GA considers profit only and has no measure
for battery deadlines. In contrast, AA considers both profit
and battery deadlines. Therefore, the duration of nonfunc-
tional nodeswith AA is significantly less than that of GA.

Fig. 10. Energy consumption versus replenishment of AA. (a) Trace of
energy evolution. (b) Cumulative energy consumption versus replenish-
ment (40 days).

Fig. 11. Comparison of recharge fairness. (a) GA. (b) AA.

Fig. 12. Comparison of durations for nonfunctional nodes when m ¼ 4.
(a) GA. (b) AA.
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7.2.5 Data Collection Latency

Data collection latency mainly depends on two variables:
dispatching time interval Tc and availability of routing
paths. The former is a system parameter determining how
often to dispatch the data gathering vehicle; the later relies
on the number and locations of nonfunctional nodes. To
transmit packets to anchor points timely, all nodes should
be functional on a routing path. We assume shortest routing
paths by Dijsktra’s algorithm are used. If a node depletes
energy and there is no alternate route available, all pending
messages are buffered at senders until the path is restored.

To see the fluctuations of curves more clearly, we trace
the evolution of data collection latency for the first 40 days
in Fig. 13a. We vary Tc ¼ 15; 20; 30 mins, resulting in aver-
age packet latencies of 27, 30, 34 mins respectively. The
small spikes are caused by temporary unavailability of rout-
ing paths when packets are buffered for longer time. We
have also plotted corresponding data collection upper
bounds calculated in Lemma 2 and we observe that the
actual packet latencies are well within these bounds. It is
interesting to see when Tc ¼ 15 mins, the latency is 27 mins
whereas when Tc ¼ 30 mins, the latency only increases
slightly to 34 mins. This is because data transmission time
and vehicle’s moving time dominate when Tc ¼ 15 mins.
This indicates that sending out the data gathering vehicle
too frequently may not help reduce packet latency too
much compared to the extra operating costs incurred.

In addition, we have also compared packet latency
between different data collection schemes. A static data sink
is used in [14], [17] to gather all the packets and we denote
it as “Static”. A combination of data sink and wireless
charging on a single vehicle is proposed in [15] and we
denote it as “Combined”. Fig. 13a compares the average
packet latency when we increase the charging vehicles from
1 to 3. First, we can see both the static and our schemes have
about two orders of magnitude less latency than the com-
bined scheme. The large latency of the combined scheme is
caused by the inevitable gap between battery recharge time
and data transmission time. The delivery of gathered data
has to wait for at least 10 hours until the charging vehicle
returns to the base station for battery replacement. On the
contrary, our scheme employs a dedicated vehicle without
any waiting for recharge. Second, although the static
scheme is expected to yield less latency than our scheme
(when m ¼ 2; 3), it has a higher latency when m ¼ 1. Since
using a static sink results in more traffic relays, thus higher
energy consumption. When there are not enough charging

vehicles, nonfunctional nodes lead to unavailability of rout-
ing paths and longer latencies.

7.2.6 Operating Energy Cost

In this subsection, we evaluate the traveling energy cost of
charging vehicles. Fig. 14a compares the average traveling
cost per vehicle for GA and AA. When m ¼ 1� 3, more
energy cost is observed with AA. This is because the AA
takes care of nodes in the outmost corona preemptively
before they deplete energy, thus more energy is used in trav-
eling. With GA, charging vehicles travel to the outmost
corona only when recharge profits there are larger, but by
then those nodes nearly deplete energy and many become
nonfunctional. Although GA has lower traveling cost when
m ¼ 1�3, the network performance deteriorates greatly.
When m ¼ 4�5, we can partition the network into more
regions with smaller sizes so the movements of charging
vehicles can be confined in smaller regions. This brings down
the movement energy for charging vehicles. However, as GA
does not partition the network, long distance travels are inev-
itable. So AA incurs less energywithmore charging vehicles.

Fig. 14b shows the total system cost on vehicles for differ-
ent data collection schemes. For fair comparison, we set the
communication hop count k ¼ 3 in both our scheme and the
combined scheme in [15]. The main body of the bar charts
are energy used for recharging sensor nodes and the dark
portion on top represents the total moving energy cost on
vehicles. First, we can see the static scheme used in [17] con-
sumes most energy since multi-hop forwarding to the base
station requires more hops of traffic relays. Although intro-
ducing a dedicated data gathering vehicle increases the
moving cost, the total system cost is still 30 percent less than
the static scheme. This is because we have smaller clusters
and thus less energy for traffic relay on intermediate nodes.
The combined scheme seems to have the least system cost.
However, it has prohibitive network latency as illustrated
in Fig. 13b. Further, since the data collection hop count
k ¼ 3, it is possible that some nodes are not covered in simu-
lation time. So their packets have to be buffered until the
vehicle moves into multi-hop communication range. It low-
ers the energy consumption at the cost of dramatically exac-
erbating packet latency.

7.2.7 Trade-Off between Network Performance

and Expense

Finally, we evaluate the trade-off between network perfor-
mance and monetary costs of the charging vehicles. We

Fig. 13. Evaluation of data collection latency. (a) Latency using different
Tc versus upper bound. (b) Comparison of latency between different
data collection schemes.

Fig. 14. Evaluation of operating energy cost. (a) Comparing charging
vehicle’s moving cost between GA and AA. (b) Comparing total system
cost between different data collection schemes.
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assume one vehicle may not cost too much (e.g., $100) when
manufactured at large scale. Fig. 15 shows the average per-
centage of nonfunctional nodes versus the total costs of
vehicles. Initially there are one charging and one data collect-
ing vehicles, resulting in nearly 42 percent nonfunctional
nodes. Adding one more charging vehicle reduces this num-
ber to 12 percent. As we keep adding charging vehicles, the
marginal benefits decrease whereas the expense grows line-
arly. This shows that when the number of nonfunctional
nodes is already very small (e.g., below 10 percent), adding
more charging vehicles may not be cost-effective. Therefore,
considering such trade-offs, a good strategy is to select amin-
imum number of charging vehicles that can maintain very
low levels (e.g., around 5 percent) of nonfunctional nodes.

8 DISCUSSIONS

We discuss a couple interesting issues worth future study.
For large scale networks or nodes having different packet
delay requirements, multiple data gathering vehicles and
base stations might be needed. The first question is how to
dispatch and coordinate multiple data gathering vehicles
such that the packet latency deadlines of different clusters
are satisfied. The problem is analogous to the charging
problem in Section 6.3.3 since packet delivery latency is sim-
ilar to battery deadlines. However, a cluster might be visited
by multiple data gathering vehicles within a short time
period [22], [23]. Second, where to place multiple base sta-
tions so as to minimize the traveling distance of data gather-
ing vehicles through anchor points. This is a location-routing
problem which is NP-hard [41]. Considering these two prob-
lems in an integrated solution is even more difficult given
the dependency between them. We plan to study these
problems in the future.

9 CONCLUSIONS

In this paper, we consider several important factors over-
looked by previous WRSN studies, including the charging
vehicle’s energy consumption, capacity limits, energy effi-
ciency and data latency. We first propose a low latency
mobile data gathering scheme that can collect packets from
all nodes and provide theoretical results on latency. Then
we establish a mathematical model to calculate the mini-
mum number of charging vehicles needed, nodes’ lifetimes
and adaptive recharge thresholds. We formulate recharge
optimization problem into a Profitable Traveling Salesmen

Problem with Capacity and Battery Deadline constraints,
which is NP-hard. We propose two low complexity algo-
rithms. The greedy algorithm maximizes the recharge profit
in each step. A three-step adaptive algorithm systematically
captures the recharge capacity and nodes’ battery deadline
constraints while minimizing traveling costs. We evaluate
and compare the proposed algorithms by extensive simula-
tions. They show that the adaptive algorithm canprovide bet-
ter stability by reducing the number of nonfunctional nodes
and their nonfunctional duration lengths. We also validate
the theoretical results through simulations. The comparison
with other schemes show that the adaptive algorithm
achieves both low latency and high energy efficiency.
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