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Abstract—The lack of floor plans is a critical reason behind the current sporadic availability of indoor localization service. Service

providers have to go through effort-intensive and time-consuming business negotiations with building operators, or hire dedicated

personnel to gather such data. In this paper, we propose Jigsaw, a floor plan reconstruction system that leverages crowdsensed data

from mobile users. It extracts the position, size, and orientation information of individual landmark objects from images taken by users.

It also obtains the spatial relation between adjacent landmark objects from inertial sensor data, then computes the coordinates

and orientations of these objects on an initial floor plan. By combining user mobility traces and locations where images are taken, it

produces complete floor plans with hallway connectivity, room sizes, and shapes. It also identifies different types of connection

areas (e.g., escalators and stairs) between stories, and employs a refinement algorithm to correct detection errors. Our experiments on

three stories of two large shopping malls show that the 90-percentile errors of positions and orientations of landmark objects are about

1 � 2m and 5 � 9�, while the hallway connectivity and connection areas between stories are 100 percent correct.

Index Terms—Multi-story indoor floor plan reconstruction, mobile crowdsensing

Ç

1 INTRODUCTION

IN contrast to the almost ubiquitous coverage outdoors,
localization service is at best sporadic indoors. The indus-

try state-of-the-art, Google Indoor Maps [1], covers 10,000
locations worldwide, which is only a small fraction of mil-
lions of indoor environments (e.g., airports, train stations,
shopping malls, museums, and hospitals) on the Earth. One
major obstacle to ubiquitous coverage is the lack of indoor
floor plans. Service providers have to conduct effort-inten-
sive and time-consuming business negotiations with build-
ing owners or operators to collect the floor plans, or wait for
them to voluntarily upload such data. Neither is conducive
to large-scale coverage in short time.

In this paper, we propose Jigsaw[2], which leverages
crowdsensed data from mobile users to construct the floor
plans of complex indoor environments. It avoids the inten-
sive effort and time overhead in the business negotiation
process for service providers. They do not need to talk to
building owners/operators one by one, or hire dedicated
personnel to measure indoor environments inch by inch.
Jigsaw opens up the possibility of fast and scalable floor
plan reconstruction. The concept of mobile crowdsensing [3]
has become increasingly popular. Recent work has used

crowdsensed data to localize users [4] and reduce the cali-
bration efforts of WiFi signatures [5], [6]. Among others [7],
[8], [9], [10], CrowdInside [11] pioneers the efforts of con-
structing hallway/room shape and connectivity of floor
plans. It uses inertial data to build and combine user mobil-
ity traces to derive the approximate shape of accessible
areas of floor plans.

Nevertheless, there exists much space for improvements.
Inertial data do not give the accurate coordinates and orien-
tations of indoor places of interests (POIs, such as store
entrances in shopping malls, henceforth called landmarks),
which are critical to guide users. Due to error accumulation
in dead reckoning, “anchor points” (e.g., entrances/exits of
elevators/escalators/stairs and locations with GPS recep-
tion) with unique sensing data signatures are needed to cor-
rect the drift in mobile traces. But in many large indoor
environments, such anchor points can be too sparse to pro-
vide sufficient correction. Therefore, both over- and under-
estimation of accessible areas can easily happen, e.g., when
a trace drifts into walls, or there exist corners users seldom
walk into.

Jigsaw combines computer vision and mobile techniques,
and uses optimization and probabilistic formulations to
build relatively complete and accurate floor plans. We use
computer vision techniques to extract geometric features
(e.g., widths of store entrances, lengths and orientations of
adjoining walls) of individual landmarks from images. We
then design several types of data-gathering micro-tasks, each
a series of actions that users can take to collect data specifi-
cally useful for building floor plans. We derive the relative
spatial relationship between adjacent landmarks from iner-
tial data of some types of micro-tasks, and compute the opti-
mal coordinates and orientations of landmarks on a common
floor plane. Then user mobility traces from another type of
micro-task are used to obtain the hallway connectivity,
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orientation and room shapes/sizes, using combinatorial
optimization and probabilistic occupancy techniques. After
reconstruction of each single-story floor plan, inertial data
and WiFi/cellular signatures and images are also used to
detect different types of connection areas between stories
(e.g., stairs, escalators and elevators) to finally produce a
multi-story floor plan.

Jigsaw design is based on the realization that computer
vision and mobile techniques have complementary
strengths. Vision ones can produce accurate geometric infor-
mation when the area has stable and distinct visual features.
They are suitable for landmarks where logos, decorations
constitute rich features, and detailed information about their
positions/orientations is desired. Mobile techniques give
only rough sketches of accessible areas with much lower
computing overhead, which is suitable for in-between sec-
tions such as textureless or glass walls where much fewer
stable features exist, while less detailed information is
required. Therefore, we leverage “expensive” vision techni-
ques to obtain more accurate and detailed information about
individual landmarks, and use “cheap” inertial data to
obtain the placement of landmarks on a large, common floor
plane, and derive the less critical hallway and room informa-
tion at lower fidelity. The optimization and probabilistic for-
mulations give us more solid foundations and better
robustness to combat errors from data.

We make the following contributions in this work:

� We identify suitable computer vision techniques and
design a landmark modeling algorithm that takes their
output from landmark images to derive the coordi-
nates of major geometry features (e.g., store entran-
ces and adjoining wall segments) and camera poses
in their local coordinate systems.

� We design micro-tasks to measure the spatial rela-
tionship between landmarks, and devise a landmark
placement algorithm that uses a Maximum Likelihood
Estimation (MLE) formulation to compute the opti-
mal coordinates, orientations of landmarks on a com-
mon floor plane.

� We devise several augmentation algorithms that recon-
struct wall boundaries using a combinatorial optimi-
zation formulation, and obtain hallway connectivity
and orientation, room size/shape using probabilistic
occupancy maps that are robust to noises in mobile
user traces. We also reconstruct three types of con-
nection areas between different floors and general
multi-story floor plans.

� We develop a prototype and conduct extensive
experiments in three stories of two large complex
indoor environments. The results show that the posi-
tion and orientation errors of landmarks are about
1 � 2m and 5� � 9� at 90-percentile, with 100 percent
correct isle topology connectivity and connection
areas between stories, which demonstrate the effec-
tiveness of our design.

Note that we do not claim novelty in developing new
computer vision techniques. Our main contribution is the
identification and combination of appropriate vision and
mobile techniques in new ways suitable for floor plan con-
struction, and accompanying mathematical formulations

and solutions that yield much improved accuracy despite
errors and noises from image and inertial data sources.

The rest of the paper is organized as follows: We give
an overview (Section 2), then present the design of the land-
mark modeling, placement and augmentation algorithms
(Sections 3, 4, 5, and 6). We also conduct experimental eval-
uation of our design and demonstrate its effectiveness in
Section 7. After a discussion (Section 8) of limitations, com-
parison to related work (Section 9), we conclude the paper
(Section 10).

2 DESIGN OVERVIEW

Similar to existing work [7], [8], [9], [10], [11], Jigsaw
requires data collected using commodity smartphones from
users. We assume that upon proper incentives (e.g., cash
rewards [12], [13]), users willing to conduct simple micro-
tasks can be recruited. Theywill follow guidelines and gather
data in required form andmanner: e.g., taking a single photo
of a store entrance; taking a photo of one store and then spin-
ning the body to take a photo of another store; walking a cer-
tain trajectory on the floor or across stories while taking a
photo immediately before/after the walk. Such micro-tasks
allow us to gather data for specific elements in floor maps.
Given successful industrial precedences [12], [13] where
users accomplish tasks in exchange for rewards, and plenty
of research [14] on how incentives influence user behavior,
we argue such a paradigm is feasible and practical. We leave
the exact design of incentive form as futurework.

Jigsaw utilizes images, acceleration and gyroscope data.
The reconstruction consists of three stages: landmark model-
ing, placement, and augmentation (Fig. 1). First, two com-
puter vision techniques, Structure from Motion (SfM) [15]
and vanishing line detection [16], are used to obtain the sizes
and coordinates of major geometry measurements of each
landmark in its local coordinate system (Section 3). SfM also
produces the location and orientation of the camera for each
image, effectively localizing the user who took the picture.
Next, two types of micro-tasks, Click-Rotate-Click (CRC) and
Click-Walk-Click (CWC), are used to gather gyroscope and
acceleration data tomeasure the distances and orientation dif-
ferences between landmarks. The measurements are used as
constraints in anMLE formulation to compute the most likely
coordinates and orientations of landmarks in a global coordi-
nate system (Section 4). Then, a combinatorial optimization is
used to connect landmarks’ adjoiningwall segments into con-
tinuous boundaries, and probabilistic occupancy maps are
used to obtain hallway connectivity, orientation and room

Fig. 1. Jigsaw contains three stages: landmark modeling, landmark
placement, and map augmentation. Each stage uses image or inertial
data and output from the previous stage.
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sizes/shapes from inertial user traces (Section 5). Finally, iner-
tial datawith images andWiFi/cellular signatures are used to
identify connection areas between stories, and a refinement
algorithm is employed to correct detection errors, thus we
generate themulti-story floor plan (Section 6).

3 LANDMARK MODELING

In this section, we describe how we extract sizes and coordi-
nates of major geometry features (e.g., widths of store
entrances, lengths/orientations of adjoining walls) of land-
marks from their images.

3.1 The Landmark Model

We use a very simple model to describe the major geometry
features of a landmark. As illustrated in Fig. 2, a landmark
is denoted by L ¼ ðP;QÞ, where P are the main geometric
vertices of the landmark (e.g., the four corners P1 � P4 of a
store entrance), and Q are connecting points of adjoining
wall segments on the floor (e.g., Q1 � Q3 for two wall seg-
ments). Each landmark has a local coordinate system, and
we place its origin C at the center of the store’s entrance line

P3P4. The X-axis is co-linear with CP4
��!

, the X-Y plane is the
ground floor, and the three axes follow the right-hand rule.

We leverage the output of two computer vision techni-
ques, Structure from Motion(SfM) [15] and vanishing line
detection [16], to obtain the coordinates of P;Q from land-
mark images.

Structure from Motion is a mature computer vision tech-
nique commonly used to construct the 3D models of an
object. Given a set of images of the same object (e.g., a build-
ing) from different viewpoints, it produces: 1) a “point
cloud” consisting of many points in a local 3D coordinate
system. Each point represents a physical point on the
object1; and 2) the pose (i.e., 3D coordinates and orienta-
tions) of the camera for each image, which effectively local-
izes the camera/user taking that image.

Using SfM only and as-is, however, may not be the best
match for indoor floor plan reconstruction. First, SfM relies
on large numbers of evenly distributed stable and distinc-
tive image features for detailed and accurate 3D model
reconstruction. Although landmarks themselves usually
enjoy rich features due to logos, decorations, many in-
between sections have too few (e.g., textureless walls), inte-
rior (e.g., transparent glass walls) or dynamic (e.g., moving

customers) features, which SfM may not handle well. Sec-
ond, the “point cloud” produced by SfM is not what we
need for constructing floor maps. We still have to derive the
coordinates of those geometric features in our model, e.g.,
the corners of an entrance.

3.2 Coordinates of Geometric Vertices

To obtain the coordinates of major geometry vertices
needed in the model, we explore a two-phase algorithm.
First, we use an existing vanishing line detection algo-
rithm [16] to produce line segments for each image of the
same landmark (Fig. 3b). We merge co-linear and parallel
segments close to each other into long line segments
(Fig. 3b). This method is done using an intersection angle
threshold and a distance threshold between two line seg-
ments, and both thresholds are set empirically. The merging
is repeated for all line segment pairs until no further merg-
ing is possible. We filter out the remaining short segments
and leave only the long ones.

Next, we project merged 2D long lines from each image
back into the 3D coordinate system using transformation
matrices produced by SfM [15]. We then use an adapted
k-means algorithm to cluster the projected 3D lines into
groups according to their distance in 3D, and merge each
cluster into a 3D line segment. This gives the likely 3D con-
tour lines of the landmark. The intersection points of them
are computed for major geometry vertices.

One practical issue that the above algorithm addresses is
images taken from relatively extreme angles. Long contour
lines (e.g., P1P2 in Fig. 2) may become a short segment on
such pictures. Because the majority of images are taken
more or less front and center, real contour lines will have
sufficient numbers of long line segments after the merging
and projection. Thus the second phase clustering can iden-
tify them while removing “noises” from images of extreme
angles. Due to the same reason, we find that the coordinates
of wall segment connecting points farther from the center
are not as accurate. This is simply because most images
would cover the center of the landmark (e.g., store entrance)
but may miss some peripheral areas farther away. Next we
use a more reliable method to derive coordinates of wall
connecting points.

3.3 Connecting Points of Wall Segments

We project the 3D point cloud of the landmark onto the floor
plane, and search for densely distributed points in a line
shape to find wall segments and their connecting points.
This is because the projection of feature points on the same
vertical plane/wall would fall onto the joining line to the

Fig. 2. The model of this exemplary store entrance has four geometric
vertices P1 � P4 and three connecting points of wall segments Q1 � Q3

in its local coordinate system.

Fig. 3. Geometric vertices detection work flow: (a) Original image.
(b) Detect line segments parallel to the three orthogonal axes.
(c) Merged long line segments corresponding to the landmark’s major
contour lines. Different colors represent different dimensions.

1. To be more exact, each point represents a “feature point” as
detected by certain feature extractor algorithms (e.g., SIFT [17]).
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floor (e.g., P3Q1 of the wall segment adjoining the entrance
on left).

We start from some geometry vertices computed pre-
viously (e.g., P3P4 gives the projected line of the entrance
wall in Fig. 2, marked as two diamonds in Fig. 4), then find
the two ends (e.g., marked as two crosses in Fig. 4) of this
wall. From each end the search for the next connecting point
continues, until no lines consisting of densely distributed
points can be found. Fig. 4 shows three wall connecting
points discovered.

3.4 Example

Fig. 4 shows the point cloud of one store entrance projected
onto the floor plane and SfM produced camera locations.
We mark the geometry vertices (diamonds) and the wall
connecting points (crosses). In this example, the width of
the entrance has an error of 0.086 m (4:78 percent of the
actual width 1:8m). We also detect two external wall seg-
ments along the hallway, and their intersection angle error
is 0:08 degree out of 90 degree (0:09 percent). We find that
the 176 camera locations produced by SfM (only some of
them are shown) are quite accurate. The localization error is
within 1.2 m at 90 percent percentile, and maximum error
is 1.5 m. We also test how the number of images impacts
SfM’s localization performance. As we vary the number of
photos from 20 to 160, we find that about 80 images are suf-
ficient for camera localization: 75 (94 percent) images are
localized, with 90 percent error of 1.8 m and maximum
error of 5.2 m. We will present more systematic evaluation
results in Section 7.

4 LANDMARK PLACEMENT

In this section, we estimate the configuration of landmarks,
which is defined as the coordinates and orientations of land-
marks in the global 2D coordinate system. We also derive
the global coordinates of locations where photos are taken.
To this end, we first obtain the spatial relationship between
adjacent landmarks from inertial and image data. The deter-
mination of the configuration is formulated as an optimiza-
tion problem that finds the most likely coordinates and
orientations of landmarks that achieve the maximal consis-
tency with those pairwise relationship observations.

Once the landmarks’ global coordinates are known, the
global positions where photos are taken is a simple

coordination transformation of the camera location in each
landmark’s local coordinate system (described in Section 3)
to the global one. Such camera positions play an important
role in the augumentation algorithm for the occupancy map in
Section 5.

4.1 Notations

Suppose there are n local coordinate systems corresponding

to n landmarks l1; l2; . . . ; ln. Xi ¼ ðxi; yiÞ 2 R2 and
fi 2 ½�p;pÞ are the x-y coordinates and orientation of land-
mark li in the global coordinate system, respectively.
uu ¼ ðX;fX;fÞ is the configuration of landmarks to be deter-
mined, where XX ¼ ðX1; . . . ; XnÞ, ff ¼ ðf1; . . . ;fnÞ. Ri ¼
RðfiÞ ¼ cosfi �sinfi

sinfi cosfi

� �
is the rotation matrix used in

coordinate transformation between the global and local

coordinate systems of landmark li. Xi
j ¼ ðxi

j; y
i
jÞ ¼ R

ðfiÞT ðXj �XiÞ and fi
j ¼ fj � fi are the x-y coordinates and

orientation of landmark lj in the local coordinate system of
landmark li, respectively.

4.2 Spatial Relation Acquisition

The spatial relationship between two adjacent landmarks

li; lj are Xi
j and fi

j, the coordinates and orientation of land-

mark lj in the local coordinate system of landmark li (or
vice versa, illustrated in Fig. 5). It is difficult to obtain such
measurements directly from users because they do not carry
tools such as tapes. We design two data-gathering micro-
tasks where the user takes a few actions to gather inertial
and image data, from which we compute the pairwise rela-
tionship observations.

Click-Rotate-Click (CRC): In this micro-task, a user clicks
to take a photo of a landmark li from position A (shown in
Fig. 5a), then spins the body and camera for a particular
angle (e.g., v degrees) to take another photo of a second
landmark lj. The angle v can be obtained quite accurately
from the gyroscope [4], [5]. ðdi;biÞ represents the distance
between camera A and landmark li, and the angle formed
by line LiA and the normal line of landmark li, respectively.
They can be derived from the camera pose (i.e., coordinates
and orientation in l0is location coordinate system) as pro-
duced by SfM (Section 3). Similar is ðdj;bjÞ. P represents the

intersection point of the two x-axes in the two landmarks’
local coordinate systems.

Fig. 4. A landmark’s point cloud projected to the floor plan, with camera
locations, critical contour line (P3 and P4) and connecting points of wall
segments (Q1, Q2, and Q3).

Fig. 5. Micro-tasks: A is where two photos of landmark li and lj are taken
in CRC. ðdi;biÞ are the length of ALi, and the angle formed by line ALi

and normal direction of Li, respectively. P is the intersection point of the
two x-axes of the two local coordinate systems. A0 is where the walk
ends in CWC.
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From plane geometry, quadrangle ALiPLj is uniquely
determined given ðdi;biÞ; ðdj;bjÞ and v. Thus we can calcu-

late an observation of one landmark’s coordinates and ori-
entation in the other’s local coordinate system (and vice

versa), namely, observations of ðfi
j; X

i
jÞ, ðfj

i ; X
j
i Þ denoted as

ðOi
j; Z

i
jÞ and ðOj

i; Z
j
i Þ.

Click-Walk-Click (CWC): In this micro-task, a user clicks to
take a photo of landmark li, then walks to another location
A0 to take another photo of a second landmark lj (shown in
Fig. 5b). It is useful when two landmarks are farther away
and finding one location to take proper photos for both is
difficult. The distance jAA0j could be calculated from step
counting method [5], and the angle between the direction
when user takes a photo and his/her walking direction, i.e.,
ðai;a

0
jÞ at two locations A and A0, could be obtained from

placement offset estimation method [18] and gyroscope
readings. Measurements calculation here is similar to that
of Click-Rotate-Click except that the quadrangle is replaced
by a pentagon as illustrated in Fig. 5a.

The two camera locations in CWC can be used as “anchor
points” to calibrate the trace. Due to well-known error accu-
mulation [11] in inertial tracking, many methods use anchor
points (places of known locations such as entrances/exits of
escalators, elevators, stairs) to pinpoint the trace on the
floor. In environments with large open space, such anchor
points may be sparse. CWC addresses the sparsity issue
because users can take photos almost anywhere.

Nevertheless, we use CWC between two landmarks
only when CRC is difficult to conduct, because the accu-
racy of step counting based inertial tracking is limited
compared to that of the gyroscope in CRC. Jigsaw utilizes
both types of measurements while considering their vary-
ing qualities, by assigning different confidences to each
type in a common optimization problem (described next
in Section 4.3).

4.3 Problem Formulation

We use Maximum Likelihood Estimation (MLE) to formu-
late the optimal configuration problem. Our problem is rep-
resented as a Bayesian belief network (Fig. 6) describing the
conditional dependence structure among variables (denoted
as nodes), where each variable only directly depends on its
predecessors.

We denote the maximum likelihood estimation of uu as uu�.
The intuition for maximizing P ðZ;OZ;OjX; fX; fÞ is that we try to
find a configuration of landmarks uu� ¼ ðX�;f�X�;f�Þ under
which those measurements Z;OZ;O (i.e., observations of X;fX;f)
are most likely to be observed.

We have the following equations based on the condi-
tional dependence in the graphical model:

uu� ¼ argmax
uu

P ðZ;OZ;OjX;fX;fÞ ¼ argmax
uu

P ðOOjffÞP ðZZjf; Xf; XÞ
¼ argmin

uu
�
X
Oi
j

logP
�
Oi

jjff
��X

Zi
j

logP
�
Zi
jjf; Xf; XÞ:

As is standard in probabilistic mapping literature [19], we
assume Gaussian measurement models that give further
transformation into:

uu� ¼ argmin
uu

X
Oi
j

kfi
j �Oi

jk2
s2
O

þ
X
Zi
j

kXi
j � Zi

jk2
�2
Z

: (1)

where sO; �Z are covariances of normally distributed zero-
mean measurement noises for different kinds of measure-
ments. As noted in Section 4.2, we assign small sO; �Z for
CRC measurements to give them predominance over those
of CWC.

Without losing generality, we can simply use variable
substitution to yield an equivalent nonlinear least squares
formulation:

minimize
f;Xf;X

X
Oi
j

kfi
j �Oi

jk2 þ
X
Zi
j

kXi
j � Zi

jk2: (2)

The intuition is that we try to find a configuration of land-
marks uu� ¼ ðX�;f�X�;f�Þ such that the aggregate difference

between fi
j; X

i
j derived from ðX�;f�X�;f�Þ and their measure-

ments Oi
j; Z

i
j is minimized.

4.4 Optimization Algorithm

Let’s denote problem (2) as:

minimize
f;Xf;X

fðffÞ þ gðf; Xf; XÞ; (3)

since the two terms in (2) are functions of ff and (f; Xf; X). Care-
ful examination [20] shows that each term in gðf; Xf; XÞ is
linear square of XX, thus gðf; Xf; XÞ is a typical linear least
squares of XX with a closed form solution. We denote the
minimum as hðffÞ. Thus problem (3) is equivalent to:

minimize
ff

fðffÞ þ hðffÞ; (4)

We solve this problem based on an observation: minimizing
fðffÞ gives the most likely orientation f0f0 of landmarks with
orientation relationship observations only. Due to relatively
accurate gyroscope data, f0f0 would be very close to the
global optimal f�f� that minimizes fðffÞ þ hðffÞ. Thus we find
the optimum of fðffÞ as the initial value, then use stochastic
gradient descent (SGD) to find the global minimum f�f�.

STEP 1: Find f0f0 given measurements OO.

minimize
ff

fðffÞ ¼
X
Oi
j

kfi
j �Oi

jk2: (5)

Note that this is not a linear least squares problem since the
result of the subtraction on angles is periodic with a period
of 2p. What adds to the difficulty is the loop dependence of
the orientations of different landmarks. The effect of

Fig. 6. Bayesian belief network representation of our problem. X is the
coordinates while ff is the orientations of all the landmarks. uu ¼ ðX;fX;fÞ is
the hidden variable we need to estimate based on measurements. Zi

j; O
i
j

measures the coordinates and orientation of landmark j in the coordi-
nates system of landmark i. Measurements of each kind are aggregated
together with the total number of that kind denoted by nZ; nO.
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adjusting the orientation of one landmark would propagate
along pairwise relationship observations, eventually back to
itself.

We solve this problem as follows: First, we find the maxi-
mum spanning tree of the orientation dependence graph
where edges are relationship observations between land-
marks. This problem fMSTMST ðffÞ can be easily solved because
adjusting the orientation of one landmark has a one-way
effect on its decedents only. Again, due to the accuracy of
gyroscope and relatively small number of removed edges
(i.e., relationship observations), the resulting f0

MSTf0
MST would

be in near neighborhood of the true optimum f0f0. Then we
perform gradient descent from f0

MSTf0
MST find a minimum likely

to be f0f0. In reality, we do find them are usually in the close
neighborhood.

STEP 2: perform stochastic gradient descent (SGD) from f0f0 to
find f�f�. Based on the intuition explained earlier that f0f0 is
close to f�f�, we perform SGD which is known to be able to
climb out of “local minima” to find the global minimum
with higher probability.

5 MAP AUGMENTATION

After obtaining the optimal coordinates and orientations of
the landmarks, we need more details for a relatively com-
plete floor plan: 1) wall reconstruction for external bound-
aries of the hallway; 2) hallway structure; and 3) rough
shapes of rooms. Next, we describe how to construct such
details.

5.1 Wall Reconstruction

Connecting wall segments between adjacent landmarks in
manners “most consistent” with the likely architectural
structure of buildings is not trivial. Naive methods such as
using a convex hull to cover all segments produce an exter-
nal boundary but may not connect those segments “inside”
the hull (Fig. 7b).

To formally define the problem, we represent a wall seg-
ment as a line segment with its normal direction pointing to
the hallway, and denote the endpoints on its left/right side
as L and R (shown in Fig. 8). Therefore, k wall segments
have two sets of endpoints LL ¼ fL1; L2; . . . ; Lkg and RR ¼
fR1; R2; . . . ; Rkg. We need to add new wall segments con-
necting each endpoint in LL to one in RR.

Every possible solution corresponds to a perfect match-
ing p, where p is a permutation of ð1; 2; . . . ; kÞ, indicating
LðiÞ and RðpðiÞÞ are linked for i ¼ 1; 2; . . . ; k. Thus the prob-
lem becomes a combinatorial optimization problem that

finds the perfect matching with the minimal weight (i.e.,
most likely connection manner) in a bipartite graph.

A simple greedy algorithm uses distance as weight and
connects every endpoint in set LL to the closest (i.e., least
distance) one in set RR directly. The drawback is that the
result depends on the order of connecting endpoints, and
90 degree corners commonly seen in buildings may be miss-
ing. For example, Figs. 7c and 7d show two possible results,
where one is incorrect while the other does not have
90 degree corners.

To address the above issues, we consider the two follow-
ing options for linking two adjacent wall segments. Each
option carries a weight, which can be computed given two
endpoints in LL and RR. The weight represents the likelihood
of the option: a smaller one indicates a more likely linking
manner.

Linking with another segment directly. Two segments
ðLi; RiÞ and ðLj;RjÞ are linked by another segment between
Li and Rj directly. The weight is defined as:

w
ð1Þ
ij ¼ jRi � Ljjðv1 þ v2Þ; (6)

Fig. 7. Comparison between different algorithms: (a) Example scenario, (b) convex hull of all wall segments, (c) one possible output of the greedy
method, (d) minimal weight matching using distance as weight, and (e) our minimal weight matching method.

Fig. 8. Given the normal direction pointing to the hallway, two endpoints
of a wall segment are labeled L and R. New wall segments must link
endpoints with different labels. Three cases of connection are shown:
(a) two nearly collinear segments; (b) two nearly perpendicular seg-
ments; and (c) two nearly opposite segments.
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where jRi � Ljj is the distance between two endpoints Ri

and Lj and v1;v2 are the turning angles from segments
ðLi; RiÞ, ðLj;RjÞ to the newly added segment (illustrated in
Figs. 8a and 8c). Such direct linking is more likely when two
adjacent segments are collinear or facing each other.

Extending to an intersection. If the two segments are not
parallel, extending them from endpoints Ri and Lj reaches
a point of intersection. This is another possibility and its
weight is defined as:

w
ð2Þ
ij ¼ jRi � P j þ jP � Ljj

2
; (7)

where P is the point of intersection and jRi � P j and
jP � Ljj are the distances among them (illustrated in
Fig. 8b). For two (close to) perpendicular segments, the
above equation produces a smaller weight, ensuring proper
connection for 90 percent corners.

Given the configuration of landmarks estimated in Sec-
tion 4, we calculate w

ð1Þ
ij and w

ð2Þ
ij for each pair of wall seg-

ments based on (6) and (7). We define the weight wij of
linking Li and Rj as the smaller of the two:

wij ¼
minðwð1Þ

ij ; w
ð2Þ
ij Þ; i 6¼ j;

1; i ¼ j.
;

(
(8)

the weight is 1 if i ¼ j since the two endpoints of the same
segment is already connected.

Given all the weights, we can find the perfect matching
p� to minimize the total weight as follows:

minimize
pp

Xk
i¼1

wipðiÞ: (9)

While a naive exhaustive search needs factorial time, we
recognize that finding the perfect matching with minimal
weight in a bipartite graph can be solved efficiently by
Kuhn-Munkres algorithm [21] in polynomial time ðOðn3ÞÞ

where n is the number of landmarks, which is usually a
small number (e.g., tens of stores for one floor of a mall).
Fig. 7e shows the correct result produced by our algorithm
and Fig. 9b illustrates the outcome in a real environment.

5.2 Hallway Reconstruction

To reconstruct the structure of the whole hallway, we first
build the occupancy grid map [22], which is a dominant
paradigm for environment modeling in mobile robotics.
Occupancy grid map represents environments by fine-
grained grid cells each with a variable representing the
probability that the cell is accessible.

In Jigsaw, it can be regarded as a confidence map that
reflects the positions accessible to people. This confidence
map is initialized as a matrix full of zeros. We add confi-
dence to a cell if there is evidence that it is accessible, and
the scale of the confidence we add depends on how much
we trust the evidence. We fuse three kinds of cues to recon-
struct the occupancy grid map.

External boundary of the hallway: This is re-constructed in
Section 5.1. Due to obstacles (e.g., indoor plants placed next
to the wall), the accessible positions are not equivalent to
the region bounded by the external boundary. Since the
area in front of landmarks is often the entrance, it is always
accessible and we assign higher confidence. Places in front
of a newly added wall are usually accessible but obstacles
may exist. Thus, we assign less confidence to such places.

Positions of cameras: Positions of cameras can be com-
puted given the configuration of landmarks and the relative
position between cameras and landmarks. Such positions
are obviously accessible. So we add confidence to places
around every camera’s position. Fig. 9c depicts positions of
cameras with the result of wall reconstruction.

Motion traces in the hallway: The shape of motion traces can
be computed using methods such as [5], [18]. The traces can
be calibrated by taking photos and using their locations as
anchor points. Given such information, we can correct
the step length, which is one primary source of error in

Fig. 9. Augmentation process: (a) Shows landmark configuration results. (b) Depicts hallway external boundary after wall reconstruction. (c) and (d)
Show camera positions and motion traces. Combining the above, occupancy grid map is shown in (e), followed by thresholding (f), and smoothing
(g). (h) Depicts room reconstruction results and the final floor plan is shown in (i).
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step-counting based tracking. Such traces in the hallway add
confidence to positions along them. Because motion traces
usually carry higher errors, we assign less confidence along
motion traces comparing to positions of cameras. Fig. 9d
depicts motion traces in the hallway with the result of wall
reconstruction.

The final occupancy grid map is shown in Fig. 9e. We use
an automatic threshold-based binarization technique [23] to
determine whether each cell is accessible, thus creating a
binary map indicating which cells are accessible. The accu-
mulation of evidences makes our method robust to noises
and outliers in crowdsensed input: a cell is considered
accessible only when there is enough evidence. The result of
thresholding is depicted in Fig. 9f. To further improve the
result, we implement a smoothing algorithm based on
alpha-shape [11], which is a generalization of the concept of
convex hull. Fig. 9g shows the final result of hallway recon-
struction after smoothing.

5.3 Room Reconstruction

We use the same confidence map technique to fuse two
kinds of cues for robust estimation of the shape of rooms.

Wall segments in landmark models: These wall segments are
not only part of the external boundary of the hallway, but
also the boundary of the room. Therefore, the places inside
the detected wall segments are part of the room with high
confidence.

Motion traces inside the room: We have a data-gathering
micro-task similar to CWC to collect data for rooms. A user
takes a photo of a landmark, then walks into this room.
After walking for a while, the user exits and takes another
photo. The photos are used to determine the initial/final
locations of the trace, and the area along the trace receives
confidence. We perform similar thresholding of the cumu-
lated confidence to determine the accessibility of each cell,
producing room reconstruction results similar to that
shown in Fig. 9h. The final floor plan at the end of map aug-
mentation is in Fig. 9i.

6 CONNECTION AREA DETECTION

So far we have generated the floor plan of a single floor.
However, typical indoor environments always contain mul-
tiple floors, along with connection areas between adjacent
floors (e.g., stairs, elevators and escalators). We find that the
inertial and wireless signals (e.g., WiFi and cellular) have

distinctive patterns when a user passes through such areas.
We use unsupervised classification to detect such patterns
without training process, and develop refinement algorithm
to correct detection errors.

6.1 Types of Connection Areas

Stairs generate repetitive jolts, hence periodic acceleration
fluctuations in the gravity direction when a user climbs.
Note that going upstairs or downstairs may cause different
jolting patterns, and we need to recognize each of them cor-
rectly. We also need to distinguish stairs from walking on
the same flat floor. A significant clue is that WiFi signatures
always change dramatically between two different floors.
We use WiFi cosine distance [24], i.e., the cosine value of the
angle between two vectors of WiFi signatures, to represent
their similarity. Higher cosine distance indicates similar
WiFi signatures, and vice versa. From large amounts of
experiment data, we observe that WiFi cosine distance
between stairs is mostly between 0:65 � 0:75, apparently
lower than that of walking on the same floor (0:8 � 0:85).
Detailed evaluation is shown in Fig. 21a.

Inertial patterns are also differentiated between walking
on floor and stairs. Fig. 10 indicates that the acceleration cor-
relation between heading direction and gravity direction is
much lower on the floor than that of stairs. Fig. 11 shows
the acceleration along gravity direction is much lower for
upstairs than downstairs: the reason is that gravity is
impeding/helping user motion when walking up/down
stairs.

Escalators and elevators. Users always stand still in ele-
vators/escalator while their absolute positions change
dramatically. To distinguish from standing on the floor,
we observe that the WiFi cosine distance between begin-
ning and end of escalator/elevator rides are always sig-
nificantly smaller (0:65 � 0:8), compared to standing on
the ground for a similar duration (� 0:95). Detailed
results are shown in Fig. 21b. This observation can be
used to distinguish them from standing on the floor. Fur-
thermore, elevators can be easily detected via obvious
fading of cellular signals (more than 30dbm based on
our measurements).

To tell the moving direction (up or down), we observe
that that there are temporary decrease and increase of accel-
eration along gravity direction at the beginning/end of the
ride (Fig. 12), and the opposite for going up. We compute
the difference of 5 s time window average for the begin-
ning/end of the ride to detect the direction.

Fig. 10. Acceleration correlation between heading and gravity directions.

Fig. 11. Acceleration along gravity direction.
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6.2 Features

We extract the following features from inertial, WiFi, and
cellular data for recognize the type of connection area.

(1) Acc MNAC and Acc STD: Acc MNAC denotes the
maximum normalized auto-correlation of accelera-
tion along gravity direction, which computes the
period of repetitive walking patterns; Acc STD is the
standard deviation of that acceleration, which
implies user movements. They have been used to tell
whether a user is standing still or walking [5].

(2) Acc COR and Acc PV: Acc COR is the acceleration
correlation between heading and gravity directions;
it helps to identify stairs; Acc PV are peak values of
acceleration along gravity direction; they are used to
distinguish their up/down cases [11].

(3) WiFi CD: WiFi cosine distance between two end-
points of a time window. This feature tells whether a
user passes through floors. The intuition is that WiFi
cosine distance between two floors is obviously
smaller than staying on the same floor for a short
time window (e.g., �15 s of passing across adjacent
floors).

(4) Cellular SD: Cellular signal declination. This feature
helps to identify the elevator since the closed metal
environment dramatically attenuates signals.

6.3 Unsupervised Classification

Next we propose an unsupervised classification algorithm
to identify different types of connection areas. We avoid
learning techniques that require training that is difficult in
practice, especially for crowdsourced mobile users, and
training models in various environments always differ a lot.
Instead, we automatically cluster the features into different
categories and develop an unsupervised classification algo-
rithm via majority voting.

Step 1: Walking detection. Zee [5] computes walking
periods on each trace but it relies on hard thresholds of Acc
MNAC and Acc STD. We observe that those thresholds
change dramatically for different user walking styles and
different smartphones, which makes uniform settings
impossible. We propose a pre-task in data collection: before
walking a CWC micro-task, a user stands still for around
5 seconds, then walks with the phone held steady. We lever-
age k-means algorithm [25] (k ¼ 2) to generate the

thresholds for each user, and obtain similar results in [5]
with step counting errors only at start/end of a trace.

Step 2-1: Stairs detection: if a user is walking, we iden-
tify whether he/she walks on the floor or stairs. We set
the time window as 15 s (approximate time for walking
to an adjacent floor via stairs), leverage Acc COR and
WiFi CD features, and use the k-means algorithm for rec-
ognition (with k ¼ 2 for ground/stairs). For stairs, we use
Acc PV feature and k-means to identify the up/down
direction.

Step 2-2: Escalator/elevator detection: if a user is standing
still, we identify whether it is an escalator/elevator or the
floor. We compute WiFi CD and cellular SD features for the
whole standing still period and use k-means to identify
each of them (with k ¼ 3 for escalator/elevator/ground). To
detect up/down, we compare the average acceleration along
gravity direction at the start/end of the ride, i.e., larger at the
end than the start of the ride when going down, and vice
versa. The above detection achieves very high accuracy
(close to 100 percent) and details are in Table 3.

6.4 Refinement and Placement

Whilemost of the above detection results are found to be cor-
rect, we observe that occasional errors can happen (e.g., a
CWCdata on the ground is incorrectly recognized as passing
stairs, or an upward escalator is detected as downward). We
use a simplemajority voting to correct thoseminority errors.

We abstract a connection graph where nodes are land-
marks, and each CRC/CWC constraint forms an edge
between two landmarks, with a weight for its constraint
type. Multiple edges may exist between two nodes when
different constraints were measured. To correct erroneous
edges, we use majority voting from all edges between two
nodes to decide their connection relation (e.g., on the same
story, upward or downward) and remove incorrect detec-
tions (Fig. 13).

We also need to generate locations of different types of
connection areas on the reconstructed floor plan. For stairs,
we place them via the 90-degree turn at its start/end points;
for escalator and elevator, they are placed via user standing
still locations on traces.

The final connection graph for mall 1 is shown in Fig. 14,
which shows 100 percent correct detection of four types of
landmark connection relations: the same floor, stairs, escala-
tor, and elevator connection. The floor plans with connec-
tion areas are shown on Figs. 19a and 19b.

Fig. 12. Acceleration along gravity direction for downward escalator/
elevator, after Butterworth filter.

Fig. 13. Landmark connection edges of an elevator between two floors.
Majority voting is used to correct detection errors.

GAO ETAL.: MULTI-STORY INDOOR FLOOR PLAN RECONSTRUCTION VIA MOBILE CROWDSENSING 1435



7 PERFORMANCE EVALUATION

7.1 Methodology

We use iPhone 4s to collect images and motion sensor
data, and Samsung Galaxy S II for WiFi scans.2 We
conduct experiments in three environments: two stories of a
150m� 75m shoppingmall (labeled story 1 and 2) of irregu-
lar shape, and one story of a 140 m � 40 m long and narrow
mall comprised of two parts connected by two long corridors
(labeled parts I and II of story 3). In these environments, we
select 8, 13 and 14 store entrances as landmarks and collect
about 150 photos at different distances and angles for each
landmark. In each environment, we have 182, 184 and 151
locations where users conduct “Click-Rotate-Click”(CRC) to
take two images of two nearby landmarks, and 24 “Click-
Walk-Click”(CWC) to take two images of two far away land-
marks in different parts in story 3. We also collect 96, 106 and
73 user traces along the hallway of each environment, and
about seven traces inside each store. To connect two stories
of the first shopping mall, we observe that there are two
stairs, two escalators and one elevator connecting them.
Thus we also conduct 40 CWC measurements between two
stories passing up/down for each stair, and 14 CWC meas-
urements passing up/down for each escalator and elevator.

During data collection, users follow simple guidelines:
1) choose landmarks as large physical objects on the wall,
such as store entrances and posters; 2) during walking, hold
the phone steady; 3) take photos with the landmark in the
center, and without obstructions and moving people on the
image. These guidelines help users gather data of higher
quality, and user feedbacks suggest the guidelines are easy
to follow in practice.

7.2 Landmark Modeling

First, we examine the accuracy of estimated widths of store
entrances using normalized error (error divided by the
actual width). As Fig. 15 shows, 90-percentile error is about
10 percent, which indicates that the inferred parameters of
major geometry vertices are quite accurate. We also find
that large errors are caused by obstructions such as pillars
or hanging scrolls.

We evaluate wall segment detection accuracy, and observe
that the recall (i.e., detected wall segments in all existing seg-
ments) is 91:7, 88:2 and 100 percent in three indoor environ-
ments, respectively; while the precision (i.e., fraction of
detected ones that are correct) are all 100 percent.We find that

the wall connecting point detection is quite accurate as well.
Those segments not detected are due to extreme angles (e.g.,
less than 15 percent difference) to the entrance wall, which
are considered part of the same segment by the algorithm.

We measure how the quantity of images impact localiza-
tion accuracy to understand its impact on SfM performance.
For each environment, we randomly select 50, 100 and
150 images for each landmark. We can see that the
fraction of localized images increases steadily from 74.5, 95
to 99.3 percent. When there are sufficient images (e.g.,
100 � 150), nearly all of them are localized.

We also observe a similar trend in the average localiza-
tion error for each landmark in story 1 (shown in Fig. 16; the
other two are similar). When there are sufficient images, the
average error is less than 2 m. Thus, 100 � 150 images for
each landmark would be an appropriate amount.

Finally, we examine image localization accuracy (shown
in Fig. 17). We observe that localization errors are about
1 � 1:5 m at 90-percentile. The large errors are due to
“isolated” images taken from extreme distances (e.g., too
faraway) or angles (e.g., almost parallel to the entrance
wall), which cannot find enough matching feature points
with the majority of images taken more front and center.
We observe that story 3 has the least error due to its smaller
size, so images are distributed more densely and thus
appear similar to each other.

7.3 Landmark Placement

Measurements accuracy. We first evaluate the relative pos-
ition and orientation errors as derived from pairwise meas-
urements (Section 4.2) between adjacent landmarks. The
relative position error is the distance between a landmark’s

Fig. 14. Landmark connection graph of two floors. Line segments repre-
sent landmark connection on the same floor, with width for inputs quan-
tity; arrows represent downward connections.

Fig. 15. Normalized store entrance width error.

Fig. 16. Impact of image quantities.2. iOS public API does not give WiFi scan results.

1436 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 6, JUNE 2016



derived position and its actual position, both in the other
landmark’s coordinate system. Relative orientation error
quantifies how close the derived orientation difference is to
ground truth.

We use 182; 184; 151 CRC measurements in three envi-
ronments, and 24 CWC measurements in story 3 between
its two parts.

Figs. 18a and 18b show the cumulative distribution func-
tions (CDF) of relative position and orientation errors in
three environments. We can see that for CRCmeasurements,
the 80-percentile relative position errors are about 2 � 7 m,
while that of relative orientation about 10 � 20�, both of
which have quite some inaccuracies. CWC measurements
have worse position errors (80-percentile around 10 m) but

comparable orientation errors (80-percentile at 15 percent).
This is because of errors in stride length estimation, but the
gyroscope remains accurate.

Landmark configuration. We compare the computed land-
mark positions and orientations to the respective ground
truth to examine errors in the derived configuration. Figs. 18c
and 18d show the CDFs of position and orientation errors.
Since CRC measurements alone cannot join the two parts of
story 3, we give CRC accuracy for part I (containing most
stores). Compared with respective errors in measurements
(shown in Figs. 18a and 18b), both position and orientation
errors improve (e.g., 1 � 2mand 5 � 9� at 90-percentile). This
is because errors in measurements are statistically symmetric;
thus, the impacts tend to cancel out each other.

After CWC measurements are combined, there is not
much change in orientation but slight degradation in posi-
tions (e.g., 2:5 m at 90-percentile) due to lower accuracy of
CWC position measurements. This shows that CWC may
impact the accuracy. Thus, we use them only when CRC
alone cannot establish the spatial relationship between far-
away landmarks. The relative positions in each part do not
change much, due to different weights assigned to CRC and
CWC measurements. In summary, the landmark placement
algorithm successfully combines all measurements for bet-
ter estimation of the most likely configuration.

7.4 Floor Plan Performance

The reconstructed floor plans and their respective ground
truths are shown in Figs. 19a, 19b, 19c and Figs. 19d, 19e, 19f.

Fig. 17. Image localization errors.

Fig. 19. Reconstructed floor plans and ground truth floor plans.

Fig. 18. CDFs of landmark placement evaluation: (a) relative position error extracted from crowdsourced data; (b) relative orientation error extracted
from crowdsourced data; (c) position error of proposed algorithm for landmark level mapping; and (d) orientation error of proposed algorithm for land-
mark level mapping.
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Positions of feature points. We evaluate the quality of floor
plans using the root mean square error (RMSE). Given n fea-
ture positions on a floor plan with 2D coordinates
Xmap

i ¼ ðxmap
i ; ymap

i Þ, and their corresponding ground truth

coordinates Xtest
i ¼ ðxtest

i ; ytesti Þ, i ¼ 1; 2; . . . ; n, the RMSE is
calculated by

eRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðXmap
i �Xtest

i Þ2
n

:

s
(10)

For each environment, we select two sets of feature posi-
tions, one for landmarks, the other for center points of
hallway intersections. We can see that RMSEs of landmarks
are small (e.g., < 1:5m) while those for intersections are
slightly larger (Table 1). Note that for story 3, we calculate
the RMSEs for the left and the right part separately since
each part was reconstructed using relatively accurate CRC
data while the connecting hallway between them uses less
precise CWC data.

Hallway shape. We also evaluate how close the shapes of
constructed hallways resemble the respective ground truth.
We overlay the reconstructed hallway onto its ground truth
to achieve maximum overlap by aligning both the center
point and the orientation. Precision is the ratio of the size of
the overlap area to the whole reconstructed hallway, and
recall is that to the ground truth hallway. F-score is the har-
monic average of precision and recall. The results are shown
in Table 2. We can see that Jigsaw achieves a precision
around 80 percent, a recall around 90 percent and a F-score
around 84 percent for the first two stories. This shows the
effect of the calibration of traces by camera locations, and
probabilistic occupancy maps are more robust to errors and
outliers. The reason that recalls are higher than precisions
(as shown in Fig. 19) is that reconstructed hallway is a little
thicker than the ground truth due to errors in traces. Story 3
has a relative lower performance because only CWC data
can be used to connect the left and right parts.

Room size. We use the error of reconstructed room size as
the metric. Jigsaw achieves an average error of 25:6, 28:3
and 28:9 percent respectively for three stories. Given the
fact that some part of room is not accessible, the errors are
relatively small since camera localization provides accurate
anchor points to calibrate the errors of inertial traces and
the probabilistic occupancy map provides robustness to
outliers.

Topological structure. For indoor navigation, the topologi-
cal structure of a floor plan is more important than its shape/
size. We use a topological map where nodes are regions and
an edge between two nodes denotes the adjacency of corre-
sponding regions. Nodes can be the intersection points of
hallways, or between hallways and landmarks. A land-
mark’s room is also a node. Such a topological map can be
used to find the navigation route to a given destination.

To evaluate the topology of the reconstructed map, we
extract and compare the topological maps from the grid
maps for both ground truth and reconstructed floor plans.
Fig. 20 shows the topological maps of the floor plan on story
1 produced by Jigsaw. We observe that its topological struc-
ture is the same as that of its ground truth (the same for
storys 2 and 3).

7.5 Connection Area Detection

We collect WiFi CD (cosine distance) to evaluate how well it
can detect whether a user stays on the same floor or goes to
another floor. Fig. 21a shows the WiFi cosine distance for
each 15 s sliding windowwith 1 s step for walking users. We
observe that when users walk on the same floor, the majority
(20-percentile to 80-percentile) of WiFi cosine distance is
around 0:8 � 0:85, and that of users passing stairs is much
less (0:65 � 0:75), due to different APs on different floors.

Next, we examine stairs detection via WiFi CD and Acc
COR features. Table 3 shows stairs detection accuracy of
them individually and together. We observe that WiFi CD
achieves better performance than Acc COR, and their combi-
nation significantly improves each alone, with 97:4 percent
precision, 100 percent recall and 98:7 percent f-score values.
Finally, we use Acc PV feature and a k-means algorithm to
identify up/down stairs cases, with 100 percent detection
accuracy.

TABLE 1
RMSE of Floor Plans (m)

Landmarks Intersections

Story 1 0.94 1.25
Story 2 1.49 1.80
Story 3 0.61/0.15 0.91/0.49

TABLE 2
Evaluation of Hallway Shape

Precision Recall F-score

Story 1 77.8% 92.0% 84.3%
Story 2 81.2% 93.3% 86.9%
Story 3 74.5% 86.0% 79.8%

Fig. 20. Topological map of reconstructed floor plan for story 1, where
nodes “L” denote rooms of landmarks, nodes “E” denote entrances along
hallway, nodes “T” denote turnings along hallway, and nodes “C1/C2/C3”
denote three types of connection areas.

Fig. 21. Cosine distance of WiFi signatures between start/end points:
(a) along 15 s walking on the ground/stairs; (b) standing still on the
ground/escalator/elevator.
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For escalator/elevator detection, we leverage WiFi CD
and cellular SD features for the whole standing still period.
They achieve 100 percent detection accuracy for both esca-
lator and elevator. Then we use the difference of average
acceleration along gravity direction of two 5s time win-
dows at the beginning/end of the ride to identify up or
down, achieving 92:9 percent accuracy for escalators, and
100 percent for elevators.

Finally, we use the refinement algorithm to correct resid-
ual detection errors, and achieve 100 percent detection accu-
racy for each connection area and each up/down case. The
reconstructed and ground truth connection areas are shown
on Figs. 19a, 19b and Figs. 19d, 19e.

7.6 Comparison with CrowdInside

We compare the reconstruction performance of Jigsaw to that
of CrowdInside [11]. Jigsaw utilizes vision techniques and
incurs more overhead in collecting and processing images,
producing detailed positions and orientations of individual
landmarks. CrowdInside is much lighter weight and uses
mostly mobile traces. Its design is based on several assump-
tions: 1) sufficient numbers of anchor points (e.g., locations
with GPS reception or special inertial data signature such as
escalators/elevators/stairs) for calibrating traces; 2) sufficient
amount of traces that pass through these anchor points; 3) dis-
tinctiveWiFi signatures in different rooms.

In reality, we find that they may not always hold in all
environments. For example, in story 2 there are only three
inertial anchor points and no GPS reception; traces that do
not pass through (e.g., start/end at) these three anchor points
cannot be placed relative to other traces on the common
ground plane; variations inWiFi signaturesmay cause incor-
rect room classification. As a result, the direct application of
CrowdInside where these requirements do not hold may
generate “unusable” floor plans that are hard to recognize.

To deal with these conditions, we make several artificial
improvements to CrowdInside: 1) We double the number of
anchor points and assume they are all GPS-based, thus
more accurate global coordinates can be used to calibrate
traces; 2) we make all traces pass through adjacent anchor
points so they can be placed on the common floor plane; 3)
we manually classify room traces so that their labeling is
100 percent correct. We call such an artificially improved
version CrowdInside++.

The constructed floor plan by CrowdInside++ is shown in
Fig. 22. The landmark positions of CrowdInside++ have an
RMSE of 6.26 m, and the maximum error 8.92 m; the RMSE
of intersections is 7.36 m and the maximum error is 9.84 m.
All of these are four times larger than those of Jigsaw. We
also notice that CrowdInside++ does not detect a few small-
sized stores due to the ambiguity differentiating hallway
and store traces, while Jigsaw uses images and can always
detect such stores. The hallway shape of CrowdInside++ has

a 48:2 percent recall, a 64:0 percent precision and a
55:0 percent F-score, which aremuchworse than those of Jig-
saw shown in Table 2. The average error for room sizes is
42:7 percent, also much larger than that of Jigsaw. Note such
performance is achieved after several artificial improve-
ments whichmay not always be possible in reality.

The above shows that inertial-only approach cannot han-
dle error accumulation well when there are not sufficient
anchor points, while Jigsaw can use any camera location to
calibrate traces. The landmark placement optimization and
the probabilistic occupancy map also make Jigsaw much
more robust to errors and outliers, whereas the determin-
istic alpha-shape in CrowdInside cannot tolerate outliers.

8 DISCUSSION

Photo-taking operations involve more user efforts, and they
provide more accurate geometry information of landmarks
than inertial data. We have invited more than 30 users to
collect data, and found that if a user is paid (e.g., � $20), he
is willing to spend a few minutes practicing data collection
following simple guidelines. We observe that they do
exhibit more attention on gathering both images and inertial
data after receiving the rewards, and their feedbacks sug-
gest the guidelines are easy to follow in practice.

We have tried Jigsaw in other types of buildingswhere the
environments are homogeneous, e.g., an office and a lab
building. We find that all components in Jigsaw perform
well except SfM, because it relies on abundant feature points
matching among images. In office and lab, landmarks (e.g.,
doors on blank walls) have similar appearances and feature
points are much less. Thus, SfM could not create the point
cloud needed for landmark modeling. If we replace SfM
with other techniques that do not rely on feature points, we
could still createmaps for those building types.

Our landmark model needs image classification so that
images of the same landmark are used as input. With
proper and sufficient incentives, users may be willing to tag
photos to help ease the classification. There also has been
study [26] on automated classification that can achieve high
accuracy, and the scale-invariant features extracted by
SIFT [17] gives robustness against image differences in reso-
lution, orientation, and illumination conditions. Since there
might be several landmarks with similar appearances, one
future work is to combine image similarity with WiFi signa-
tures and mobile trajectory to identify those landmarks.

Accurate user trajectories are shown quite challenges [5],
[18] because inertial data is impacted by many factors such
as the make/model, the position of device (e.g., in hand/
pocket), the relative movement of human body (e.g.,

TABLE 3
Evaluation of Stairs Detection

Precision Recall F-score

WiFi CD 86.9% 91.3% 89.1%
Acc COR 78.2% 88.8% 83.2%
WiFi CD + Acc COR 97.4% 100.0% 98.7%

Fig. 22. Constructed floor plan of story 2 by CrowdInside++, which has
several artificial improvements that are not always possible in reality.
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holding still versus swinging arms). Some of these may
change during the user movements. In light of that, we
assign a relatively lower confidence to such trajectories and
use a probabilistic model when using them to build hallway
and room occupancy maps.

The collection of image and inertial data consumes
energy. Jigsaw uses downsized images of 800� 600 resolu-
tion, each about 100 kB. We use Monsoon Power Moni-
tor [27] (a standard tool for power measurement on a
mobile device) to measure the energy cost of micro-tasks.
Taking the largest micro-task in our experiments as an
example, which consists of two photos taken at the start/
end of 2-minute walking, it costs around 174 Joules. Based
on WiFi radio transmission power of 720 mW and practical
speed of 700 kB/s [28], uploading all data (�780 kB) in this
micro-task costs 0.8 Joule. Compared to the battery capacity
of 19 k Joules [29], the largest micro-task constitutes a mere
0:92 percent energy consumption.

9 RELATED WORK

Floor plan construction. Indoor floor plan construction is a
relatively new problem in mobile computing. A few pieces
of work has conducted very valuable initial investigation,
using mostly inertial andWiFi data. CrowdInside [11] lever-
ages inertial data from accelerometer, gyroscope and com-
pass to reconstruct users’ mobile trajectories, and use
“anchor points” with unique sensing data such as stairs and
locations with GPS reception to correct accumulated errors.
The trajectories serve as hints about accessible areas, from
which hallways, rooms can be identified. Such “anchor”
points are also used for user localization (e.g., Unloc [4]).
Compared to it, we combine vision and mobile techniques
of complementary strengths, extracting detailed geometry
information about individual landmarks from images,
while inferring the structure and shapes of the hallway and
rooms from inertial data. We also use optimization and
probabilistic techniques so that the results are robust to
errors and outliers in crowdsensed data.

MapGenie [10] uses mobile trajectories as well but it lever-
ages foot-mounted IMU (InertailMeasurement Unit) which is
less affected by different positions of the phone, while we use
smartphones which are more suitable for crowdsensing.
Walkie-Markie [8] leverages WiFi signals, and it uses loca-
tions where the trend of WiFi signal strength reverses direc-
tion as anchor points, which are found to be more stable than
signatures themselves. However, it only constructs the rough
hallway skeleton while we also construct both hallways and
roomswith accurate geometry and shape. SmartSLAM [9] uti-
lizes WiFi signals and applies dynamic Bayesian network on
the smartphones, and it also focuses on just hallway skeleton
instead of complete floor plans. Jiang et. al. [7] propose a series
of algorithms to detect similarities inWiFi signatures between
different rooms and hallway segments to find their adjacency,
and combine inertial data to obtain hallway lengths and orien-
tations to construct floor plans. However, theymanually asso-
ciate WiFi fingerprints with each room ID, and assume
regular building layouts (e.g., hallways with straight seg-
ments and right turns, rooms are adjoined and in rectangle
shapes), while we automatically cluster landmarks without
any manual intervention, and our occupancy grid map tech-
nique is robust to arbitrary building layouts.

SLAM. Learning maps in an unexplored environment is
the famous SLAM (Simultaneous Localization And Map-
ping) problem in robotics [30]. One has to estimate the poses
(2D/3D locations and orientations) of the robot, and loca-
tions of landmarks from robot control and environment
measurement parameters. Various sensors such as odome-
try, depth/stereo cameras and laser rangers are used.

We share similar goals with SLAM, but our input and
problem have significant differences. First, crowdsensed
data is not just noisy, but also piece-wise, collected from
mostly uncoordinated users. While in SLAM a robot usually
has special high precision sensors (e.g., laser ranges, depth/
stereo cameras) and systematically explores all accessible
areas. We use commodity mobile devices which do not
have such sensors; the mobile trajectories are also highly
noisy due to error accumulation. Second, we estimate land-
marks’ orientations as well, while SLAM does only their
locations. The existence of loops in the dependence relation-
ship of measurements also adds to the complexity of our
problem.

3D construction. There has been significant amount of lit-
erature for reconstructing the 3Dmodel of buildings in com-
puter vision. They take different approaches and require
different kinds and amount of data. Some use laser ranger
data to produce very detailed and accurate exterior mod-
els [31]. Indoor floor plan is essentially a 2D model and we
realize that indiscriminate and uniform details are not nec-
essary. This insight enables us to use vision techniques for
individual landmarks only while using much lighter weight
mobile techniques for landmark placement, hallway and
rooms. This approach greatly reduces the effort and over-
head for capturing and processing large amount of data
(some of which may require special hardware such as laser
rangers not available on commodity mobile devices), yet
still generate reasonably complete and accurate floor plans.

Indoor localization. LiFS [6] leverages the user motion to
construct the signature map and crowdsources its calibra-
tion to users. Zee [5] tracks inertial sensors in mobile devices
carried by users while simultaneously performing WiFi
scans. Multidimensional scaling technique [32] is also used
to locate WiFi APs from radio scans, so as to build a posi-
tioning system without the floor plan. These admirable
work produce the signature map, while we construct the
floor plan with geometry and shape/sizes of indoor ele-
ments such as hallways and rooms. Furthermore, our recon-
structed floor plans can be used as constraints to improve
localization accuracy (as used in Zee [5] and VeTrack [33]).

Computer vision techniques have been used for localiza-
tion as well. Sextant [34] leverages photos and gyroscope on
smartphones to measure users’ relative positions to physical
objects, thus localizing users. We simply leverage the ability
of SfM to compute the pose, thus the location of the camera
taking the image.

10 CONCLUSION

In this paper, we propose Jigsaw, which combines vision
and mobile techniques that take crowdsensed images and
inertial data to produce multi-story floor plans for complex
indoor environments. It addresses one fundamental obsta-
cle to the ubiquitous coverage of indoor localization service:
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lack of floor plans at service providers. Jigsaw enables ser-
vice providers to reconstruct floor plans at scale from
mobile users’ data, thus avoiding the intensive efforts and
time needed in business negotiations or environment sur-
veys. We have presented the detailed design and conducted
extensive experiments in three stories (two with irregular
shapes) of two large shopping malls. The results demon-
strate that Jigsaw can produce complete and accurate loca-
tions/orientations of landmarks, and structures/shapes of
hallways, rooms and connection areas.
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