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Abstract—Using vehicles equipped with wireless energy trans-
mission technology to recharge sensor nodes over the air is
a game-changer for traditional wireless sensor networks. The
recharging policy regarding when to recharge which sensor nodes
critically impacts the network performance. So far only a few
works have studied such recharging policy for the case of using a
single vehicle. In this paper, we propose NETWRAP, an NDN
based Real Time Wireless Recharging Protocol for dynamic
wireless recharging in sensor networks. The real-time recharging
framework supports single or multiple mobile vehicles. Employing
multiple mobile vehicles provides more scalability and robustness.
To efficiently deliver sensor energy status information to vehicles
in real-time, we leverage concepts and mechanisms from NDN
(Named Data Networking) and design energy monitoring and
reporting protocols. We derive theoretical results on the energy
neutral condition and the minimum number of mobile vehicles
required for perpetual network operations. Then we study how
to minimize the total traveling cost of vehicles while guaranteeing
all the sensor nodes can be recharged before their batteries
deplete. We formulate the recharge optimization problem into
a Multiple Traveling Salesman Problem with Deadlines (m-TSP
with Deadlines), which is NP-hard. To accommodate the dynamic
nature of node energy conditions with low overhead, we present
an algorithm that selects the node with the minimum weighted
sum of traveling time and residual lifetime. Our scheme not
only improves network scalability but also ensures the perpetual
operation of networks. Extensive simulation results demonstrate
the effectiveness and efficiency of the proposed design. The results
also validate the correctness of the theoretical analysis and show
significant improvements that cut the number of nonfunctional
nodes by half compared to the static scheme while maintaining
the network overhead at the same level.

Index Terms—Wireless sensor networks, mobile vehicles, named
data networking, wireless recharging, mobile energy replenishing,
perpetual operation, recharge coordination.

I. INTRODUCTION

Wireless energy transmission technique [1], [2] has opened
up a new dimension to power wireless sensor networks. Com-
pared to opportunistic energy harvesting techniques [3], [4]
where the energy supply is not always available, it delivers
energy to sensor nodes reliably without the complication of
wires or plugs. Mobile charging vehicles (called SenCars
[19] in this paper) equipped with charging devices can move
around the field and replenish node energy conveniently. The
recharging policy - when and which SenCar should recharge
which nodes and in what order - critically impacts the efficiency
and thus the lifetime of the network.

So far a few works [11], [12] have studied the recharging
policy problem. In [11], an optimization problem to max-
imize the ratio of recharging time to vehicle’s idling time

is considered. In [12], the recharge problem is studied in a
relatively static setting where nodes report their energy levels
periodically, and a centralized algorithm computes a specific
order so that a single SenCar recharges selected nodes in the
next cycle. Then a system-wide optimization is performed to
minimize the distance traveled by the SenCar and maximize
the network utility. Although commendable first steps, several
important practical issues are not considered in the static setting
in [11], [12], which may limit its applicability in real network
environments.

First, the timely, efficient and scalable gathering of energy
status information of nodes and its delivery to mobile vehicles
are important and challenging issues in themselves. The pre-
vious works do not consider these problems and assume that
such information is readily available. Second, it takes nontrivial
(e.g., 30-80 min) time to recharge a commercial off-the-shelf
battery. Finishing one round of recharging for a network of a
few hundred nodes may take several days. During this time
the energy levels of nodes may have changed significantly
due to unpredictable external events that can trigger extensive
activities and quickly drain the battery. The recharging policy
computed at the beginning of the cycle is no longer optimal.
This can cause energy depletion on some nodes, leading to
disruptions to network functions. Third, these algorithms are
designed for a single SenCar, which has limited recharging
capacity and supports networks of only limited sizes. Multiple
SenCars can support larger networks, but new algorithms
must be designed to disseminate energy status information to
SenCars and coordinate the recharging activities among them
efficiently to best leverage their recharging capacities. Finally,
the works in [11], [12] use centralized algorithms with high
complexity, which may incur extra overhead in computing the
optimal solution and may not scale to large network sizes.
Because of these practical challenges, a distributed solution is
more desirable and efficient in real network environments.

In this paper, we propose a novel real-time energy monitoring
and recharging framework that optimizes the recharging poli-
cies of SenCars under dynamic network conditions. Instead of
letting nodes report their energy levels only after a long period
as in [11], [12], a scalable and efficient energy information
aggregation protocol gathers battery energy levels continuously
from all sensor nodes upon requests by SenCars. The SenCars
receive such information and make recharging decisions based
on the latest energy information. To deal with unpredictable
emergencies where nodes may dramatically drain the battery
in short time, the recharging of sensor nodes whose energy



levels are below a critical threshold has higher priority and
takes precedence over those that can work for relatively longer
time with their residual energy.

To ensure high scalability of the proposed framework, we
apply Named Data Networking (NDN) [14] techniques to gather
and deliver energy information to SenCars. To this end, we
divide the network in a hierarchical fashion and the energy
information is aggregated bottom-up through different levels.
NDN uses names instead of locations to address data, which is
a natural match for aggregated energy information that belongs
to an area instead of any particular node. Thus the aggregated
energy information can be addressed by the area’s name. NDN
also supports mobile vehicles because it has mechanisms to
constantly update the routing states in intermediate nodes to
follow the movements of vehicles. This is important for the
SenCars to receive the energy information timely after moving.

Due to the unpredictable nature of external events, the
SenCars may need to deal with multiple concurrent emer-
gencies occurring at different locations. How to schedule and
coordinate the SenCars to recharge these nodes within their
residual lifetimes while minimizing the cost of SenCars is
called the Emergency Recharge Optimization with Multiple
SenCars (EROMS) problem in this paper. We first investigate
the necessary conditions for perpetual operations of the network
based on energy neutral requirement (i.e., the energy consumed
should be less than or equal to the energy replenished) and
formally derive the minimum number of SenCars needed to
satisfy this condition. Then we show that the EROMS problem
can be formulated as a Multiple Traveling Salesmen Problem
with Deadlines (m-TSP with Deadlines) [35], which is NP-hard.
Although heuristic algorithms exist for m-TSP with Deadlines,
they are not suitable in our context. First, most of them assume
an unlimited number of vehicles while the number of SenCars
in our problem is limited. Second, these algorithms consider a
relatively static input where the locations to be visited do not
change over time. However, in our context, new emergencies
may appear and old ones may be resolved as SenCars recharge
nodes. Finally, these algorithms may produce unbalanced work-
loads among SenCars such that some SenCars can be idle while
emergencies still exist. Therefore, we propose a new heuristic
algorithm to address such deficiencies; it decides which nodes
to recharge through a weighted sum of the traveling time
and residual lifetime of sensor nodes. We also analyze the
complexity of our algorithm and demonstrate its performance
to meet dynamic battery deadlines.

We conduct extensive simulations to demonstrate the ef-
fectiveness and efficiency of our framework. We trace the
process of energy consumption and replenishment, the numbers
of emergencies and nonfunctional nodes in different network
settings. The results demonstrate that our framework is scalable
to networks with hundreds of sensor nodes while ensuring the
perpetual operation. Then we compare with the static optimiza-
tion approach [12] in terms of the fraction of nonfunctional
nodes and response time to emergencies. The results show
great improvements on reducing the number of nonfunctional
nodes and shortening the response time to emergencies. We
also validate our theoretical results on energy neutral condition
through simulations. Given the network and SenCar parame-

ters, network administrators can easily estimate the minimum
number of SenCars needed for perpetual operations.

We make the following contributions in this paper. First, we
propose a novel real-time recharging framework for wireless
sensor networks, consisting of a set of scalable and efficient
NDN-based energy aggregation and gathering protocols. The
protocols satisfy both normal and emergency recharging needs
for multiple mobile vehicles. Second, we formally analyze
the conditions for the minimum number of SenCars needed
for perpetual operations. Third, we formulate the emergency
recharge optimization with multiple SenCars as an m-TSP with
Deadlines problem, and further propose an efficient heuristic
algorithm suitable to sensor recharging context. Finally, we
conduct extensive simulations to demonstrate the effectiveness
and efficiency of the framework, compare with existing solu-
tions and validate the correctness of the theoretical analysis.
To the best of our knowledge, this is the first effort to apply
NDN techniques in sensor networks to make recharge decisions
capable of adapting to dynamic network conditions such as
emergencies. It is also the first attempt to derive and validate the
theoretical minimum number of vehicles needed for perpetual
network operation, and the first to formalize the schedul-
ing/coordination of multiple vehicles’ recharge activities while
meeting sensor battery deadlines and minimizing total traveling
cost of vehicles.

The rest of the paper is organized as follows. Section II
discusses related work. Section III outlines the framework and
assumptions made in the network model. Section IV describes
the operations and mechanisms of our protocol followed by
Section V and Section VI on deriving the minimum number of
SenCars and solving the EROMS problem, respectively. Finally,
Section VII presents the simulation results and Section VIII
concludes the paper.

II. RELATED WORK
A. Wireless Rechargeable Sensor Networks

Recently, there have much research efforts in wireless energy
transmissions from both academia and industry [5], [6], [7],
[8], [9], [10], [11], [12], [13]. In [6], the impact of wireless
charging technology on sensor networks is investigated using
devices from Powercast [5] which are based on radio frequency
harvesting, and heuristic algorithms are developed to solve the
deployment and routing problem. In [7], deployment problems
are studied in a rechargeable sensor network built from an
industrial wireless sensing platform and commercial off-the-
shelf RFID readers. In [8], an O(k?k!) greedy algorithm is
designed to find a recharge sequence to maximize the lifetime
of sensor nodes using wireless charging, where £ is the number
of nodes in the recharge sequence. Experimental tests using
Powercast devices and insights of wireless energy replenish-
ment are also presented. In [9], a joint routing and wireless
charging scheme is proposed to improve network utilization and
prolong network lifetime. Implementations based on Powercast
devices and typical sensor nodes have been considered.

However, techniques based on radio frequency harvesting
are hindered from large deployments due to relatively low
efficiency. The seminal works [1], [2] of resonant inductive
coupling based wireless energy transmission are capable of



transferring a large amount of energy in short time with high
efficiency. Several works [10], [11], [12], [13] consider using
resonant inductive coupling to recharge sensor batteries. In
[10], batteries are allowed to be partially charged and various
recharging schemes to traverse the sensing field are explored. In
[11], the problem of periodic recharging each sensor node using
a single mobile vehicle is considered. A near-optimal solution is
provided to calculate the optimal traveling path of the mobile
car, by constructing the shortest Hamilton cycle through all
sensor nodes. In [12], the problem of jointly optimizing the
effective energy recharging and data collection with bounded
data latency is studied. A two-step approach is proposed to
recharge nodes with the least residual energy while maximizing
network utility. In [13], collaboration among multiple vehicles
to recharge not only the sensor nodes but also each other
vehicles in a line (1-D) network is studied so that a larger
network can be covered and vehicles can come back to the
starting point.

The above work makes pioneering steps in wireless recharge-
able sensor networks. However, several important practical
issues are not considered. First, in a practical 2-D network,
a single recharging vehicle cannot scale to large network
sizes. The recharge coordination problem of dispatching which
vehicle to recharge which sensor node so as to minimize the
total traveling cost is not studied. Second, how real-time energy
information can be aggregated and reported to mobile vehicles
efficiently is not considered. Third, the dynamic changes in
energy levels that occur inevitably and unpredictably during
long recharging cycles are not handled.

B. Named Data Networking (NDN)

Named Data Networking is a new network architecture
proposed recently for the Internet [14]. In NDN, data are
addressed by their names instead of hosting nodes’ locations.
The operation is based on two types of messages, Interest
and Data, and the communication is initiated by the receiver.
A receiver interested in certain data sends Interest messages
carrying the name of the desired data. The Interest message
propagates in the network following FIB (Forward Interest
Base) states towards nodes hosting desired data. It also leaves
a “trail” of PIT (Pending Interest Table) states in intermediate
nodes. Once the Interest reaches a node hosting the desired
data, Data messages can follow PIT states to traverse back to
the receiver.

So far NDN research has largely focused on the Internet, with
some efforts on mobile networking. Whether it can be used to
satisfy the needs of wireless sensor networks is still unexplored.
In this paper, we use wireless recharging as a case study to
investigate its applicability in wireless sensor networks. We find
that its hierarchical naming structure fits naturally with energy
aggregation needs, and its inherent ability to handle mobile
receivers is attractive for information delivery to recharging
vehicles.

C. Coordination of Mobile Vehicles

Adopting multiple mobile vehicles has been studied for data
collection in wireless sensor networks. In [15], a stochastic
model is presented to evaluate the performance of data collec-
tion when the vehicles follow a symmetric random walk on a

2-D grid topology. In [16], multiple controlled mobile vehicles
are adopted for data collection and the objective is to achieve
load balancing. In [17], a set of heuristics are proposed to
schedule the data collection of multiple mobile vehicles to meet
sensors’ dynamic buffer overflow time constraints. A sensor
may be visited by one or more mobile vehicles depending on
its buffer status. In [18], a set of protocols are proposed to
achieve spatial coverage equivalence, vehicle mutual avoidance
and load balancing. In [20], the problem of minimizing the
total traveling cost of multiple mobile vehicles is studied. It
formalizes the problem into covering salesman problem and
presents a tour-planning heuristic. All the existing work focuses
on data collection where mobile vehicles only need to cover
sensors in their transmission ranges, and a sensor may be visited
by one or more vehicles during a short period. However, in
wireless energy replenishment, the effective wireless recharging
range is very short compared to data transmissions, while using
multiple mobile vehicles to recharge the same sensor node
incurs high cost and should be completely avoided.

I1I. A NOVEL FRAMEWORK FOR WIRELESS
RECHARGEABLE SENSOR NETWORKS

In this section, we describe the components, network mod-
el and assumptions for our NDN-based wireless recharging
framework (NETWRAP). NDN has a few attractive benefits for
our environment. First, by sending out new Interest packets,
a mobile receiver can continuously update the routing states
(i.e., PIT entries) in intermediate nodes. Data can follow the
reverse paths traversed by the most recent Interest packets and
reach the new location of the receiver. This solves the mobility
issue of SenCars and ensures that the latest energy information
can reach them in a timely manner. Second, to scale to large
network sizes, we divide the network in a hierarchical fashion
and energy information is gathered in aggregated forms. Thus
the data are bounded to an area rather than any particular
node. This makes a natural fit for NDN: the data can be
addressed by the area’s name. Compared to a flat topology
that requires flooding messages throughout the network, such
hierarchical aggregation reduces considerable overhead by con-
fining message propagation to parts of the network. Third, NDN
provides network robustness when intermediate nodes fail. This
is ensured by resending the Interest packet by the receiver when
data do not arrive. The new Interest packet explores alternative
routes to bypass failures [14].

A. Network Components

The network consists of the following components.

SenCars and Service Station: SenCars query the network
for energy information and recharge nodes based on the
energy information collected. A service station is used for
network management and maintenance. The SenCars can be
commanded by the administrator via the service station that
has computing and communication capabilities.

Head nodes: A head is a sensor node delegated to aggregate
energy information from its subordinate area. When requested
by a SenCar or by the head of its upper level, a head queries
energy information from subordinate sub-areas at the lower
level, aggregates such information and sends to the requester.
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Fig. 1. Tllustration of area names and network components.

The head node can be changed dynamically depending on its
energy.

Proxy: An emergency occurs when a node’s residual energy
falls below a pre-determined emergency threshold (e.g., 10%).
Such events need to be taken care of immediately. A proxy
node aggregates emergencies from sensor nodes and reports
such information to the SenCar when queried. Only top-level
head nodes are proxies.

Normal Node: A sensor node not selected as a head is a
normal node. It reports energy information to head nodes, or
sends emergency directly to its proxy when its energy level
drops below an emergency recharge threshold.

B. Name Assignments and Network Model

We assume sensors are scattered uniformly randomly in
the network. The network is divided into several areas and
each area is further divided recursively. The division of the
area is based on geographical coordinates of the sensing field.
Each division generates some new sub-areas and increases the
number of /evels in the network. This process repeats until the
bottom level subarea becomes small enough such that during
the time a SenCar recharges such a subarea, the normal energy
levels of the network do not change too much to warrant
interruption of that recharge. Fig. 1 gives an example of a 2-
level network with 2 areas (solid lines), each further split into
2 sub-areas (dashed lines), where each sub-area on the second
level contains about 10 sensor nodes.

Based on the results of area divisions, we assign NDN
data names for different subareas in a hierarchical manner.
For example, Fig. 1 shows all the name assignments for
different subareas (e.g., the first level areas are “a” and “b”,
and the second level has “a/a", “a/b", ...). Thus each subarea
is identified by its unique hierarchical name. Each node has an
ID including the name of its containing bottom-level subarea
plus an identifier. For example, “a/a/2” is node “2" in subarea
“a/a”. The hierarchical names make it easy to confine the
propagation scope of a message to any subarea: nodes beyond
the intended subarea (carried by the message) can simply stop
further propagation.

In addition, we have the following assumptions: 1) Sensor
nodes are stationary and each node knows its location. 2) Nodes
have the same transmission range and messages are forwarded
over multiple hops in large networks. 3) The SenCars have
positioning systems and know their locations. The IDs and
locations of all sensor nodes, and the subarea names are known
to the SenCars (e.g., through a one-time effort during network

initialization). 4) The SenCars are equipped with powerful
antennas so that they can communicate among themselves and
to the service station directly using long range communication
technologies (e.g., cellular, WiMax). 5) Sensors might perform
different tasks thus the energy consumption is not uniform
among nodes. 6) When a SenCar finds that its own energy
is about to deplete, it moves back to the service station for
battery replacement. Since the traveling and battery replacing
time is short compared to recharge time, we ignore the time
for SenCar’s battery replacement. 7) The SenCar can approach
sensors in close proximity and induce enough currents on
sensor’s receiving coils for battery recharge.

IV. THE NDN-BASED REAL-TIME WIRELESS
RECHARGING PROTOCOL

In this section, we present the detailed design of NETWRAP.
We first give an overview of the protocol design in Section
IV-A. Then we describe different operating phases of the
protocol in Section I'V-B.

A. Protocol Overview

In NETWRAP, the SenCars obtain the most up-to-date
energy information from sensors and makes recharge decisions
in real time. The energy information is aggregated on head
nodes at different levels. To be robust, the head is usually
selected as the node having the maximum energy level in its
area. This selection process is done at the beginning of network
startup through the propagation of head selection messages.
The details will be discussed in the next subsection.

To start energy information collection, SenCars send out
energy interest messages to poll the heads on the top-level.
Once the heads receive such messages, they send lower level
energy interest messages to their child-heads in respective
subordinate areas. This process is repeated down the head
node hierarchy, until finally the bottom-level energy interest
messages reach the nodes in the bottom-level subareas.

Once a sensor node receives a bottom-level energy interest,
it responds by sending out an energy message containing its
ID and battery level. When the heads on the bottom-level
receive such energy messages, they select sensor nodes with
energy level below a normal recharge threshold (defined by
the administrator), and send the names of these nodes and
their energy information in an energy message to their parent
head nodes. This is repeated up the head node hierarchy, until
finally the top-level head nodes have the aggregated energy
information and send it to the SenCar. When multiple SenCars
query energy information simultaneously, the top-level head
nodes send the aggregated energy information to the nearest
SenCar. Thus SenCars recharge nearby normal nodes to reduce
their travel costs. The details are explained later in this section.

To reduce transmission overhead, the head is delegated par-
tial responsibilities to pre-select sensor nodes to be recharged.
At the bottom level, this is done by letting heads select nodes
with low energy levels. At upper levels, a head selects the
subordinate area which can be recharged with the most amount
of energy. Thus the SenCars can replenish the network with
more energy in one movement.

Such normal energy aggregation is conducted at the requests
of the SenCars. For emergency nodes that have dangerously



low battery levels below an emergency threshold, they send
out emergency messages to the proxy that manages its area.
The route to its proxy is built by head selection messages from
the proxy.

After completing the recharge of any node, a SenCar sends
out an emergency interest message to query whether any emer-
gency has appeared. These messages are directed to proxies
where lists of emergency nodes are stored. The proxies respond
by sending back the emergency node IDs, estimated residual
lifetimes and energy levels. SenCars receive the messages and
use the emergency recharge algorithm to decide which nodes
to recharge. Note that different from normal recharging, the
SenCar recharging an emergency node may not be the nearest
one. This is due to the urgency to avoid any battery depletion.
When a head node is low on energy, it can choose another node
with high energy, and send out a head notification message to
notify the latter to become the new head.

B. Protocol Design

We describe the detailed protocol assuming the head hierar-
chy has [ levels.

1) Head Selection: After the areas and names have been
configured, the network performs head selection from the
bottom up starting at the [-th (i.e., the lowest) level. Since
initially sensor nodes have about the same level of energy, any
of them may become a head. Each sensor node i generates a
random number z. If x > K, where K is a pre-determined
threshold, the node floods a head selection message in its [-th
level subarea, containing the name of this subarea, x4, = ,
and ID,,,, set to its own ID. Otherwise the node waits for
messages from other nodes in the area.

A node receiving such a head selection message compares
the x4, in the message with its local record x4, If its local
record is larger, the message is discarded. Otherwise, the sensor
updates its local x4, to that in the message, sets I D4, tO
that in the message, and forwards the message to its neighbors
except the node that sent this message. Finally, the node with
the maximum z wins the election and is recorded by all the
nodes in this subarea as the head.

New heads at the [-th level then contend to become heads of
the (I — 1)-th level. They flood new head selection messages
in the (I — 1)-th level subarea, carrying the area’s name, their
respective x values and IDs. Intermediate nodes perform similar
comparisons. This will elect the heads at the (I — 1)-th level.
This process is repeated recursively until head nodes of all
levels are elected.

One difference for the head selection messages starting
from the (I — 1)-th level and up is that messages carrying
smaller = than the local copy are not discarded. Instead,
they are propagated throughout the respective subarea. This
builds routing states in intermediate nodes of the subarea: An
intermediate node has one entry for each child-head, pointing
to the neighbor from which the message from that head arrives
first. Duplicate copies of the same message arriving later are
discarded.

Such states are effectively FIB (Forward Interest Base)
entries in NDN. Later a parent head at the (k — 1)th-level can
send energy interest messages to its child-heads at the k-th
level using such states. To build FIB entries for the 1st level
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Fig. 2. Example normal energy information convergence.

head nodes, they each flood a top-level head selection message
throughout the whole network. Later the energy interest queries
from the SenCars can use such states to reach them.

2) Normal Energy Interest Propagation: After the head hier-
archy is constructed, the SenCars send energy interest messages
to query for nodes needing recharge. The energy information
is gathered on demand, and top down in the hierarchy. We will
describe normal energy information collection first. Emergency
information is collected similarly, but with only top-level heads
involved to reduce latency.

For normal energy information, interest messages are sent by
the SenCars (e.g., with data name set to “/energy/normal/a" to
collect energy information from area a). Intermediate nodes use
the FIB entries established by top-level head selection messages
to forward it to all top-level head nodes. To guide the return
of future data from a top-level area, an intermediate node also
sets up a PIT (Pending Interest Table) entry pointing to the
neighbor from which the interest message towards this area is
received. Fig. 2 gives a pictorial illustration of a network with
3 levels. After an interest message is sent by the SenCar, the
energy information is converged from the bottom level to the
top level towards the SenCars.

To avoid duplicate selection of the same normal nodes
and reduce travel costs, we want only the nearest SenCar
to receive a head node’s normal energy information. To this
end, the energy interest message from each SenCar carries a
hop count increased by one at each intermediate node. When
multiple such messages towards the same top-level area are
received, an intermediate node updates its PIT entry to record
only the neighbor sending the message with the smallest hop
count. Later energy information from a head can follow such
directions to reach the nearest SenCar. After an intermediate
node forwards energy information from a top-level area, it
deletes the corresponding PIT entry.

Upon receiving an energy interest message, a top-level head
sends a new energy interest message to its child-heads, with
the data name set to all subareas of its children (e.g., from
the head node of area /a, “/energy/normal/a/*"). Similarly,
these messages reach all child-heads following FIB entries.
Intermediate nodes also set up PIT entries so that later energy
information from child-heads can go back to their parent head.
This process is repeated down the hierarchy, until finally heads
at bottom-level flood their respective subareas with interest
messages.

3) Normal Energy Report and Node Recharge: When a
sensor node receives an [-th level energy interest message, it
responds with an energy message including its ID and residual
energy. With the help of PIT entries, the message is returned



to the head of the [-th level.

The head examines if the reported residual energy is less
than the normal recharge threshold. If so, the ID of the node is
added to a list, and the energy that can be recharged to this node
is added to a summation counter. After the head has collected
these messages, it sends an aggregation message, containing the
list, the summation counter and its subarea name to its parent
head. A parent head compares such messages from its child-
heads, selects the one with the largest summation counter (i.e.,
the bottom-level subarea that can be recharged of the greatest
amount of energy), and forwards to its parent head. This process
is repeated upwards in the hierarchy. Finally, the SenCar nearest
to a top-level head receives a message for the bottom-level
subarea with the largest summation counter. It moves there and
recharges those nodes in the ID list one by one. Only after
recharging those nodes will the SenCar sends another normal

energy query.

The reason we delegate selection partially to head nodes is
twofold. First, we expect much less variation in normal energy
levels. Thus the SenCar can choose one bottom-level subarea
and finish recharging all listed nodes. Only after the whole
subarea is recharged, we expect enough changes in normal
energy distribution that warrants a new normal energy query
from the SenCar. Second, this also keeps the return message
sizes small and reduces overhead.

4) Emergency Energy Report and Node Recharge: Emer-
gency energy report is slightly different due to the urgency.
If a node detects that its energy level is below the emergency
recharge threshold, it immediately sends an emergency message
containing its ID and energy level to its proxy (i.e., its top-level
head node). Because the head node floods a top-level head
selection message during head election, the same FIB entries
can be used to forward emergency messages to the head.

Instead of waiting for recharging a whole bottom-level
subarea, a SenCar sends out emergency interest messages
to each proxy after finishing recharging any single normal
node or emergency node (e.g., with data name set to “/en-
ergy/emergency/a" to collect emergency information from the
proxy of area a). To guide the return of future data from the
proxy of a top-level area, an intermediate node sets up a PIT
entry pointing to the neighbors from which the emergency in-
terest messages towards this area are received. Later emergency
information from a proxy can follow such directions to return
to the SenCar. After an intermediate node forwards emergency
information from a proxy, it deletes the corresponding PIT
entry.

When an emergency interest message is received, the proxy
returns its list of IDs, energy levels and estimated residual
lifetime of emergency nodes, if there exists any. Compared
to normal recharge that maintains nodes’ energy at medium
levels so that they do not deplete energy very soon, emergency
recharge requires more accurate information on how long a
node can last, i.e., an estimation of the residual lifetime. In this
paper, it is calculated by taking a weighted sum of the estimated
residual lifetime in previous time slots. The estimated lifetime
L; at time slot 7 is obtained by dividing the current energy
consumption rate from residual energy. L; can be obtained by

a weighted average of previous lifetime at n time slots

Lin+Li—ny1 | Li—nto L;
Li= T et
For simplicity, we restrict the previous lifetime n used in the
calculation to 3. For example, the estimated residual lifetime
in time slot tg, t1, to and t3 is calculated as Lg, Lo/2+ L1/2,
L(]/4 + L1/4 + L2/2, and L0/8 + L1/8 + L2/4 + L3/2,
respectively. We can see that our estimation gives a dominated
weight of lifetime in the current slot, which is similar to
estimating process time in operating systems [37].

The SenCar uses the algorithm in Section II to decide which
node to recharge. It switches back to normal operation mode
only when no emergency is reported. When multiple SenCars
query emergency information simultaneously, they coordinate
with each other and make an optimal decision to assign the
emergency nodes to each of them. The procedure of emergency
assignment is described in Section II.

5) Head Hierarchy Maintenance: A head can be short on
energy, which can happen once in a while because the head
usually engages in more activities than a normal node. When
this happens, a new head is needed. Because only heads of
bottom-levels contend for higher level elections, a head at
any level is always the head of its bottom-level subarea. It
receives the energy reports from normal nodes in its bottom-
level subarea upon the normal interest query from the SenCar.
So it can choose a node with the highest energy, and floods
a head notification message to notify all nodes in the bottom-
level subarea of the new head.

The new head then triggers a new head election process in
its (I — 1)-th level subarea. It propagates a new head selection
message in its (I — 1)th subarea, but carrying its energy level
instead of the random number z. Other heads in this (I — 1)-th
level subarea do the same. Then a new (I — 1)-th head with
the maximum energy is elected. If this is the same head, the
process stops. Otherwise, the new (I — 1)-th level head triggers
the same process in its upper level subarea, until finally a
new top-level head is elected. Note that although our head
selection and maintenance scheme shares some similarities
with previous studies [21], in our scheme, NDN techniques
are adopted to provide scalable communication between head
nodes of different levels, which is new compared to previous
work.

V. THEORETICAL ANALYSIS OF ENERGY
NEUTRALITY AND MINIMUM NUMBER OF
SENCARS

In this section, we study a couple of important theoretical
questions. Given a sensor network, what is the necessary
condition for it to operate perpetually and what is the minimum
number of SenCars needed to satisfy this condition? For a
rechargeable sensor network to operate perpetually, the energy
neutral condition must be satisfied, i.e., for each sensor node
the energy replenished is no less than the energy consumed in
any arbitrarily long time period.

We use a simple Bernoulli process to model a node’s energy
consumption: with probability p it consumes unit energy in a
unit time slot [23]. The assumption is quite natural for most
of the sensing applications. For example, in an event-based



TABLE 1
TABLE OF NOTATIONS

Definition

N Set of sensor nodes with N elements

M Set of emergency nodes with M elements
S

N

p

n

Notation

at the time when SenCar makes a query

Set of SenCars with S elements

Number of sensors in the network

Probability a node consumes unit energy in a time slot
Number of time slots

R, Energy replenished for a node in n time slots
En Energy consumed for a node in n time slots
Eo Initial energy of a sensor node

C Total battery capacity

tr Maximum recharge time of a sensor node

t; Recharge time of node ¢

a Weight parameter o € [0, 1]

L Set of residual lifetime of emergency nodes

Modeling of Recharge Time Function

=
N
o

=
o
o

80

60

40¢

201

—— Recharge function
6th degree approximation

o

|
N
(=]

20 60 80

Recharged Battery Capacity (%)

LA
Time (in mins)
Fig. 3. Recharge function and approximation function by Matlab curve fitting.

sensor network, events occur sporadically and are governed by
a Poisson distribution. Once the unit time slot is small enough
such that only one event can occur during a unit time slot, the
Poisson distribution is equivalent to Bernoulli distribution [24].
A long time period consists of n unit time slots. Let R,, and
E,, denote the energy replenished and consumed for a sensor
node in n time slots, respectively, and E denote the node’s
initial energy. Table I summarizes the general notations and
their corresponding definitions in this paper.

In principle, wireless recharge is limited by how fast the coil
can transfer energy (induction between two coils) and how fast
the battery can absorb energy. The lesser of the two determines
the recharging rate. We assume that the transmitting coil can
induce enough recharge currents on the receiving coil. Resonant
inductive coupling based wireless energy transfer can easily
achieve this. It has been shown [1] that it can transfer 60 watts
of power in excess of 2 meters. When the recharge current
is high enough, the recharge time depends on how fast the
battery can absorb the charge, which is a battery characteristic.
To model the relation between battery capacity and recharge
time, we use an example of Panasonic Ni-MH AAA batteries
with 780 mAh based on available curves from the data sheets
[22]. The instantaneous voltage at time instance ¢ is mapped
to capacity ratio and the resultant recharge time function is
shown in Fig. 3. Then we use curve fitting in Matlab to obtain
an approximation function. !

The 6-th degree polynomial equation gives a closed approximation to the
original recharge time function c(t) = —2.7872x 10785 +6.814x 107645 —
6.138 x 10~4¢4 + 0.02405¢3 — 0.3541¢2 + 2.12t — 2.526 where ¢ is the
recharge time.

The energy neutral condition is
R,+Ey > E, ()

Eq. (1) states that for a long time period n, on each sensor
node, the sum of replenished energy and initial energy should
be at least as large as the consumed energy. This is a necessary
condition for the perpetual operation of the network.

From Eq. (1), we can derive the minimum number of
SenCars needed, S. We first estimate a loose upper bound
for R, in terms of S. Since it is analytically intractable to
obtain R,, an upper bound can provide reasonable estimates
of the total recharge capabilities from the SenCars. Intuitively,
SenCars reach their maximum recharging capacity when they
can “barely" keep up with the recharging needs, which means
that they keep recharging node after node without any idle time
in between, and each node has almost zero energy before being
recharged. A SenCar can replenish at most the battery’s full
capacity in the full recharge time?. During n time slots, the total
recharged energy for the whole network is the recharge rate,
(C/t,)S, times the time duration n (e.g., battery capacity C =
780 mAh, full recharge time ¢,, = 73.4 min for a Panasonic Ni-
MH AAA battery [22]). The recharged energy R,, is averaged
on each sensor node by dividing the number of sensor nodes
N in the network. Thus, the upper bound of R,, is %

Note that on the right hand side of Eq. (1), E,, is a random
variable. We have the following lemma.

Lemma 1. The probability for the energy neutral condition to

; — Rnt+Eq—np
holdlsPopfb(\/m .

Proof: Let X1, X5, ..., X, be independent and identically
distributed Bernoulli random variables for energy consumption

in each time slot with probability p. E,, = Z X,; = nX. When

i=1
n is sampled over a long time period, by the Central Limit
Theorem, we know X ~ (p, @) Thus, F,, is also normally

distributed with p(n) = np and variance o2(n) = np(1 — p)
(B, ~ N(np,np(1 — p))) [25]. Hence,

R, + Ey —

Pyp = Pr{Ry + Eo > By} — @ [ Bt Bo— ()
a?(n)

and the energy neutral condition holds with F,,,. [ ]

Proposition 1. The minimum number of SenCars required to
achieve perpetual operation is

5 t.N(2.33\/np(1 — p) + np — Ey)
B Cn

Proof: Since ®!(1) — oo, we consider the sensor net-
work achieves perpetual operation when F,, > 0.99. In other
words, to guarantee the sensor network to operate perpetually,
the probability that the energy replenished is larger than the
%4‘570—”17

energy consumed is 0.99. From ®~1(0.99) < T
np(l—p

, We
obtain the minimum number of SenCar S.
Different from [10], where partial recharge is allowed, we assume fully

recharging batteries to avoid “memory effects” that can reduce the number of
charge cycles, so that battery lifetime can be maximized.



To illustrate how Proposition 1 can be used to estimate the
minimum number of SenCars, we consider a concrete example
comprised of 500 sensor nodes with the recharge function of
Panasonic Ni-MH AAA batteries and calculate the minimum
number of SenCars needed. Assume in an application the
battery can last for 5 days on average without recharge and
the energy consumption follows the Bernoulli distribution. It
yields p(1) = 37.5mJ and o%(1) = 9.4mJ? for a time
period of 6 months in which each time slot is 1 second. Using
Proposition 1, we can calculate S = [2.41] = 3 which means
it needs at least 3 SenCars to cover 500 nodes under the
given energy consumption rate. We can see that the derivation
from Proposition 1 can help the network administrator plan the
network. Once the experimental parameters and the application
specifics from the sensors have been determined (e.g., network
size N, recharge time ¢, initial energy Ej, working probability
p, operation duration n and battery capacity C'), we can easily
obtain the minimum number of SenCars needed. As will be
seen later, the correctness of the derivation is also verified in
simulations.

VI. EMERGENCY RECHARGE OPTIMIZATION
ALGORITHM

In this section, we study the Emergency Recharge Optimiza-
tion with Multiple SenCars problem (EROMS). Our objective
is to minimize the total traveling cost of the SenCars while
guaranteeing recharge before sensors’ battery depletion. We
formalize this problem into a Multiple Traveling Salesmen
Problem with Deadlines. We show the problem is NP-hard and
propose a heuristic algorithm suitable for dynamic real-time
recharging.

A. Problem Formulation

Given a set of SenCars S and a set of emergency nodes
M, we formalize the problem as follows. Consider a graph
G = (V, E), where Vo(k) is the starting position of SenCar £k,
and V; (i € M) is the location of emergency sensor ¢ to be
visited. E is the set of edges. Each edge F;; has a latency cost
cij = t; + t;;, where t; is the time to recharge node ¢ from
its current energy level to full capacity, and ¢;; is the traveling
time from node ¢ to node j. For SenCar k, cé];) represents its
cost from its initial position O to node j. For each sensor node
i, the residual lifetime is L;. A; specifies the arrival time for a
SenCar at sensor node +.

We introduce decision variables x;; for edge F;;. The
decision variable is 1 if an edge is visited, otherwise it is
0. Additionally, xé];) is 1 if SenCar £ moves from its initial
position to node j. u; is the position of vertex ¢ in the path. We
virtually make the SenCars return to Vo(k) after recharging all
the selected nodes by setting c§§> = 0,17 € M, thus the EROMS
problem can be formulated as the Multiple Start Traveling
Salesman Problem with Deadlines in which multiple traveling
salesmen start from different locations to visit a set of cities
within their deadlines.

M M S
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=1
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dwi =) g =LVE=2,..., M, 4)
i=1 j=1
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zij €{0,1}:Vi,j =1,2,..., M, (6)
2 <wu; < M;Vi=2,3,..., M, (7)
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Constraint (3) guarantees that the recharge path starts at 0 and
finishes at 0. Constraint (4) ensures the connectivity of the
path and that every vertex is visited at most once. Constraint
(5) guarantees that the arrival time of the SenCar is within
sensor’s residual lifetime. Constraint (6) imposes z;; to be
0-1 valued. Constraints (7) and (8) eliminate the subtour in
the planned route. The subtour elimination constraints are
formulated according to [26], [27].

We now show that EROMS is NP-hard. The classic Multiple
Traveling Salesman Problem (m-TSP) can be considered as a
special case of the EROMS problem with the deadline to visit
a city extended from O to infinity, and all the SenCars starting
from one position. A solution to the EROMS problem would
give a solution to m-TSP. Since m-TSP is known to be NP-
hard [28], the EROMS problem is NP-hard.

B. Minimum Weighted Sum Heuristic Algorithm and Complex-
ity Analysis

In this subsection, we propose a heuristic algorithm for the
EROMS problem that jointly considers the residual lifetime
and traveling time. In general, m-TSP is closely related to the
Vehicle Routing Problem (VRP) in which a fleet of vehicles
start from the same depot and visit client locations except
that in m-TSP, salesmen are allowed to start from different
locations. The m-TSP with Deadlines can be considered as
a special case of the Multiple Traveling Salesman Problem
with Time Windows (m-TSPTW)3. This problem is similar to
Vehicle Routing Problem with Time Window (VRPTW) which
has been studied in the literature and a handful of optimal and
approximation algorithms are available [29], [30], [31], [32],
[33], [34], [35], [36].

The approaches to VRPTW are usually divided into two
phases. A construction of a feasible tour is sought in the first
phase and the tour is interactively improved in the second
phase. In [29], several heuristic algorithms are proposed and a
computational evaluation is presented to study the performance.
In [30], a local search algorithm is proposed to reduce the
computation of checking feasibility constraint of TSPTW. In
[31], the minimum number of vehicles to meet the time window
requirements is studied by utilizing precedence graphs. An
insertion heuristic to TSPTW is proposed in [36]. The scheme
builds a route by inserting a node each time. While checking
the time feasibility, backtracking is sometimes needed and the

3m-TSP with Deadlines is m-TSPTW having all release time at 0.



solution is further improved in the post-optimization phase.
However, since checking the tour feasibility is as hard as
the original problem [30], these approaches are still quite
computationally expensive.

On the other hand, several approximation algorithms have
been proposed for the VRPTW problem in [32], [35]. However,
these algorithms are not suitable for the recharging problem
context. First, they assume the number of vehicles is unlimited
but the number of SenCars is bounded in our problem®.
Second, existing algorithms deal with a static problem input.
However, in EROMS, new emergencies may appear at any
time, and residual node lifetimes also vary due to ongoing
sensing activities. Maintaining an optimal schedule would be-
come prohibitively expensive. Finally, existing algorithms may
generate unbalanced workloads among SenCars, resulting in
idling SenCars while emergencies still exist.

Thus we present a heuristic algorithm that schedules recharge
assignments among SenCars. Two important metrics affect the
recharging order between node ¢ and node j: the traveling time
between node i to node j, and their residual lifetime L; and
L;. If node j has a small L; such that it would be dead if a
SenCar recharges node i first, node j should be visited first.

We use a weighted sum w;; of traveling time from the current
node 4 to next node j and the residual lifetime of node j,

Wij = atz-]- + (1 — a)L]-. (9)

w;; is used to decide which node j to recharge next. A sensor
node with a smaller weighted value should be visited at a higher
priority. When o = 1, the algorithm reduces to nearest node
selection that the SenCars always recharge the closest node first
regardless of battery deadlines; when o = 0, it picks the node
with the earliest battery deadline first regardless of the traveling
distance.

The value of « greatly affects the schedule. Fig. 4 gives an
example of a SenCar and 3 sensor nodes. The residual lifetime
and the traveling time on each edge are shown in the figure, and
o varies from 0, 0.5 to 1. We assume that recharging a sensor
battery takes 1 hour to finish. At time O s, the SenCar calculates
the weight to sensor nodes 1, 2 and 3. The minimum weights
are circled. When a = 1, node 3 has the minimum weight;
when a = 0.5,1, node 1 has the minimum weight. However,
if node 3 is chosen to be the next node, node 1 would have
been dead after finishing recharging node 3. Thus a@ = 1 is
infeasible in this example. & = 0.5 and o = 0 generate the
same schedule 1 — 3 — 2.

From this example, we can see that the value « affects
the feasibility of the solution. We might expect that the total
distance be inversely proportional to « and a binary search
may locate the maximum feasible o. However, some tests have
shown that it is not always true. We decide to search through
a list of A distinct « values, e.g., « = 0.0,0.1,...,1.0 where
A = 11. We find that this choice achieves a desirable tradeoff
between optimality and complexity.

When a SenCar performs calculation, it communicates via
a long range radio with other SenCars to know their positions

4Adopting limited number of vehicles usually requires a relaxed time
constraint which allows late arrivals [33], [34]. However, the time constraint
should not be relaxed in the EROMS problem.
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Fig. 4. Example of Minimum Weighted Sum Algorithm.

TABLE II
MINIMUM WEIGHTED SUM ALGORITHM

Input: weight parameter « € [0, 1] in stepsize 1/(A — 1),
position of SenCar at node k, emergency set M, traveling
time from ¢ to j, ¢, residual lifetime L;, Vi, j € M,
node list {2; at service station, i € N
Output: result weight parameter « and schedule sequence Q)
Initialize minDist = oo
For « =0,...,1
While M # ()
compute weight wg; < atr; + (1 — a)L;
communicate service station If
Q; =1, Set wg; = 00
End if
find j < arg min wg;
J

Qt<—Qt+j,M(—M—j
update Vie M, L; < L; — tr; — t;
If ., <0
declare infeasible and break (Inform service station).
End if
move to position j, k <— j, recharge and update L;
End while
If feasible
compute total cost dist(Q):)
If dist(Q:) < minDist,
minDist < dist(Q:), Q + Q:
End if
End if
End for

for computing the weighted sum. Since the SenCar is equipped
with high-capacity batteries and powerful antennas, using long
range communication among the SenCars and service station is
a reasonable option here. Current technology such as cellular
communications and WiMax can support data transmission up
to several miles, which would suffice the scale for a sensor
network. To avoid conflicts where multiple SenCars choose
the same node for recharge, we utilize the service station to
store and update the availability of each node. The procedure
is similar to that for shared memory access in operating systems
[37]. The service station maintains a 0-1 valued node list
Q. Once a sensor is chosen, its value is set to 1 (locked).
Otherwise, it is 0. The value should be changed back from
1 to 0 when a SenCar finishes recharging that node. A SenCar
can simply communicate with the service station, exclude nodes
already selected by other SenCars, and notify the service station
of the status of nodes it chooses. Table II shows the pseudo-
code of the entire algorithm.

We now analyze the complexity of the heuristic algorithm.
Note that the node selection operations are executed on each
SenCar, which takes O(M) time. For each SenCar, it performs



TABLE III
PARAMETER SETTINGS

Value
200 x 200, 282 x 282m?
250, 350, 500, 1000

Parameter
Field Length
Number of Nodes N

Number of SenCars S 1,2,3,4,5
Number of Levels 3

Areas on [-th level 4t

Battery Capacity 780 mAh
Transmission Range 18 m

Unit Energy Consumption 7 37.5 ml]

Energy Consumption Probability p | 0.5

SenCar Speed 1 m/s
Maximum Recharge Time 73.4 mins
Normal Recharge Threshold 50%
Emergency Recharge Threshold 10%
Simulation Time 6 months

M /S rounds of node selections and the total number of tests

on « is A. Thus, the total computational complexity of our
. . . . 2

heuristic algorithm is O(%).

VII. PERFORMANCE EVALUATION

In this section, we use simulation to evaluate the effective-
ness and efficiency of our framework. We have developed a
discrete event-driven simulator using POSIX thread program-
ming in C language. Message communications between sensor
nodes are emulated using inter-process communication in our
simulator. Our simulator is fully capable of realizing message
communication based on NDN (message routing), information
convergence, recharge and SenCar mobility. To evaluate the
performance of NETWRAP, we examine two network sizes
of 500 and 1000 sensor nodes, uniformly randomly distributed
over a 200 x 200m? and 282 x 282m? square field, respectively.
The field size is chosen so that the two cases have the same
node density. The network consists of 3-level hierarchy with 4!
number of subareas at the [-th level. The energy consumption
on each sensor is a Bernoulli random variable with probability
p to consume unit energy (37.5 mlJ). If a sensor node works
continuously at this rate, the battery can last for 5 days.

To evaluate energy overhead of the protocol, we use the
model presented in [38], i.e., e; = (e1d% +ep)l, where e, is the
energy consumption while transmitting a message of [ bits, d,
is the transmission range, e; is the loss coefficient per bit, « is
the path loss exponent and e is the excessive energy consumed
on sensing, coding, modulations, etc.’> The relationship between
recharged energy and recharge time follows that of Panasonic
Ni-MH AAA battery [22]. To understand the impact of the
number of SenCars on network performance, we show marginal
cases where the number of SenCars is not sufficient while
adding one more SenCar would guarantee perpetual operations.
These cases are S = 2,3 for N = 500 and S = 4,5 for
N = 1000. We will present these cases in the following and
validate the correctness of Proposition 1. All the parameter
settings in the simulation are listed in Table III.

A. Evaluation of Weighted-sum Algorithm

In this subsection, we evaluate the effectiveness of the
weighted-sum algorithm in finding the shortest path and achiev-
ing no node failure. We examine cases when 4 SenCars are em-
ployed. We assume the locations of emergencies are randomly

Sd, = 15m, eg = 45 x 10~ J/bit, e; = 10 x 10~9 Jibit, a = 2.

TABLE IV
TOTAL TRAVELING DISTANCE OF SENCARS, D

M | D(a=0) D (a=0.2) | D(a=04)
72 | 7524.1 7473.3 7740.2

80 | 7652.4 7578.9 7706.6

88 | 8662.6 8128.3 7251.6

96 | Infeasible Infeasible Infeasible
M | D@@=06) | D@=0.8) | D((a=1)
72 | 6843.5 6390.6 Infeasible

80 | 7271.8 6941.0 Infeasible

88 | 6998.3 Infeasible Infeasible
96 | Infeasible Infeasible Infeasible

distributed in the field of 282 x 282m?2, and the residual energy
uniformly distributed from zero to the emergency threshold.
The corresponding residual lifetime is calculated by dividing
the residual energy by pr., the expected energy consumption
in unit time.

Table IV shows the total distance of SenCars when the
number of concurrent emergencies M increases from 72 to 96
in a step of 8. Note that when the number reaches 96, the set of
4 SenCar is not sufficient to resolve all the emergencies without
complete battery depletion. For M = 88, weight parameter
a = 0.8,1 are not feasible and for M = 72,88, o = 1 is not
feasible either. We notice that in the case when o = 1, some
nodes that suffer from energy shortage may not get recharged
in a higher priority thereby rendering the result infeasible to
avoid battery depletion. As we can see from this example, the
choice of « is critical, when « approaches 1, the total distance
is decreased at the risk of becoming infeasible. Thus we need
to search for « in our algorithm. In real applications, the value
of « is subject to change and determined by real-time statistical
data and parameters.
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B. Performance Comparison with a Static Optimization Ap-
proach

In this subsection, we compare network performance of our
real-time framework with the static optimization approach used
in [12]. Since the static approach has only designed algorithms
for a single SenCar, we set the number of SenCar at 1 and
compare the percentage of nonfunctional nodes and response
time to emergencies when N = 250, 300. The percentage of
nonfunctional nodes indicates how many nodes have depleted
energy and are waiting for the SenCar. The response time to
emergencies is measured from the time a node reports emergen-
cy until it is resolved by the SenCar. A shorter response time
indicates that the SenCar can respond faster to emergencies.

In the static approach, the SenCar selects nodes with en-
ergy less than the normal recharge threshold, calculates the
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minimum traveling distance throughout these nodes and per-
forms recharge one by one. Fig. 5(a) shows the percentage of
nonfunctional nodes. We can see the number of nonfunctional
nodes is much higher in the static optimization approach, e.g.
when N = 250, there are around 15% nonfunctional nodes
in NETWRAP but nearly 30% in the static approach. This is
because that some nodes in the pre-computed sequence may
consume energy at faster rates, making the initial sequence
computed in the static method no longer valid. Thus it cannot
cover all the sensor nodes before energy depletion. Second, a
node in emergency is not treated with priority in the static
method. Thus a node in emergency may deplete its energy
before the SenCar arrives, resulting in high percentage of
nonfunctional nodes. The results in Fig. 5(a) clearly indicate
that our real-time framework is more effective in recharging
sensor nodes and resolving emergencies.

Fig. 5(b) shows the average response time to emergencies.
We can see while NETWRAP takes around 10 and 12.5 hours
(for N = 250 and 350 respectively), the static approach takes
drastically longer times (around 61 and 160 hours, almost one
order of magnitude longer). This is because in [12] emergency
and normal nodes are not differentiated. A pre-computed route
containing both types of nodes would result in extremely long
waiting times for emergency nodes. The approach degrades
fast and becomes infeasible as the network size increases. In
contrast, NETWRAP prioritizes nodes in emergencys; it resolves
nonfunctional situations much faster than the static approach.

C. Network Performance

In this subsection, we evaluate the energy evolution of the
network, the number of emergency and nonfunctional (i.e.,
energy depleted) nodes of the network, and the maintenance
cost of the framework.

1) Energy Evolution: First, we show the energy evolution
in the networks with 500 nodes and 1000 nodes served by
different numbers of SenCars, compared to the upper bounds of
total recharge capabilities. In Fig. 3, the maximum recharging
rate is achieved in the 17-th minute to 45-th minute duration. It
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replenishes 75% of the battery energy, equivalent to 433 J/min.
The upper bound is calculated by assuming that all the SenCars
are performing recharge at maximum recharging rates all the
time. In Fig. 6, the amount of energy consumed, replenished
and recharge upper bound in every one-hour time slot is plotted
as functions of the simulation time.

In Fig. 6(a) and (c), we can see that the consumed energy
“steps down” to a lower level around 400 hours and then enters
equilibrium. This is because a portion of sensor nodes deplete
their energy and do not get recharged. In these two scenarios
the energy neutral condition has been violated, simply because
the number of SenCars is not enough. Fig. 6(b) and (d) show
the energy evolution when the number of SenCars is increased
by 1, both of which satisfy the energy neutral condition at the
equilibrium and there is no such “step-down” effect in energy
consumption. The gap between the recharge upper bound and
energy replenished is due to that there are traveling time and
idling time between two consecutive recharges in simulations.
In addition, the SenCars may perform normal recharge in
which the recharging rates are much lower than the maximum
recharging rates used for calculating the upper bound.

The energy distribution among nodes also carries valuable
information about the health of the network. Higher average
energy distribution is more robust to unexpected surges in
energy consumption. Fig. 7 shows the energy distribution of
N =500, S =2,3and N = 800, S = 4,5. To see the benefits
of more SenCars, compare Fig. 7(a) to Fig. 7(b). The latter has
energy distribution that concentrates around a higher average
value. In Fig. 7(d) for a network size of 1000 sensors, the
number of nodes with energy below the emergency threshold
is significantly lower than that in Fig. 7(c).

2) Number of Emergencies: Fig. 8 compares the percentage
of nodes in emergency and nonfunctional (i.e., energy at zero)
status for networks of 500 and 1000 nodes with different
numbers of SenCars. First, we can see that there are surges
in the numbers of emergency and nonfunctional nodes during
the first 200 hours. This is due to the fact that the SenCars only
responds to requests when the node energy is below the normal
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recharge threshold. When such requests swarm into the job
queues on the SenCars at the beginning of 200 hours, we can
see that the SenCars’ capacity has been temporarily exceeded.
As the energy of sensors is restored, the numbers of emergency
and nonfunctional nodes decrease sharply.

To illustrate the consequences of insufficient number of Sen-
Cars, we vary the number of SenCars .S over a range including
the minimum number needed for energy neutral. Fig. 8 (a) and
(b) show the number of emergency and nonfunctional nodes
over time. For cases N = 500,55 = 2 and N = 1000,S5 = 4
when the number of SenCars is insufficient for energy neutral,
we can see that about 30% nodes are in constant emergency
and 20% nodes are in nonfunctional status after the network
achieves equilibrium. For N = 500, S = 3, there are occasional
nonfunctional nodes but they are soon recharged by the Sen-
Cars. For a majority of the time, the number of nonfunctional
nodes stays at zero. For N = 1000,S = 5, the number of
nonfunctional nodes stays at zero at equilibrium with only a
small number of emergencies.

Recall from Proposition 1 that the minimum number of
SenCars for N = 500 and N = 1000 can be calculated as
S =[241] =3 and S = [4.84] = 5 for the given parameter
settings in Table III. These numbers match well with our simu-
lation results that S = 3, 5 are the minimum number of SenCars
to achieve perpetual operation at equilibrium, respectively. By
utilizing our theoretical analysis, the network administrator
can make reasonable estimations for the minimum number of
SenCars needed when planning a network.

D. Cost Evaluation

1) Comparison of Energy Information Collection Schemes:
We compare energy consumption for different energy informa-
tion collection schemes. Rather than collecting energy informa-
tion at the SenCars, another method is to route it through multi-
hop transmission to the service station. The service station
computes recharge schedules and disseminates decisions to
SenCars via long range radio. A challenge to this alternative

Energy Overhead Evaluation
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scheme is that more energy is consumed on nodes near the
service station. For demonstration purposes, we draw the heat
map of energy consumed in a one-hour interval after the
network enters equilibrium in Fig. 9. First, we observe that
more energy is consumed if the information is routed back to
the service station, i.e., 3-4 times of that to route it to SenCars.
Second, more energy is consumed on nodes near the service
station, which is shown as bright spot in Fig. 9(a). Since a
rechargeable battery has a limited number of recharging cycles,
higher loads on these nodes result in more frequent recharge
and faster battery expiration.

2) Evaluation of Protocol Overhead: We evaluate the energy
overhead incurred during transmission of all types of messages
sent by sensor nodes or SenCars, and compare with that of the
static scheme in [12], where energy information is routed to
the service station every 6 hours. Fig. 10 shows the average
energy overhead for each node per hour in a 6 month period
for different scenarios. Due to head selection, our protocol has
certain amount of overhead (around 6-8 mJ/h per node) at the
beginning. We plot the energy overhead after the networks enter
equilibrium.

First, we can see that the average energy overhead is from
0.1 to 1 mJ. Compared to the average energy consumption
of 135 J/h (i.e., average energy consumption per slot 37.5
mJ times 3600s) due to sensing activities for each node, the
overhead is negligible. Second, we can see that the average
energy overhead is similar to that the static scheme. Intuitively,
our protocol could incur more energy overhead because energy
information is collected more frequently. However, the static
scheme requires the energy information routed back to the
service station. Thus unbalanced energy consumption on nodes
near the service station is inevitable. The scalability of the
scheme degrades when the size of the network increases. In
contrast, delivering the energy information to multiple mobile
SenCars alleviates the unbalance in our protocol.

The energy overhead to gather emergency energy information
is not significant in our protocol. Both the emergency interests
from SenCars and emergency reports from nodes are sent
directly to proxies (i.e., top-level heads) without propagating
through the hierarchy, leading to less energy overhead. More
importantly, when the number of SenCars is sufficient, most
of the time the network has very small fraction of nodes in
emergency.

Normal energy information gathers causes more overhead.
Upon receiving energy interests, the heads need to poll their
descendants in a top-down manner which finally results in the



TABLE V
BALANCE OF LOAD ON SENCARS

SenCar 1 2 3 4 5
N =500, S =2 51% | 49% | - - -
N =500, S =3 35% | 34% | 31% | - -
N =1000, S =4 | 25% | 25% | 25% | 25% | -
N =1000, S=5 | 22% | 20% | 20% | 19% | 19%
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broadcast of energy interest message in subareas at the bottom-
level. Such broadcast, as well as the reply from each node,
leads to the increase of the number of messages transmitted
and the overhead. When the number of SenCars is sufficient as
N =500,S5 =3 and N = 1000, .S = 5, more energy overhead
is observed.

3) Evaluation of Load Balance and Mileage on SenCar-
s: We monitor the energy replenished by each SenCar and
compare their workloads. The workload is measured by the
amount of energy replenished to sensor nodes during the entire
simulation period. Table V shows that the workloads are well
balanced in all four scenarios due to the effective coordination
in our framework. The SenCars share the work evenly and no
SenCar is overloaded. On the other hand, we use the mileages
SenCars travel to evaluate the cost (e.g., the energy consumed)
for SenCars to move around. Fig. 11 shows the accumulated
mileages in 6 months. For both network sizes, the networks
with fewer SenCars (500 nodes and 2 SenCars, 1000 nodes
and 4 SenCars) have lower mileage compared with the same
network with more SenCars (500 nodes and 3 SenCars, 1000
nodes and 5 SenCars), respectively. This is due to the presence
of nonfunctional nodes. According to the calculation of weight
for emergency selection (Eq. (9)), decision is made based on the
residual lifetime of the nodes and the traveling time from the
SenCars to the nodes. For the networks with fewer SenCars,
there are always approximate 20% nonfunctional nodes after
the networks enter equilibrium. The weights are dominated
by the traveling time which is proportional to the distances
from the SenCars to these nodes. Thus the SenCars always
choose the nearest nodes for recharge. For the network with
more SenCars, however, the traveling time is not the dominating
factor, thus the SenCars may choose a farther node with shorter
residual lifetime for recharge to avoid battery depletion. This
causes the increase of SenCar mileage.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we study how to coordinate multiple mobile
vehicles to recharge sensors and propose a novel NDN-based
real-time wireless energy replenishment framework. In the

framework, a comprehensive set of communication protocols
are developed using NDN concepts and mechanisms to pro-
vide real-time energy information gathering and delivery. The
protocols can adapt to unpredictable network conditions and
satisfy the needs for both normal and emergency recharging.
Then we formally analyze the probability for the energy neutral
condition to hold, which is required for perpetual network
operation. In the analysis, we derive the minimum number of
SenCars needed to achieve perpetual operations. To address
concurrent emergency situations, we model the Emergency
Recharge Optimization problem with multiple SenCars into the
m-TSP with Deadline problem and provide a fast, efficient
heuristic algorithm suitable for dynamic network conditions.
The extensive simulation results demonstrate the efficiency and
effectiveness of the proposed algorithm and the framework
in improving network performance compared to the static
optimization approach and other methods of energy informa-
tion collection. We also validate the correctness of theoretical
analysis on the minimum number of SenCars needed.

There are some interesting issues that deserve further study in
future. One important practical aspect is the recharge capacity
of the SenCar, and its own energy consumption in moving.
Such factors should be included in the optimization formulation
to understand their impacts on recharge decisions. In addition,
since the resources are limited on the SenCars, important nodes
(e.g., cluster heads, proxies) may need some priority in recharg-
ing. Another important issue is the distributed decision and
coordination among SenCars. Currently, the decisions are aided
by the service station with long range radio transmissions. A
distributed design would allow SenCars to coordinate with each
other to make decisions, which is more robust and potentially
more efficient.
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