
1

Resource Allocation and Consensus of Blockchains
in Pervasive Edge Computing Environments

Yaodong Huang∗, Jiarui Zhang∗, Jun Duan†, Bin Xiao‡, Fan Ye∗, Yuanyuan Yang∗
∗Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794

{yaodong.huang, jiarui.zhang.2, fan.ye, yuanyuan.yang}@stonybook.edu
†IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

jun.duan@ibm.com
‡Department of Computing, The Hong Kong Polytechnic University, Hong Kong

csbxiao@comp.polyu.edu.hk

Abstract—Edge devices with sensing, storage, and communi-
cation resources are penetrating our daily lives. These resources
make it possible for edge devices to conduct data transactions
(e.g., micro-payments, micro-access control). The blockchain
technology can be used to ensure transaction unmodifiable and
undeniable. In this paper, we propose a blockchain system that
adapts to the limitations of edge devices. The new blockchain
system can fairly and efficiently allocate storage resources on
edge devices, which makes it scalable. We find the optimal peer
nodes for transaction data storage and propose a recent block
storage allocation scheme for quick retrieval of missing blocks.
We develop data migration algorithms to dynamically reallocate
data and block storage to adapt topology changes in the network.
The proposed blockchain system can also reach consensus with
low energy consumption in edge devices with a new Proof of
Stake mechanism. Extensive simulations show that our proposed
blockchain system works efficiently in edge environments. On
average, the new system uses 19% less time and consumes 87%
less battery power when compared with traditional blockchain
systems.

Keywords—Pervasive edge computing, Blockchain, Proof of
Stake

I. INTRODUCTION

Innovative edge devices like IoT devices, smartphones, and
even vehicles change the way how we connect to the physical
world. These edge devices are creating a massive amount of
data as they become more and more pervasive and powerful.
With the increasing volume of data generated at the edge,
sharing data among peer edge devices allows data being
processed locally without the involvement of cloud or other
centralized authority.

There are many current applications that utilized edge
devices to provide valuable data. Nokia is offering IoT devices
that produce real-time sensing data and can provide sensing-
as-a-services for environment monitoring and risk manage-
ment [1], [2]. “We Media” content creators can create video
clips, fictions, periodicals, compositions, and other types of
digital contents and can be directly sold to customers through
the platform such as Gumroad [3], [4]. Although such appli-
cations are now used worldwide through the Internet, many of
them also have great potential in small scale edge scenarios,
e.g., local environment monitoring, face-to-face data trading
and recommendation.

Traditionally, many of these applications require a third
party to manage subscriptions, payments, and data access
control for creators and users. However, the third-party model
may have availability, dependability, and capabilities issues,
especially in edge scenarios. First, when sharing and trading
data in edge scenarios, the backend Internet connection is not
necessary and sometimes not applicable. Using a well-known
online platform is not always possible in such a distributed
environment, and may suffer from “a central point of failure”.
Second, the third-party platform may also face adverse events
[5], mostly related to trust and privacy concerns, which may
diminish the reliability of such platforms. Third, even we have
a trusted entity locally, the capabilities for all transactions may
cause huge communication and computation overhead, which
is not applicable for edge devices which has much fewer
resources. In peer edge environments, we aim at achieving
reliable data accessing with managing micro-access control
and micro-payment transactions in a distributed manner. The
blockchain technology is an applicable, secure, and distributed
ledger for sharing and processing such micro-payment and
micro-access control information in such distributed environ-
ments.

The blockchain technology is now being used widely in
cryptocurrencies. A blockchain consists of a chain of blocks,
which is a kind of record or ledger. Each block contains
the hash result from its previous block to form a chain. The
blockchain has many security features over a distributed sys-
tem. First, a complete history is kept throughout the network.
Thus, it is easy to restore and verify the block information a
user obtains. Second, a blockchain is designed to be resistant
to modification of its records. Theoretically, in Proof of Stake
consensus, unless malicious users hold more than half of the
stakes [6], neither the block in the chain nor its contained
data can be easily modified. Third, it is a disintermediation
[7] system, meaning that there is no need for a trusted third-
party to verify data, thus it can also avoid central point failure.

Despite the advantages of blockchain technology in such
distributed systems, the edge devices have certain constraints
on resources, especially storage and battery. The complexity
and data duplication of the typical blockchain system make
it impossible to deploy that on edge environments directly.
Thus, we are facing three design challenges to overcome the

2

limitation of edge devices: 1) how to store data in the network
with limited storage optimally, 2) how to adjust the data
storage when device moves, and 3) how to reach consensus
with low energy consumption in edge devices. Limited storage
and communication capabilities require storing data and blocks
separately on certain devices for reliable data accessing. The
heterogeneity of different devices requires fair allocation over
the resources, store fewer data items on devices with fewer
resources. The mobility of devices requires data to be migrated
to new places to keep reliable access and fair storage. Battery
limitations require energy-saving consensus design in the
forging process.

In this paper, we first design an optimal resource allocation
strategy for applying blockchain to peer edge environments.
We focus on building the platform for security but not timely
data trading transactions in edge environments. We compress
the storage of blocks by storing metadata instead of a large
volume of actual data. The metadata items contain information
for corresponding data. They also include the signature to keep
data from illegitimate modification. We then store data and
blocks at optimal places for fast user access, and keep fair
resource allocation considering the heterogeneity of different
devices. We further propose algorithms to reallocate data and
block storages to adapt topology changes of the network due
to node mobility. We also propose a new Proof of Stake
(PoS) consensus mechanism to reduce the energy consumption
for generating new blocks in edge environments. Extensive
simulations show that our proposed blockchain system can
achieve fast data and block access, fairness in data storage,
and low computational overhead for block generating.

We make the following contributions in this paper.

• We design a blockchain system targeting resource allo-
cation and block generating consensus on edge environ-
ments to achieve less storage and energy consumption
compared to traditional blockchain systems.

• We propose a resource allocation strategy to find optimal
places to store data and blocks. We formulate the problem
of optimal storage allocation for reliable access and fair
storage of data and blocks. We also provide a strategy to
store recent blocks for quick retrieval of missing blocks.

• We propose optimal and heuristic data migration algo-
rithms to reallocate data and block storage under network
topology changes due to node mobility.

• We propose a new PoS mechanism that is suitable for
edge devices with limited battery. The new PoS consensus
mechanism can generate new blocks with low energy
consumption on edge devices.

• We implement a distributed system and further conduct
extensive simulations in peer edge device networks to
evaluate the performance. Simulation results show that
the proposed blockchain system can achieve fast data
access with 19% less time, fair data storage with disparity
measurement less than 0.2, and consensus with 87% less
energy compared with traditional blockchain systems.

The rest of this paper is organized as follows. In Section
II we discuss some related work on blockchain systems and
peer edge networks. In Section III we discuss the model of

our designed blockchain system. In Section IV we propose
our block resource allocation strategies on edge environments.
In Section V we propose a new Proof of Stake mechanism.
We evaluate the proposed blockchain system in Section VI.
Finally, we conclude the paper and discuss future work in
Section VII.

II. RELATED WORK

In this section, we discuss the related work over blockchain,
edge computing and resource allocation.

A. Blockchain
The blockchain technology is proposed in 2008 by Satoshi

Nakamoto [8] and has been widely used in cryptocurrencies
ever since. It consists of a series of blocks linked using
cryptography. Each block typically contains a hash result from
the previous block, a timestamp, a hash for the block itself,
and some other items based on application scenarios. Together
these blocks form a chain. The blockchain can serve as a
distributed ledger for storing data among devices [9], and data
cannot be easily changed due to the cryptography features.
Intuitively, if a malicious user wants to tamper with a piece
of data, it has to make up a whole chain. The time and
energy used to produce a fake chain are not worth the benefit
it can get. The anti-manipulation feature of blockchain lays
the foundation for cryptocurrencies, e.g., Bitcoin [8], Litecoin
[10], and Ethereum [11].

Although blockchain technology has some security features,
data transmission and storage remain challenging in distributed
systems. The traditional blockchain requires each participating
user to store the whole chain for security and performance,
and each new transaction and each new block are broadcasted
over the internet. Such huge transmission and storage overhead
draw some attention to improving the storage consumption
and data propagation over the blockchain. Ozisik et al. [12]
use bloom-filter and IBLT (invertible bloom lookup table) to
reduce the transmission overhead in the blockchain. Eyal et al.
propose the Bitcoin-NG [13] to reduce the transmission and
bandwidth by creating a new micro-block chain to minimize
the amount of data transmitted.

The security of blockchain is build over the cryptography
technologies. The traditional concept of mining is for miners
competing with each other solving a mathematics puzzle.
Whoever solves the puzzle first has the privilege to write the
next block. This concept is called Proof of Work (PoW) [8],
[14]. Data from Proof of Work are often hard to obtain but
easy to get verified. Another emerging concept is called Proof
of Stake (PoS) [15], [16]. The stake is a kind of publicly
verifiable virtual resource of a specific user that ties to its
historic data such as wealth, age, storage, or combination of
those. Proof of Stake achieves the consensus from the publicly-
owned data of the stake of users. Since PoS does not rely
on exhaustively solving mathematic puzzles, it saves a lot
of energy for mining a new block. Instead, history is very
crucial for every node to reach a consensus about what a node
owns. It can achieve consensus on adding new blocks, but the
computational power is significantly decreased compared with
PoW.

3

B. Edge Computing

On the contrary of cloud computing which moves the
computing to the centralized cloud, edge computing moves the
computing work to the distributed nodes on the edge of the
network. The computing mostly or entirely happens on nodes
near to or inside the edge devices [17]. Edge computing can
offer fast and robust data sharing and processing capabilities
for end devices. One major research aspect of edge computing
studies the benefit using smaller edge servers (cloudlets)
deploying near the network edge (e.g., cellular base stations),
serving as the middle layer between edge devices and clouds
[18], [19]. These edge servers can offer multiple applications
such as caching and resource virtualization. Another research
aspect on edge computing studies the innovative functionalities
from the collaboration of edge devices. Vehicle network is an
example of this topic [20], [21].

C. Resource Allocation

In edge environments, resource allocation is crucial since
nodes often have various and limited rearouses. Resource
placement problems are often used in such scenarios. The
optimal resource placement problem can often be mapped
to classic Facility Location (FL) problems. In order to solve
such problems, various kinds of FL or modified FL problems
are proposed. Uncapacitated Facility Location (UFL) problem
[22] and rent-or-buy problem [23] are most popular and well-
studied. The more general case for these two problems is the
Connected Facility Location (ConFL) problem [24]. Among
them, UFL does not consider the content dissemination costs,
while the rent-or-buy problem does not consider the facility
building costs in the ConFL problem. In this paper, we mostly
use the UFL problem and its corresponding solutions. The
current best solution that we find is proposed by Li et al. [25],
where they obtain a 1.488 approximation ratio.

III. BLOCKCHAIN SYSTEM DESIGN

In this section, we introduce our blockchain model and
discuss how the resources are allocated in the system.

IOT

Sensors

Smart home

devices

We Media

Producer
Users

Blockchain

System

Data

Payment

Sensing

D
istrib

u
tiv

ity
 sto

re
d

b
lo

ck
s a

n
d

 d
a

taCompose

Metadata

store

Payment

Share

Data

Distributivity stored

blocks and data

Distributivity

stored blocks

and data

Fig. 1. The overview in the proposed blockchain system. Nodes generate
for-profit data and users pay for them. Real data and blocks are fragmented
and stored across the nodes.

Fig. 1 shows an application overview of our proposed
system. The clients of the blockchain system consist of
multiple edge devices. Some devices generate data such as
self-generated for-profit data, and other nodes pay for data
conducting micro-payment transactions. When payments are
successful, data are to be delivered to consumers. The data
related information and payment are encoded in the block,
which builds the blockchain system. Then, data and blocks are
stored among different nodes in the network. We now discuss
in detail about the components of the proposed blockchain
system below.

A. The Blockchain System Model

Our proposed blockchain system consists of multiple edge
devices producing data transactions and forging blocks in
the blockchain. A node is an edge device participating in
the system. Each node has its private and public keys for
identification purposes. The keys further generate an account
of that node. Each account is unique and associated with each
node and has a unique address satisfying a certain pattern.
The account address can be generated from public keys but
not in reverse. Each node tries to forge blocks to get incentives,
and such incentives will be stored in its account. Since how
to assign incentives is not a major concern in this paper, for
simplicity, we assign the incentive for forging a new block as
one “token” along with some coins. Coins serve as currencies
in the system, which can be used to purchase certain data.
Tokens are used in the Proof of Stake (PoS) processes.

Previous block hash

Content
Metadata Items

(Datatype/Name; Time; Location;

Producer [signature]; Valid time;

Properties)

Storage transactions

Node index | Timestamp

Current block hash

Previous block hash

Content
Metadata Items

(Datatype/Name; Time; Location;

Producer [signature]; Valid time;

Properties)

Storage transactions

Node index | Timestamp

Current block hash

Fig. 2. The proposed blockchain system and components of a block in the
blockchain system.

Fig. 2 shows the components of blocks in our proposed
blockchain system. It contains the basic information of a typi-
cal blockchain, as well as some components that are designed
for edge environments. The previous hash, index, timestamp,
and current hash are like any regular blockchain system to
ensure the connection between blocks. The content in blocks
stores the metadata items, each of them is corresponding to
a data item. In addition, each block records the information
about where this block is stored using storage transactions.
The storage allocation is discussed in the next section.

B. Metadata Design and Distributive Storage

In a traditional blockchain system, all data are shared with
all nodes in the network and will be stored. Such data can
be transactions, smart contracts, and some other forms, and
the size of data can be relatively large. Due to the limitation

4

of storage in edge devices, storing all data in every node is
impractical. Thus, data items should be stored on a fraction
of nodes, and instead, metadata are stored in blocks. The
metadata contains basic information about a data item.

1) Metadata design: A metadata item consists of multiple
attributes each having a corresponding value of the data. The
metadata is proposed for data sharing in peer edges in [26]. A
metadata item is generated alongside a data item from the data
producer. Metadata items are then broadcasted in the network
and nodes will wrap received metadata items into blocks. Here
are some metadata item examples in the following.

Data type; Time; Location; Producer[Producer
signature]; Valid Time; Properties
(AirQuality/PM2.5; 11:00AM06-11-2018;
NewYorkNY/40.72,-74.00; [Signature of producer];
10,11,12,15; 1440; NULL)
(Picture/Traffic; 11:27AM06-11-2018; NassauNY/40.78,
-73.58; [Signature of producer]; 16,17,26,44; 720;
‘Camera’)
(KeyExchange/PublicKey; NULL; NULL; []; NULL; 2880;
[Key])

Since the metadata item contains the basic information of
the corresponding data item, and metadata will be broadcasted
along with blocks, users can have all the information about
the data items in the network. With the information in the
metadata, the user can search what it demands, and request
the data item from the nodes that store it.

2) Data integrity: Data integrity is one of the crucial
security features in the blockchain system. Since the history
of blockchain is difficult to counterfeit, data in blocks are also
hard to change. However, in our designed blockchain system,
the data items are stored over specific nodes, which might be
malicious and modify the data as they wish. Thus, we need to
add some security features to make sure the data integrity is
kept.

Each metadata item has a record containing the account
from which generates the corresponding data item and attaches
a signature. The signature embeds the identification informa-
tion of the producer node and later can be validated through the
public key of that node. When broadcasting the new block, it
spreads the metadata and public keys in its contents. Nodes can
then get data and validate the integrity of the data item through
the keys. By the nature of the Proof of Stake blockchain, the
metadata information in blocks is difficult to change unless
malicious parties own more than half of the stakes to replicate
a fake chain.

Note that another malicious behavior is to deny storing or
offering data to the demanding user. Since data items are stored
in certain nodes, some malicious nodes may deny storing
or offering. If a node requests data but does not get any
response, it then claims that the data is invalid. Everyone will
be informed of this information, and this data storage will be
marked as invalid. At the same time, there are always replicas
for certain data. Unless all replicas of this piece of data are
stored at malicious nodes, there will always be available data
pieces before the data expires.

C. Resource Allocation for Optimal Storage

As previously mentioned, the storage in edge devices is
too small to store all data items. Meanwhile, when running

over time, the total size of all blocks is also too large for all
nodes to store. Edge nodes are often of different models and
makes, thus varying in resources among all nodes. Thus, data
items and blocks should only be stored on nodes with more
resources left and can be accessed easily, instead of storing
them everywhere.

In order to achieve fair and efficient resource allocation
among edge devices, we propose an optimal storage problem
finding which node stores which data item or block. Each data
item or block is assigned to multiple nodes, and these nodes
then proactively cache the corresponding data item or block
in case other nodes need it. The optimal assignment can find
nodes both near the data demands and have more resources to
store data proactively.

Besides, the mobility of nodes in edge environments may
cause disconnections and data loss. If a node connection is
not stable, it may not get recent blocks. Branches are likely
to appear in this situation. A node can detect if it misses
some blocks by receiving a blockchain longer than its previous
received blockchain (recent blockchain), i.e., receiving a block
with index number larger than the index of the recent block
plus 11. The node then requests the missing blocks from other
nodes. Intuitively, every block is assigned to be stored on
multiple nodes, so the node with missing blocks will always
get blocks back. However, the disconnection problem caused
by mobility is pervasive in edge environments, and recent
blocks are requested frequently. Thus, another assignment
for caching recent blocks among nodes storage is needed.
The more pervasive recent blocks are found, the less time
and overhead are used for nodes to get them. The optimal
assignment on recent blocks will find how to enlarge the
pervasiveness of recent blocks as well as keep the fairness
of different nodes.

In summary, there are two types of resource allocation
problems. First, how we find the best place to store data items
and blocks proactively so that data can be quickly accessed.
We call this “data and blocks storage allocation”. Second, how
we cache the recent blocks in the network so that the node
can get the missing blocks with less overhead. We call this
“recent block allocation”.

D. Proof of Stake Forging Consensus

The computing-intensive Proof of Work (PoW) mining
requires powerful and expensive hardware setup, or even
assembly of these setups, known as mining pools, in order
to produce a statistically significant outcome. The major
disadvantage of PoW is that it is of high energy consumption.
The total amount of energy consumed per year for bitcoin
mining is 73 TWh (7.3×1010kWh)2. Thus, the proof of work
is impractical for edge devices, as the computing power and
energy in edge devices are often very limited.

1Receiving block index number equals recent block plus 1 just means
there is a new block. It does not necessarily indicate the disconnection. If
the received block is 2 or larger than the index of the recent block, there
must be blocks that are missing for this node.

2Data obtained from https://digiconomist.net/bitcoin-energy-consumption in
August 2019.

5

To achieve consensus with mobile devices, we use the
PoS concept and develop a new mechanism having more
flexible variations on the stake. Specifically, our proposed
PoS mechanism gives advantages to nodes that have more
contributions to the system, like storing data and forging
blocks. In terms of implementation, we set a value for each
node which corresponds to the number of data items and
blocks that a node stores, and the number of tokens a node
has. The larger the value is, the higher the probability will be
for the node to mine a block.

IV. RESOURCE ALLOCATION

In this section, we discuss the resource allocation in the peer
edge environments. We first discuss the storage allocation in
general and discuss two different situations in applying these
allocations. We then discuss the data and blocks accessing
process for nodes.

A. Fair and Efficient Storage Allocation

Since edge environments cannot store all data in every
node, data and blocks must be stored in certain places that
can be easily accessed by demanding users. Meanwhile, the
heterogeneity of edge devices also brings problems about fair
storage for nodes that have different capabilities.

1) Fair storage: Our previous work [27] propose the con-
cept of fair caching in peer edge environments. Each node
has a different capacity, and the algorithm should store fewer
data on nodes with fewer resources. Thus, Fairness Degree
Cost (FDC) is proposed, which is a measurement for the
current resource consumption of a node. The FDC for node i
is denoted as

fi =
W (i)

Wtol(i)−W (i)
, (1)

where Wtol(i) is the total storage of node i, and W (i) is
the storage used. This FDC definition ensures that the less
remaining storage corresponds to the larger value of fi, thus
less possible for storing data in the node. Also, if no remaining
resource on the node, (1) will be ∞, and no more data will
be stored in this node.

2) Data accessing cost: The mobility of nodes and wireless
signal attenuation might cause data loss in the network.
Meanwhile, the mobility of nodes also moves stored data
around, making the predictions on storage less accurate. To
address the problems mentioned above, we propose a new data
accessing cost definition, called Range-Distance Cost (RDC),
to measure the transmission latency between two nodes. The
cost is formulated as

cij =

{
d(i, j) + range(i) + range(j) i 6= j

0 i = j
, (2)

where d(i, j) is the “distance” between two nodes, and
range(i) represents the mobility range of node i. The “dis-
tance” is a general term, which can be Euclidean, Manhattan,
hop-count distance, etc. The form should be chosen based
on the application scenarios. For a scenario that all nodes

can connect each other, Euclidean-logarithm distance can
represent the signal attenuation; for scenarios that nodes form
a multi-hop network, like in many mobile edge environments,
hop-count distance, and related variations can represent the
data transmission delay through the multi-hop forwarding.
For simplicity, we consider using the hop-count distance to
measure the RDC in this paper.

In addition, the range of a node represents the maximum
replacement trend of a node. The larger the range is, the less
steady for a node will be at a certain place, and the mobility
caused data transmission delay will be relatively larger. For
simplicity, we evaluate the range by the maximum distance
of a node from its original location. Note that the range of
each node, in reality, will change. Nodes moving outside the
original range and new coming nodes will broadcast its new
moving ranges to all nodes. This causes topology changes,
in which case data may be migrated to fit the new network
topology. In our peer edge device environments, we consider
that nodes move within such a range in a short period of
time. If nodes move above the range, data migration is needed,
which we discuss in Section IV-E.

3) Problem formulation: We now propose the formulation
for the placement problem in our scenario. We formulate the
problem of fair and efficient storage as a facility location
problem. The basic idea is to add the FDC and the RDC
together in a weighted sum form. After some tests, we use
feature scaling to set the weight of FDC and RDC as 1000 : 1,
which produces the best result. For each data item k and node
set V , we formulate the problem in the following:

min A
∑
i∈V

fiyik +
∑
i∈V

∑
j∈V

cijxijk (3)

s.t.
∑
i∈V

xijk > 1, (∀j ∈ V) (4)

yik − xijk > 0, (∀i, j ∈ V) (5)
xijk, yik ∈ {0, 1}. (6)

In the formulation above, xijk and yik are assignment vari-
ables. xijk is the accessing assignment variable. If xijk = 1,
node j will access data item k from node i. yik is the storage
assignment variable. yik = 1 means data chunk k will be
stored in node i. A is the scaling factor for FDC. After
some test, we set A = 1000 for better performance. Problem
objective function (3) has two terms corresponding to FDC
and RDC. Constraint (4) makes sure that at least one data
item will be stored to other nodes, and constraint (5) makes
sure the data item is stored at specific nodes.

For each data item k, the formulation is an uncapacitated
facility location problem. In the problem formulation, fi
corresponds to the facility building cost, and cij corresponds to
the facility accessing cost. The uncapacitated facility location
problem is NP-Hard. However, there are many approximation
algorithms proposed to solve this question with high efficiency
like [25]. For each data item, we use the current network
situations (storage used of each node) to solve the problem
to determine which nodes store it [27].

6

B. Data and Block Storage Allocation

Next, we discuss the process of how data items and blocks
are stored in selected nodes.

As previously mentioned, when a data item is generated,
the producer of the data item also generates the corresponding
metadata item and broadcasts it. Each node that receives the
metadata item calculates which set of nodes will store the data
item. When a node forge the next block (the forging process
is discussed in Section V), the node will pack all received
metadata items, along with the storing node information,
into the block. The block will then be broadcasted over the
network. Other nodes in the network will receive the block
and check this information. If a node is chosen to be a storing
node, it gets the data from the producer and stores them.

When running over time, the blockchain itself becomes a
relatively large data structure for all nodes to store all blocks.
Blocks also need to be stored among a portion of all nodes.
Each new block will be assigned to store on some nodes. This
block also has the information which nodes need to store it.
Then, corresponding nodes receive this information will keep
this block in their storage. The information of the block also
contains where the previous block is stored, so that demanding
users can obtain the chain starting from the newest block.

C. Recent Block Storage Allocation

Mobility is one of the key characteristics of edge devices.
The mobility of nodes might cause unstable connections,
which causes data loss. Thus, recent blocks of the blockchain
are the most needed for the potential temporary disconnection
of nodes. If the recent blocks are more pervasive in the
network, retrieving recent blocks will become easier.

Different from data and block storages, nodes are required to
cache a certain number of most recent blocks and replace the
blocks using FIFO. To start with, all nodes store at least the last
block for forging purposes. The node that finds the next block
also calculates nodes which need to store one more recent
block. The nodes are chosen by solving the same problem, i.e.,
the fair and efficient storage problem considering the current
situations of the network. The chosen nodes will then get the
same incentive as the nodes that store a data item or a block.

D. Data Items and Blocks Access Process

Fig. 3 shows an example of nodes accessing blocks and data
items in the network. For a node that needs a certain data item
(Node G in the example), it first checks the metadata item in
the blocks and fetches the data item from nodes that store
it. The requesting node sends the data request information
to one of the caching nodes (Node C in the example), and
this node then sends the data back. If needed, the node can
verify the data using the public key and the signature in the
corresponding metadata item.

For a node that accidentally disconnects from the network
and needs recent blocks (node A in the example), it can first
get blocks from any neighbor nodes. (We call nodes within one
hop transmission range of a specific node as the neighbors of
this node. Each node maintains a neighbor list. When there

5

4
3

2
1

0

A

B

C

D

E

F

G

H

J K

4

4

4

2

1

4

1

5

4
3

2
1

0

5

?
3

2
1

0

5

4
3

2
1

0

5

4
3

2
1

0

5

4
3

2
1

0

5

4
3

2
1

0

5

4
3

2
1

0

5

4
3

2
1

0

5

?
?

?
?

?

35 ?

Data 4

Known BlockStored Block Missing Block

Data request

Data packets

Block request

Block packets

Fig. 3. The data and block access process. Node A reconnects to the network
with a missing block. Node G is requesting a data piece. Node K is a new
node entering the network.

is a new connection from a new node, it will be marked as
one of the neighbors.) For a disconnected node, it only needs
recent blocks. For example, node A receives block 5 and finds
out it misses block 4. It will broadcast the request message
for the missing block and the message is only transmitted in
one hop. Its neighbors, in this example, nodes B, C, D, and E
will receive this request message and send back corresponding
blocks. Since many nodes store recent blocks, the missing
blocks can be easily obtained within a few hops, even without
receiving from all neighbors.

For a node that needs the whole blockchain (e.g., new node
coming into the network, as Node K in the example), it first
requests for blocks and then organizes the received blocks to
get the missing blocks. The node then sends new requests for
the missing blocks until it gets all blocks. Since a block stores
the information about storing nodes for the previous block, a
node can recursively request the missing blocks. For example,
Node K joins the network and finds out it needs blocks 0 to 4
when it receives block 5. It sends the request and its neighbor
J and H will receive the request. Node J and H can satisfy
some block but not all. They then request the missing block 1
from its neighbor Node F and block 2 from node G. Finally,
the missing blocks will be sent to Node K. (Note that Node F
will forward the request to Node G for block 2 since it does
not know block 2 is satisfied already. Meanwhile, Node G can
ignore the request since it already sends block 2 out.)

E. Data Migration

So far, we have discussed the placement when nodes are
moving in a small range and the network topology remains the
same. In edge environments, however, mobility is one of the
crucial characteristics. Over time, nodes will change locations,
carrying data items stored on them, and the information for
data accessing will also become non-optimal or obsolete. As
more and more nodes move and change the topology of the
network, the storage decisions must be adapted continuously.
Thus, we propose two online algorithms for data migration to

7

calculate where the data need to be stored when the topology
changes.

1) Optimal migration algoritm: We first propose an online
algorithm to migrate stored items to restore the optimality
(optimum of the same approximation ratio). The algorithm
we proposed is shown in Algorithm 1. It relocates the stored
data where the cost of data accessing increases and finds a
better place to store data with the lowest cost of accessing.
When the topology and the cost of data accessing change, we
have the difference between the old and new costs. We denote
the difference as ∆cij = c′ij − cij , where c′ij is the new cost
between node i and j. For the cost that increases for accessing
data item k, we collectively search if there exists another node
that has a lower accessing cost for all potential requests. If we
find the node that already stores the data item k, we only
need to compare the RDC with the cost before migration. If
the node does not store the data item, we will compare the
total new cost (RDC + FDC) with the cost before migration.
We then select the node with the lowest cost to store the data
item, and remove the data item on the original node if there
are no more access requests from that node.

Note that if node i caches multiple data items, these data
items will be considered individually to ensure that each item
matches the optimality conditions. Thus, we omit the data item
subscription k for simplicity as the algorithm needs to run for
each data item. Node set K indicates the corresponding nodes
that store the data item k.

Algorithm 1 Data Storage Migration Algorithm
Input: Accessing cost matrix C = {cij}, node set K which

stored data k, moving node i
Output: New accessing variable x′ij , new storage variable y′i

1: Recalculate C
2: for all j when xij = 1 and ∆cij > 0 do
3: for all i′ ∈ V\i do
4: if i′ ∈ K and cij + fi > ci′j then
5: x′i′j ← 1, x′ij ← 0
6: else if i′ /∈ K and cij + fi > ci′j + fi′ then
7: x′i′j ← 1, y′i′ ← 1, x′ij ← 0
8: end if
9: end for

10: end for
11: if

∑
j x
′
ij = 0 then

12: y′i ← 0
13: end if

The complexity of the algorithm is O(nl), where n is the
number of total nodes and l is the number of affected links.
The upper limit of l is n2, but in reality, l is much smaller
than n2, since usually most links are not affected.

We now prove Algorithm 1 can preserve the optimality of
the algorithm if the originally given result is optimal.

Lemma 1. The proposed Algorithm 1 satisfies the constraints
(4)-(6) of problem (3).

Proof. If i′ ∈ K, then node i′ has already stored the data k.
Thus, yi′ > xi′j and it can offer the data to node j. If i′ /∈ K,
we need to put data k on node i′ first, and we let y′i′ = 1

to satisfy the (5) (in line 7). Then node i′ can offer data to
j thus satisfying (4). If no further node request data item k
from node i, we let y′i = 0 to avoid additional cost. Node i
then can delete the corresponding cached data item.

Theorem 1. Algorithm 1 is the optimal solution in the new
condition if the solution for the previous condition is optimal.

Proof. We consider the following conditions and their corre-
sponding store strategies.

1) For two nodes i and j, if cij changes to c′ij , and ∆cij 6
0, then c′ij is the optimal solution. Since the original
solution is optimal, i.e., ∀i′ ∈ V\i, ci′j > cij > c′ij .
Thus, c′ij and corresponding x′ij will remain optimal.
In such conditions, yi remains the same for all node i,
since the parameters and the optimal value from FDC
are not changed.

2) For two nodes i and j, if cij changes to c′ij , and ∆cij >
0, it is possible that ∃i′ ∈ V\i, ci′j 6 c′ij . Thus, for node
j ∈ V , xij = 1 and ∆cij > 0, we find the minimal value
of any possible new solution. As described in Algorithm
1, if ∃i′ and

cij + fi > ci′j + fi′ , (7)

then, for a specific j, using node i′ to deliver data to
j will have less cost. Meanwhile, Algorithm 1 will find
node i′ with the lowest cost to deliver data to j. Thus, we
obtain the lowest cost since ci′j +fi′ < ci′′j +fi′′(∀i′′ ∈
V\i′). Note that if i′ ∈ K, which indicates node i′ has
already cached data item k, fi′ in (7) is not needed,
since fi′ is already added in the objective function (3).

The original problem is NP-Hard. Thus, it is hard to obtain
the optimum value in polynomial time. In the migration
process, the original assignment is already obtained, and
adjustment is needed to reduce the cost caused by topology
change. Under such conditions, only cij changes in (3). If the
previous optimal result is obtained, we do not need to solve
the problem from the starting point of the original problem.
Algorithm 1 can obtain the optimal under such conditions has a
lower computational complexity of O(nl). This does not show
the entire problem is not NP-Hard, but rather the migration
process part, when given the result of the original problem, is
not NP-Hard.

We now introduce and prove the corollary that the approx-
imation ratio can be preserved following Algorithm 1 given
Theorem 1.

Corollary 1. Algorithm 1 has an approximation ratio k if the
solution for the previous condition has an approximation ratio
k.

Proof. From Theorem 1, for the first condition, the original
cost remains, which will not change the approximation ratio.
In the second condition, since ∆cij > 0, if there exists node
i′ that satisfy equation (7), ci′j + fi′ < cij + fi(∀j). Since∑

i∈K fi+
∑

i∈K
∑

j cij 6 m ·OPT (m is the approximation
ratio), we have

∑
i∈K\i′ fi + f ′i

∑
i∈K\i′

∑
j cij + ci′j <

8

m · OPT , which indicates that the approximation ratio is
preserved.

Note that if there are new nodes coming into the network
or nodes leaving the network, the dimension of FDC matrix
F = fik changes. Thus, this algorithm cannot get the optimal
result. The original optimal problem and solutions are needed
if the number of participating nodes is changed.

2) Heuristic migration algoritm: Algorithm 1 can preserve
the approximation ratio when nodes move and change the
network topology. However, the algorithm has a high computa-
tional complexity when running on multiple nodes. Therefore,
we also propose a heuristic algorithm that can run faster and
achieve a reasonably good result.

Instead of using multiple nodes to calculate all pairs of
costs, we use the information easiest to obtain to reduce the
costs. The detailed design is shown in Algorithm 2. When
a node moves thus changing the topology, we get the cost
change for data accessing between two nodes. For the cost
that increases, the node that demands data item k compares
three different cases (accesses from the original storage node,
stores the data itself, or accesses from another stored node
which has less cost) and chooses the option with the lowest
total cost. This will decrease or at least remain the current
cost, which can improve the performance.

Algorithm 2 Data Storage Migration Heuristic Algorithm
Input: Accessing cost matrix C = {cij}, node set K which

stored data k, moving node i
Output: New accessing variable x′ij , new storage variable y′i

1: Recalculate C
2: for all j when xij = 1 and ∆cij > 0 do
3: Find mini′ ci′j where i′ ∈ K
4: if fj < cij then
5: x′jj ← 1, x′ij ← 0
6: else if cij < ci′j then
7: x′i′j ← 1, x′ij ← 0
8: end if
9: end for

10: if
∑

j x
′
ij = 0 then

11: y′i ← 0
12: end if

In Algorithm 2, the determination of which data item to
migrate is the same as in Algorithm 1. The difference is to
determine where the data item will be migrated. In Algorithm
1, it finds the best location to store data items, which incurs
more complexity. On the contrary, Algorithm 2 only needs to
find a better location than the original ones. Lines 3-8 find
the existing location with the least cost (RDC) to migrate to,
and compare with the FDC with the demanding node. If the
smallest RDC is smaller, the data will migrate to the previously
stored node; otherwise, the demanding node will store the data.
This process only considers one of the two aspects of costs
which reduces the complexity and can obtain a smaller overall
cost. The complexity of Algorithm 2 is O(n), where n is
the number of the affected nodes. The algorithm has a much
less computational complexity compared with Algorithm 1,

but it has no guarantee over the optimality. The system can
choose which algorithm to apply based on the requirements
and resources of the nodes participating in the system.

Note that multiple nodes moving at the same time can also
be solved. This can be achieved by applying the algorithm
multiple times.

3) Data migration update: So far we have discussed the
migration algorithms that can get which data items are needed
to migrate to which nodes. When the change of RDC is
larger than that of migration cost, the data migration process
will be triggered. Participating nodes will use the algorithms
mention before and obtain the corresponding data items and
caching nodes. The node which is granted the privilege for
the next block will append the migration information, as
the new storing nodes to the corresponding data item. Upon
receiving the data migration instruction from the new block,
the corresponding new caching nodes will request the data
item from the previous caching node. Note that the information
of migration is marked as a caching update. Once the update
is published, the old caching information is automatically
outdated. Nodes can update the information for its own use
without changing data already in previous blocks.

V. PROOF OF STAKE MECHANISM

In the Proof of Stake (PoS) algorithm, the creation of new
blocks is called forging. Forging is a process that selects a
node based on a certain consensus and granted the privilege
to generate the next block. A node will have a higher chance to
forge a new block if it contributes more in the edge scenarios.
The goal of our proposed PoS mechanism is to make sure that,
if a node has more tokens and stores more data and blocks,
the node will have more advantages to forge blocks. We make
our design based on Algorand [28], which is a relatively safe
PoS consensus.

A. Goals and Assumptions

1) Security goal: We target three security goals. First,
transactions in a block, including money transfers and storage
decisions (described in Section V-B), need to be protected
from modifying once the block is proposed and accepted.
Second, when misbehavior is detected, the privileges and
advantages of the corresponding node should be revoked
without modifying transaction. Third, a node that participate
in the network should not get advantage by creating dummy
accounts.

2) Assumptions: We assume that a node does not require a
pre-clearance or permission to join the network. Participating
nodes can be adversary parities since no check is conducted.
We assume that all parties are selfish and rational, thus,
adversary parities will behave maliciously if it cannot get
unfair advantages. For the storage decisions for data items
and blocks, we assume that all nodes with enough information
about the network will get the same result following a same
algorithm. If the decision in a new block does not match the
result a node obtained, the node can refuse to relay or vote
against the block.

9

B. Reward for Edge Blockchain

In peer edge scenarios, node participation is crucial for
maintaining a blockchain. A node can participate by getting a
coin from an existing node and sharing its storage capacities to
other nodes. In the Algorand-based system, a block proposal
is accepted when a committee checks the block is valid and
vote for this block. If the positive votes reach some threshold,
the proposing node will be granted the privilege to create a
block and write to the blockchain. In our design, if a node
contributes more, i.e., stores more data and forges more blocks,
they will have a higher chance to forge new blocks and become
committee members to vote for blocks.

To achieve this, we create a new kind of asset, storage
token, that can be used for committee selecting and voting
process, together with traditional coin assets (called Algos
in Algorand). The storage token is given to the node that
stores data items of blocks. The storage token can be used
in the sortition process. The sortition process chooses how
many units of assets can be used for the proposal of blocks
or the committee selecting in a certain round. In the sortition
process, a user uses a verifiable random function to get a hash
and proof. If the hash of a user falls in a range, a certain unit
of assets is selected, and the user is ranked by the number of
selected units of assets. The proof can be used to validate the
hash publicly. Both storage tokens and coins (like Algos) can
be assets in the sortition process. Thus, more storage tokens
and more coins will have a higher ranking in the sortition, and
owners will have a higher probability to be the block proposer
or the committee member in a certain round.

The storage token is given to nodes via a special type of
transaction, which we call storage transaction. This storage
transaction records information including the data item/block
to be stored on a specific node, number/value of tokens,
senders, receivers, and other necessary transaction items. For
each data item and each block, there are several storage
transactions associated. The block proposer is responsible to
calculate the storage allocation for data items and the block
and make these transactions. The sender of these storage
transactions is the block proposer, and the receivers are the
nodes that will store the data item or the block. When the
block is proposed, the proposer needs to include these storage
transactions in the block. When the block is later included in
the blockchain, these transactions will become effective. The
corresponding nodes will get storage tokens, and need to get
data from the data producer and store them. Note that the block
proposer does not consume any coins or tokens to create these
storage transactions. It just needs to sign the transactions to
make sure it can be validated and traced whenever needed.

Both storage tokens and coins of a user can be used in
the sortition process equally, but there are two fundamental
differences between them. First, the storage tokens come
from storage transactions. These transactions are not in the
traditional transaction pool and there are no transaction fees
for these transactions. The transactions are made and signed by
the block proposer. If the storage assignment cannot be agreed
upon, the block will not pass the soft or certify vote process.
Second, storage tokens are not transferable. Unlike coins

which can be transferred through payment transactions, nodes
cannot transfer their storage tokens to other nodes. However,
the storage tokens can be marked invalid if data items are
migrated or the node violates its storage commitment. If the
data item needs to be stored at another node, new storage
transactions and storage tokens are required.

C. Storage Validations

As we discussed in Section III-B2, when a node is assigned
to store a data item or a block, a possible malicious behavior
is the node does not store the data item. When a consumer
needs a data item from this node, it is unable to service the
consumer. Thus, the node must follow a certain process to
minimize the impact of such malicious behavior.

When a node receives the storage transaction and storage
tokens, it needs to proactively get data from the producer.
Then, to ensure the data is received and not corrupted, the
author must get the hash of the file and sign the hash
value. Then, the signed hash value is presented for the data
producer to verify. If the producer finds some incorrect hash,
the file needs to be sent again. Presenting the hash of the
cached data item means that a node acknowledges the storage
assignment and can use the corresponding storage tokens in
the blockchain. The node commits to store the data until data
migration or expiration happens. If the data item is migrated or
expired, the corresponding storage tokens also become invalid.

If the data is not migrated or expired, and one consumer
cannot receive the file, the consumer will mark the data on
the node invalid, and mark the node misbehaving. Misbehaving
nodes will be punished by having their corresponding storage
tokens invalidated. They may also be banned from future stor-
age assignment and block proposal. However, file delivering
failure may be caused by network disconnection. When this
happens, the producer can act as an arbitrator. The producer
will ask the storing node to give a signed hash about a certain
part of the file. If the node can offer correct information, the
punishment of the node will not take effect. The producer
will tend to be honest in arbitration since it cannot get unfair
advantages for lying.

For more complex situations, a reputation system is needed
to evaluate how honest a node is. The reputation of a node
will decrease if it violates the consensus or commitment. A
low reputation will have a specific negative impact on block
proposal, sortition rank, and voting power of a node. We will
discuss this approach in our future work.

D. Discussion on Proof of Stake

As a replacement for PoW algorithms, PoS can have differ-
ent forms and different metrics. We present a PoS mechanism
for edge environments considering the heterogeneity of differ-
ent devices. The mechanism gives the advantages to the node
which has contributions to the network. The contribution is
crucial to maintain the data and block storage in peer edge
environments. Thus, we give relatively more advantages for
the node that contributes more.

Despite much less energy is required for PoS, it also raises a
problem due to the low complexity. In PoS consensus, working

10

on different chains needs less computation. A node might work
on different branches to get more profit. This is often called
the nothing-as-skate attack. Also, a node can make a fake fork
from a specific point longer than the current chain in order
to benefit itself, which is called a history attack. Solutions
about inserting checkpoint blocks [29], [30] are proposed to
force nodes working on the chain that has checkpoint blocks,
which can mitigate the effects of attacks mentioned above. In
addition, Algorand also requires nodes to work on the current
block reaching “final consensus”, which can also help mitigate
the number of branches.

As we mentioned before, a node should not get unfair
advantages by forging accounts. This attack is often called
Sybil attack. Since there is no central authority, a node can
create multiple different accounts. If each account gets some
initial resources, forging a lot of fake accounts will get
unfair advantages. In our design, an account must get at least
one coin from other nodes to participate. If a node forges
multiple accounts, it should get multiple coins which gives
more burdens on the node, which prevents it to get unfair
advantages.

VI. PERFORMANCE EVALUATION

In this section, we evaluate our proposed blockchain system.
We focus on evaluating the performance of our proposed
strategies over different sizes of networks and the power
efficiency of forging consensus strategies.

We conduct simulations and experiments on the blockchain
system, data placement, the PoS strategy, and data migration.
We implement the simulation using the Python-based SDK
offered by Algorand. We use the private network in Algorand
as blockchain bases, and implement new transaction types.
The official Algorand uses HTTP services to communicate
information between nodes. We extend the functionality of
the client in Algorand by adding functions HTTP services to
support requesting, forwarding, and file-delivering. The client
can listen on several ports that serve as the blockchain service,
relay service, and file transfer service in the blockchain system.
Then, we simulate data migration using different mature
mobility patterns. We set the maximum range of a node is
7m. If a node exceeded this range, the node is regarded
as moving to a new place. Since changing the connection
actively over different containers is difficult, we do not use
the Algorand network to test the data migration due to node
mobility. Instead, we implement the algorithm with Python and
use some mature mobility patterns to test the data migration.
Thus, we only simulate mobility and storage. The connection
and PoS are not considered in the simulation. Finally, we
also implement PoS forging and PoW mining consensus on
a real tablet to test the power consumption. The experiments
over the blockchain system and simulations on data migration
are conducted on a computer with an Intel Core i7-5820K
processor and 32GB RAM. The power consumption of two
different consensus protocols is conducted on a Microsoft
Surface Pro 6 with i5-8250U, 8GB RAM, and a 5940mAh
battery.

We assume up to 80 nodes are distributed in an area of
300m × 300m, and the communication range between two

nodes are 70m. The area and number of nodes are typical
application scenarios for a pico cell 5G small cell network
[31]. Each node has the capability to store 250 data items
or blocks. Unless otherwise specified, we set the expected
average time for forging a block as 60 seconds, and each
simulation runs over 500 minutes. In the Algroand system,
every node needs to connect to relay nodes. Thus, we use the
greedy vertex-cover solution to find such nodes and set them
as relay nodes in the network.

A. Performance under Different Data Amounts

First, we evaluate the overall performance of the proposed
blockchain system under different total data amounts. We test
it under different numbers of nodes in the network, varying
from 10 to 80, and on average 1 to 3 data items are generated
throughout the network per minute. We focus on a private
blockchain system, in which the number of nodes may be
limited compared to a public blockchain system. 80 users in
a private blockchain are sufficient to maintain the blockchain
system. The data items are requested randomly by 10 percent
of nodes. The size of each data item is 1MB. Since the
nodes use the socket to transmit data, processing, queuing
and transmission delays can be obtained through Docker. We
record all data and block transmissions to show the overhead
for transmission and the data delivery time. We also use the
Gini coefficient 3 to measure the fairness of the proposed
system.

Fig. 4 shows the overall performance over different numbers
of nodes and different data amounts. Fig. 4(a) shows that the
node can get the data in a small amount of time. The time
increases with more nodes and more data in the network since
more hops will use more time for data delivery. Nevertheless,
about 6 seconds in maximum are used for a node to get the
desired data. The results show that our proposed system can
achieve fair storage and low data delivery latency.

Fig. 4(b) indicates the transmission overhead for the
blockchain system. It includes data requests, data dissemi-
nation (storing node proactive get data from the producer),
and other blockchain broadcasting packets. Overall, the trans-
mission overhead is about two to six times of transmissions,
500MB to 1.5 GB data are generated in over 8 hours, yet
the total transmission is less than 20GB. On one hand, more
data mean more transmission in the network, which increases
the transmission overhead. On the other hand, if the amount of
data is the same, having more nodes indicates less transmission
is needed per node, which decreases the average overhead.
Note that there is a reverse trend between the number of nodes
from 30 to 40. This is because as the node increases, the
number of neighbors (in one hop transmission range) of a
node will also increase. In an ideal case, the average distance
from the second closest node is 76.4m when the number of
nodes is 30, and it decreases to 66.5m when the number is 40,
which is smaller than the communication range. This change
increases the connections between nodes in the network, and

3Gini coefficient is widely used to depict income disparity and is also used
in previous works to measure fair caching [27], [32]. Gini =

∑
i

∑
j |ti−tj |

2
∑

i

∑
j tj

.

11

10 20 30 40 50 60 70 80
Number of nodes

0

1

2

3

4

5

6

Av
er
ag

e
da

ta
 d
el
iv
er
y
tim

e
(s
) 1 data item/min

2 data items/min
3 data items/min

(a) Delivery latency

10 20 30 40 50 60 70 80
Number of nodes

0.0

0.1

0.2

0.3

0.4

0.5

Av
er
ag

e
tra

ns
m
iss

io
n
(G
B/
no

de
) 1 data item/min

2 data items/min
3 data items/min

(b) Transmission overhead

10 20 30 40 50 60 70 80
Number of nodes

0.00

0.05

0.10

0.15

0.20

0.25

Gi
ni
 C
oe

ffi
cie

nt

1 data item/min
2 data items/min
3 data items/min

(c) Storage dispersion

Fig. 4. The average data delivery time (a), average transmission of each nodes (b), and Gini coefficient (c) under different number of nodes and different
data amount. Our proposed algorithm has low transmission overhead and fast data access time, and the storage distribution is fair among nodes.

10 20 30 40 50 60 70 80
Number of nodes

0

1

2

3

4

5

Av
er
ag

e
da

ta
 d
el
iv
er
y
tim

e
(s
) Our proposed storage

Random storage

(a) Delivery latency

10 20 30 40 50 60 70 80
Number of nodes

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Av
er
ag

e
tra

ns
m
iss

io
n
(G

B/
no

de
) Our proposed storage

Random storage

(b) Transmission overhead

Fig. 5. The average data delivery time from nodes (a) and the average data transmission overhead
(b) under different number of nodes and two different data placement strategies. The optimal data
placement receives the fast data delivery time and similar transmission overhead compared with no
proactive store solution.

0 50 100 150 200 250 300 350 400
Number of blocks

60

65

70

75

80

85

90

95

100

Re
m
ai
ni
ng

 b
at
te
ry
 (%

)

PoS
PoW

Fig. 6. The remaining battery in forging and mining
processes under different consensus algorithm. The
PoW consumes much more energy than PoS.

greatly increasing the number of neighbors of a node. Thus,
the reverse trend happens when the number of nodes is larger
than 40, and the average transmission amount is decreasing.

Meanwhile, the Gini coefficient shown in Fig. 4(c) for
all tests is below 0.2, which means the storage disparity is
relatively low. Since we set the storage capacity of all nodes
the same in the simulation, this shows that the dissemination
storage is fair among all nodes.

B. Performance under Different Placement Strategy

Next, we evaluate the performance of the data storage
placement strategy we proposed. The system proactively stores
data on nodes that can offer quick access for all users that
demand data. We compare the proposed strategy with random
storage solutions. For a fair comparison, the total number
of data and blocks stored is the same for both placement
strategies. We test the performance under different numbers
of nodes and at a data generation rate of 1 item per minute.

Fig. 5 shows the average data delivery time (a) and average
data transmission overhead (b) for different number nodes in
the system. Our proposed optimal data placement saves much
more time on data access compared with random placement
and uses less than 19% of the time used to access data.
Meanwhile, the transmission overhead is almost the same
between two different strategies, showing that our proposed

algorithm does not cost much extra overhead. The results show
that the proposed optimal caching strategy achieves less time
for data access while keeping the transmission overhead almost
the same in the proposed blockchain system.

C. Performance under Different Consensus Algorithms

To test the energy consumption of different consensus
mechanisms in real edge environments, we implement the
Proof of Work (PoW) and Proof of Stake (PoS) consensus
mechanism on a Surface Pro 6 and use Windows subsystem
for Linux (WSL) 2 [33] as the experiment environment. We
implement the PoS consensus mechanism based on the private
network environment offered by Algorand, and PoW uses the
most commonly implemented hash (SHA256) which requires a
certain number of zeros in the beginning. We set the difficulty
of PoW as 5 zeros at the beginning of the block hash. The av-
erage mining time for each block is 5 seconds at this difficulty.
For a fair comparison, the default time for a block in Algorand
networks is about 5 seconds. The storage and connection are
not implemented since we only test on one node. The battery
consumption for each node with similar computational power
is mostly the same. Thus, the performance of one node can
represent the battery consumption in general. We make sure
that the tablet is fully charged before forging or mining, and
test the battery consumption of different strategies. When a

12

10 20 30 40 50 60 70 80
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag
e
RD

C
(1
04
)

Optimal
Heuristic
No migrate

(a) Random way-point

10 20 30 40 50 60 70 80
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag
e
RD

C
(1
04
)

Optimal
Heuristic
No migrate

(b) Turncated Levy walk

10 20 30 40 50 60 70 80
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag
e
RD

C
(1
04
)

Optimal
Heuristic
No migrate

(c) T-variant community walk

Fig. 7. The average RDC for each data transmitted in the network under different mobility models. We test random way-point (a), truncated Levy walk (b),
and time-variant community walk (c) under different numbers of nodes and different algorithms. The proposed optimal and heuristic algorithm can reduce
the average RDC for data migration caused by node mobilities.

block is mined or forged, we record the remaining battery
of the tablet. To reduce the affections from other factors,
background processes are closed if possible and airplane mode
is turned on.

Fig. 6 shows the remaining battery with the number of
blocks mined or forged. The PoW consensus consumes about
40% of the battery over 62 minutes, while the PoS consensus
only consumes 5% of the battery. On average, 10.5 blocks
consume about 1% battery of the phone using PoW, while
80 blocks consume 1% battery of the phone using PoS.
The PoS consensus can obtain more blocks using the same
amount of energy, which indicates less energy consumption.
The difference will be even larger if the difficulty of the PoW
increases. The computational complexity grows exponentially
with the complexity of PoW but remains almost the same for
PoS. The result shows that the PoS algorithm consumes about
86.8% less energy in terms of battery consumption compared
to the traditional PoW algorithm in the mining process.

To evaluate the energy consumption for the approximation
algorithm running on edge devices, we implement the simple
algorithm in Section 2 from [34] on a smartphone and running
the algorithm only without the consensuses. Overall, energy
consumption is very limited. With 1% of the battery, the al-
gorithm can execute 161 times, and on average 2.251 seconds
for the algorithm to run one time.

D. Performance under Different Mobility Patterns

Last but not least, we evaluate the data migration algorithms
under different mobility patterns. We select three different
mobility patterns, random way-point, truncated Levy walk
[35] and time-variant community walk [36], and set the speed
as human walk speed, which is about 1 to 1.5 meters per
second. Since simulating the mobility and connection changes
is difficult for Docker containers, we do no use docker here.
Instead, we test the average range-distance cost (RDC) defined
in Section IV-A of each data delivered to every node. The
higher the RDC is, the longer time it will take for data
delivery. The simulation stores all data at certain places using
the algorithm in [27] initially.

Fig. 7 shows average RDC using different algorithms under
different numbers of total nodes. “Optimal” represents Algo-

rithm 1, and “Heuristic” represents Algorithm 2, and “No
migration” means data will be stored and do not migrate
when nodes move. Under all three mobility patterns, our
proposed algorithms reduce the RDC through data migration.
Algorithm 1 reduces the RDC by average 57.71% compared
with no migration, and heuristic Algorithm 2 reduces by
average 20.25%. Note that the heuristic algorithm runs fast
but does not have any guarantee on performance. Overall,
the simulation shows our proposed algorithm can provide
comparable performance under the mobility of nodes.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a blockchain system for
edge computing environments. Due to the limitations of edge
devices, we have proposed the optimal data and block storage
for quick and fair data accessing. We store metadata items
on blocks, and corresponding data items and blocks are
distributively stored for quick data access. We have proposed
the recent block storage for quick access for nodes that miss
blocks. We have proposed a data migration scheme under the
circumstance of network topology change due to mobility. We
have also developed a new Proof-of-Stake mechanism in such
edge environments, considering the past contribution a node
to the system to give corresponding advantages over forging.
Simulations show that our blockchain system works well under
pervasive edge environments with limited resources.

Over time, the recent blocks storage will accumulate and
occupy more and more spaces. The expiration for data is
needed to avoid using up storages. We will address in fu-
ture work about data expiration when running continuously.
The detection of not storing data items assigned also brings
challenges to the system if nodes can intentionally misbehave.
A reputation system can be used in this situation to evaluate
the honesty of a node and can punish it if it does not follow
the consensus or breaks its commitments. We will discuss how
to implement and enforce the reputation system in peer edge
environments in our future work.

ACKNOWLEDGMENTS

This work is supported in part by US National Science
Foundation under grant numbers CNS-1513719 and CNS-

13

1730291.

REFERENCES

[1] Nokia, “Sensing as a service,”
https://www.nokia.com/networks/services/sensing-as-a-service/, 2018.

[2] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a service
and big data,” arXiv preprint arXiv:1301.0159, 2013.

[3] S. Bowman and C. Willis, “We media,” How audiences are shaping the
future of news and information, 2003.

[4] T. Kelsey, “Fun with e-commerce analytics Part III: Gumroad,” in
Introduction to Google Analytics. Springer, 2017, pp. 107–128.

[5] “Is gumroad a scam?” https://www.quora.com/Is-Gumroad-a-scam,
2016.

[6] S. Andreina, J.-M. Bohli, G. O. Karame, W. Li, and G. A. Marson,
“Pots-a secure proof of tee-stake for permissionless blockchains.” IACR
Cryptology ePrint Archive, vol. 2018, p. 1135, 2018.

[7] J. Mattila et al., “The blockchain phenomenon–the disruptive potential
of distributed consensus architectures,” The Research Institute of the
Finnish Economy, Tech. Rep., 2016.

[8] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[9] M. Iansiti and K. R. Lakhani, “The truth about blockchain,” Harvard

Business Review, vol. 95, no. 1, pp. 118–127, 2017.
[10] K. Fanning and D. P. Centers, “Blockchain and its coming impact on

financial services,” Journal of Corporate Accounting & Finance, vol. 27,
no. 5, pp. 53–57, 2016.

[11] T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhang,
“Understanding ethereum via graph analysis,” in INFOCOM 2018-IEEE
Conference on Computer Communications, IEEE. IEEE, 2018, pp.
1484–1492.

[12] A. P. Ozisik, G. Andresen, G. Bissias, A. Houmansadr, and B. Levine,
“Graphene: A new protocol for block propagation using set reconcilia-
tion,” in Data Privacy Management, Cryptocurrencies and Blockchain
Technology. Springer, 2017, pp. 420–428.

[13] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng: A
scalable blockchain protocol.” in NSDI, 2016, pp. 45–59.

[14] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in Security and Privacy (SP), 2015 IEEE Symposium
on. IEEE, 2015, pp. 104–121.

[15] S. King and S. Nadal, “PPCoin: peer-to-peer crypto-currency with proof-
of-stake,” https://peercoin.net/assets/paper/peercoin-paper.pdf, 2012.

[16] R. P. d. Santos, “Pow, pos, & hybrid protocols: A matter of complexity?”
arXiv preprint arXiv:1805.08674, 2018.

[17] M. Research, “Edge computing,” https://www.microsoft.com/en-
us/research/project/edge-computing/, Oct. 2008.

[18] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE pervasive Computing,
2009.

[19] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, no. 5, pp. 2795–2808, 2016.

[20] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the
wireless edge: design aspects, challenges, and future directions,” IEEE
Communications Magazine, vol. 54, no. 9, pp. 22–28, 2016.

[21] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” ACM SIGCOMM Computer Com-
munication Review, vol. 45, no. 5, pp. 37–42, 2015.

[22] G. Cornuéjols, G. L. Nemhauser, and L. A. Wolsey, “The uncapacitated
facility location problem,” DTIC Document, Tech. Rep., 1983.

[23] A. Gupta, A. Kumar, and T. Roughgarden, “Simpler and better approxi-
mation algorithms for network design,” in Proceedings of the thirty-fifth
annual ACM symposium on Theory of computing. ACM, 2003, pp.
365–372.

[24] C. Swamy and A. Kumar, “Primal-dual algorithms for connected facility
location problems,” in International Workshop on Approximation Algo-
rithms for Combinatorial Optimization. Springer, 2002, pp. 256–270.

[25] S. Li, “A 1.488 approximation algorithm for the uncapacitated facility
location problem,” Information and Computation, vol. 222, pp. 45–58,
2013.

[26] X. Song, Y. Huang, Q. Zhou, F. Ye, Y. Yang, and X. Li, “Content
centric peer data sharing in pervasive edge computing environments,” in
Distributed Computing Systems (ICDCS), 2017 IEEE 37th International
Conference on. IEEE, 2017, pp. 287–297.

[27] Y. Huang, X. Song, F. Ye, Y. Yang, and X. Li, “Fair and efficient
caching algorithms and strategies for peer data sharing in pervasive edge
computing environments,” IEEE Transactions on Mobile Computing,
2019.

[28] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles, 2017, pp. 51–68.

[29] S. Azouvi, G. Danezis, and V. Nikolaenko, “Winkle: Foiling long-range
attacks in proof-of-stake systems,” in Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies, 2020, pp. 189–201.

[30] I. A. I. AlMallohi, A. S. M. Alotaibi, R. Alghafees, F. Azam, and
Z. S. Khan, “Multivariable based checkpoints to mitigate the long range
attack in proof-of-stake based blockchains,” in Proceedings of the 3rd
International Conference on High Performance Compilation, Computing
and Communications, 2019, pp. 118–122.

[31] T. Nguyen, “Small cell networks and the evolution of 5G,”
https://www.qorvo.com/design-hub/blog/small-cell-networks-and-
the-evolution-of-5g, 2017.

[32] D. Wei, K. Zhu, and X. Wang, “Fairness-aware cooperative caching
scheme for mobile social networks,” in 2014 IEEE international con-
ference on communications (ICC). IEEE, 2014, pp. 2484–2489.

[33] P. Singh, “Linux development on wsl,” in Learn Windows Subsystem for
Linux. Springer, 2020, pp. 131–168.

[34] F. A. Chudak and D. B. Shmoys, “Improved approximation algorithms
for the uncapacitated facility location problem,” SIAM Journal on
Computing, vol. 33, no. 1, pp. 1–25, 2003.

[35] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On
the levy-walk nature of human mobility,” IEEE/ACM transactions on
networking (TON), vol. 19, no. 3, pp. 630–643, 2011.

[36] W.-J. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy, “Modeling time-
variant user mobility in wireless mobile networks,” in IEEE INFOCOM
2007-26th IEEE International Conference on Computer Communica-
tions. IEEE, 2007, pp. 758–766.

Yaodong Huang received his B.E. in Computer
Science and Technology in 2015 from University
of Electronic Science and Technology of China.
He is now pursuing his Ph.D. degree in Computer
Engineering at Stony Brook University. His research
interests are in mobile edge computing, with focus
on data caching, storage, and blockchain technology
over edge environments.

Jiarui Zhang received the BEng degree in computer
science and technology from Shanghai Jiaotong Uni-
versity, in 2017. He is currently working towards the
PhD degree in computer engineering at Stony Brook
University. His research interests include blockchain
and mobile edge computing.

Jun Duan received his B.S. and M.S. degrees from
School of Electronics Engineering and Computer
Science, Peking University, China, in 2008 and
2011. He received his Ph.D. degree in Computer
Engineering from Stony Brook University, US, in
2018. He is a Research Staff Member at IBM
Thomas J. Watson Research Center. His research
interests include hybrid cloud, blockchain networks,
and data center networks. Jun is a member of IEEE.

14

Bin Xiao (S’01-M’04-SM’11) received the B.Sc.
and M.Sc. degrees in electronics engineering from
Fudan University, China, and the Ph.D. degree in
computer science from The University of Texas at
Dallas, USA. He is currently an Associate Profes-
sor with the Department of Computing, The Hong
Kong Polytechnic University. Dr. Xiao has over ten
years research experience in the cyber security, and
currently focuses on the blockchain technology and
AI security. He published more than 100 technical
papers in international top journals and conferences.

Currently, he is the associate editor of the Journal of Parallel and Distributed
Computing (JPDC) and the vice chair of IEEE ComSoc CISTC committee. He
has been the symposium co-chair of IEEE ICC2020, ICC 2018 and Globecom
2017, and the general chair of IEEE SECON 2018.

Fan Ye is an Associate Professor in the ECE de-
partment of Stony Brook University, before that he
was a Research Staff Member at IBM T. J. Watson
Research after getting his Ph.D. from UCLA CS
department in 2004. His research interests include
mobile sensing platforms, systems and applications
in healthcare and location based services, edge com-
puting, Internet-of-Things, and data-centric wireless
communication. He has published over 100 papers
with 12,000+ citations according to Google Scholar,
and 30 granted/pending patents/applications. He has

received NSF CAREER award, Google Faculty Research Award, IBM Re-
search Division Award, 5 Invention Achievement Plateau awards, Best Paper
Award for IEEE ICCP 2008. He has been a panelist for NSF and Canada,
Hong Kong government funding agencies, on program/organizing committees
for conferences including IEEE Infocom, IEEE ICDCS, ACM Mobicom,
ACM Sensys.

Yuanyuan Yang received the BEng and MS degrees
in computer science and engineering from Tsinghua
University, Beijing, China, and the MSE and PhD
degrees in computer science from Johns Hopkins
University, Baltimore, Maryland. She is a SUNY
Distinguished Professor of computer engineering
and computer science at Stony Brook University,
New York, and is currently on leave at the National
Science Foundation as a Program Director. Her re-
search interests include edge computing, data center
networks, cloud computing and wireless networks.

She has published over 460 papers in major journals and refereed conference
proceedings and holds seven US patents in these areas. She is currently the
Editor-in-Chief for IEEE Transactions on Cloud Computing and an Associate
Editor for ACM Computing Surveys. She has served as the Associate Editor-
in-Chief for IEEE Transactions on Computers and IEEE Transactions on
Cloud Computing and Associate Editor for IEEE Transactions on Parallel and
Distributed Systems and IEEE Transactions on Computers. She has also served
as a general chair, program chair, or vice chair for several major conferences
and a program committee member for numerous conferences. She is an IEEE
Fellow.

