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Abstract— User authentication on smartphones is the key to many applications, which must satisfy both security and convenience.
We propose a novel user authentication system EchoPrint, which leverages acoustics and vision for secure and convenient user
authentication, without requiring any special hardware. EchoPrint actively emits almost inaudible acoustic signals from the earpiece
speaker to “illuminate” the user’s face and authenticates the user by the unique features extracted from the echoes bouncing off the 3D
facial contour. To combat changes in phone-holding poses thus echoes, a Convolutional Neural Network (CNN) is trained to extract
reliable acoustic features, which are further combined with visual facial features extracted from state-of-the-art face recognition deep
models to feed a binary Support Vector Machine (SVM) classifier for final authentication. Because the echo features depend on 3D
facial geometries, EchoPrint is not easily spoofed by images or videos like 2D visual face recognition systems. It needs only
commodity hardware, thus avoiding the extra costs of special sensors in solutions like FacelD. Experiments with 62 volunteers and
non-human objects such as images, photos, and sculptures show that EchoPrint achieves 93.75% balanced accuracy and 93.50%
F-score, while the average precision is 98.05% using acoustic features and basic facial landmarks. The precision is further improved to

99.96% with sophisticated visual features.
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1 INTRODUCTION

User authentication on smartphones is pivotal to many
important daily apps, such as social networks, shopping
and banking [2], [3]. Central to the user authentication is the
balancing art between security and convenience. A solution
must be secure while easy to use. A series of efforts have
been undertaken to address this problem.

The most basic and traditional method, PIN number, has
both usability (e.g., the pass code forgotten by the user) and
security (e.g., shoulder-surfing [4] attacks) issues. Existing
vision based approaches such as face recognition based
authentication can be easily spoofed by images or videos
of the user [5]. Simple twists such as requiring eye blinks
are vulnerable to video attacks [6]. This is mainly caused
by the lack of 3D information in images/videos of human
faces. Iris scan [7] is probably the most secure way, how-
ever it requires special sensors unavailable on most mobile
devices. Fingerprint sensors [8], [9], while convenient for
authentication, are facing the challenge posed by the trend
of ever-increasing screen size, which leaves little space for
fingerprint sensors.
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Fig. 1. EchoPrint emits nearly inaudible sound signals from the earpiece
speaker to “illuminate” the user’s face. The extracted acoustic features
from the echoes are combined with visual features extracted from state-
of-the-art face recognition models to authenticate the user.

The latest effort, Apple’s FacelD [10], packs a dot pro-
jector, a flood illuminator and an infrared depth sensor
in a small area to sense the 3D shape of the face, thus
achieving high security while saving space. However, the
special sensors still take precious frontal space and cost extra
(~ 5% of its bill of materials) [11]. Without such dedicated
sensors for 3D sensing, facial recognition using 2D RGB
images can not provide good accuracy and robustness for
practical use. Thus, we ask this question: is an alternative
using existing sensors possible?

In this paper, we propose a novel user authentication
system EchoPrint, which leverages existing earpiece speaker
and frontal camera thus can be readily deployed on most
phones. It does not require costly special sensors (e.g., depth
or iris) that take more spaces. EchoPrint combines acoustic
features from a customized CNN feature extractor and
visual features (basic facial landmarks and sophisticated
visual features from deep neural networks) as the joint
feature description of the user’s face. It does not require the



user to remember any passcode, thus avoiding the usability
issues as PIN numbers. The acoustic features depend on
3D facial geometries, thus it is resilient to image/video
attacks easily spoofing 2D visual based approaches. Similar
to FacelD, it does not require direct touch from the user,
thus avoiding issues like wet fingers that pose difficulties to
fingerprint sensors.

To achieve resilient, secure and easy-to-use authentica-
tion using acoustic and vision, we must address several
challenges: i) echo signals are highly sensitive to the rela-
tive position between the user’s face and the device (ie.,
pose), which makes it extremely hard to extract reliable
pose-insensitive features for robust authentication; ii) smart-
phones come with multiple speakers and microphones -
which ones are most suitable, and what are the proper
sound signals, are critical to authentication performance;
iii) sophisticated signal processing, feature extraction and
machine learning techniques are needed for fast user regis-
tration and real-time authentication.

We make the following contributions in this work:

o We design acoustic emitting signal suitable for con-
siderations including hardware limitation, sensing
resolution, and audibility to humans. We also cre-
ate acoustic signal processing techniques for reliable
segmentation of echoes from the face.

e We propose an end-to-end hybrid machine learning
framework, which extracts representative acoustic
features using a customized convolutional neural
network, and fuses them with visual features ex-
tracted from state-of-the-art deep face recognition
models to feed SVM for final authentication.

o We design a data augmentation scheme for generat-
ing “synthesized” training samples, which reduces
false negatives significantly with limited training
sample size, thus saving the user efforts in new
profile registration.

e Webuild a prototype, conduct extensive experiments
with 62 volunteers and non-human objects and find
that EchoPrint achieves 93.75% balanced accuracy
and 93.50% F-score, while the precision is up to
98.05%. The precision is further improved to 99.96%
with sophisticated visual features. No image/video
based attack is observed to succeed in spoofing our
system.

To the best of our knowledge, EchoPrint is the first
to leverage active acoustic sensing combined with vision
features for smartphone user authentication, demonstrating
robust performance without requiring any additional spe-
cial sensor.

2 BACKGROUND
2.1 Attack Model

We summarize typical attack scenarios for major existing
authentication methods. 1) Replay Attack. 2D image based
face recognition systems suffer from replay attacks by im-
ages or videos of the user face. The face recognition system
on Samsung’s flagship Galaxy S8 is reported to be spoofed
by a simple picture [12]. 2) Shoulder-surfing Attack. When
the victim user performs PIN number authentication, it can
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be easily exposed to shoulder-surfing attacks [4], which has
been a common case for someone standing close by to peek
the whole PIN typing. 3) Biometric Duplication Attack. Finger-
print is the mainstream biometric used for authentication
solutions. However, fingerprints are widely left on objects
(e.g., glasses) touched by the user, and can be duplicated
with reasonable efforts and skill [8] to fool the sensor.

We assume that the adversary has no prior knowledge
about the victim’s authentication information, and it can
only be captured during the victim user’s operation. The
proposed face authentication method, being an alternative
to the traditional PIN number and fingerprint authentica-
tion methods, prevents the victim user from the shoulder-
surfing attack on the PIN number and biometric duplication
attack on the fingerprint. Technically, the adversary can
spoof the authentication system with Biometric Duplication
Attack on facial feature. However, it becomes prohibitively
intractable with a strict requirement on the combination
of geometry, materials, and fabrication such that a facial
sculpture can faithfully mimic the acoustic reflection fea-
tures of the authenticated user. The Replay Attack is the
most concerned adversarial model, as it could be possible to
capture the victim’s image and acoustic data during her/his
authentication operation. We present more discussions and
experiment results regarding the attack models in our eval-
uation section 8.5.

2.2 Design Considerations

We make the following considerations when designing
EchoPrint. 1) Universal. We prefer to use existing hardware
widely available on most smartphones, so that it can be
deployed at large scale rapidly with minimum hardware
costs. Besides, we want to use a biometric that is pervasive
to every human being. 2) Unique. The human face has
been widely used as a biometric because it is distinctive.
However, most existing 2D visual based systems can be
spoofed by images or videos. Thus we leverage the 3D
information of the facial contour for much higher security. 3)
Persistent. The biometric must not change much over time.
Biometrics such as heart beat, breathing, gait are highly
affected by the user’s physical conditions (e.g., running vs.
walking), thus not optimal choices for robust authentication.
In contrast, the human face geometries are not likely to
change too much over short time periods. However, daily
changes like wearing hats or glasses must be easily ac-
commodated. 4) Difficult to Circumvent. This is essential for
any authentication system to ensure a high security level.
Existing authentication approaches, such as PIN numbers,
2D based face recognition, fingerprint sensors still have
quite some risks to be circumvented. Because our two-factor
authentication examines both acoustic and visual features
simultaneously, circumventing would require duplicating
both 3D facial geometries and acoustic reflections properties
close enough to the human face, which will be much more
difficult than needed in circumventing other methods.

2.3 Design Goal

Based on the above discussions, our goal is to build a
highly secure, resilient two-factor authentication system
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Fig. 2. The smartphone actively emits sound signal towards the user’s
face, and collects image and echo data for authentication. Sophisticated
visual features from face recognition models and acoustic features
extracted from a customized CNN are jointly used for the final classi-
fication.

that is available to most existing smartphones without re-
quiring any special sensors. To suit different application
scenarios, we design different authentication modes that
have proper trade-offs between security, convenience and
power consumption. While light weight vision algorithms
should be used to minimize computation complexity, we
keep the option open for future integration with state-of-
the-art vision solutions. We believe such “free” acoustic-
aided authentication will play an important role in mobile
authentication developments.

3 OVERVIEW

EchoPrint uses speakers/microphones for acoustic sensing
and the frontal camera for facial landmarks detection. It
extracts acoustic features from echo signals using a deep
learning approach and fuses such features with visual fea-
tures extracted from state-of-the-art face recognition models
as a joint representation for authentication. Figure 2 shows
the overview of the system design, which consists of two
major phases: user registration and user authentication.

In the registration phase, EchoPrint detects facial land-
marks (e.g., eyes, mouth) using the frontal camera. Mean-
while, the earpiece speaker emits designed acoustic signals
to “illuminate” the user’s face. Echoes bouncing back are
received by the microphone. A pre-trained CNN model is
used to extract acoustic features resilient to phone pose
changes, which are combined with visual features as joint
feature representation, and fed into an SVM classifier for
model training. In the authentication phase, the user just
needs to hold the smartphone in front of the face for facial
landmarks detection and acoustic sensing. The joint features
are extracted and fed into the trained SVM classifier for final
authentication.

4 ACOUSTIC SENSING

Acoustic echoes from the human face are highly distinctive:
i) the echoes are very sensitive to the relative position
between the user face and device. ii) each 3D facial contour
is a unique set of multiple reflecting surfaces [13], which
create a unique sum of individual echoes. iii) different ma-
terials absorb, attenuate sound waves differently, allowing
us to distinguish objects of similar geometry but different
materials (e.g., a stone sculpture).

4.1 Speaker/Microphone Selection

There are two speakers, a main one at the bottom and an
earpiece speaker at the top for hearing phone calls. There are
also one microphone at the bottom, and another at the top
for noise cancellation [14]. We select the earpiece speaker,
top microphone, and frontal camera combination for robust
acoustic/visual sensing. The earpiece speaker is chosen for
sound emitting for two reasons: i) it’s a highly standard
design on almost all existing smartphones. Its location is
suitable for “illuminating” the user’s face; whereas the main
speaker has a more diverse design, either located at the
bottom or on the back; ii) the earpiece speaker is close to
the frontal camera, which minimizes alignment errors when
the frontal camera is used for adjusting the phone pose. The
top microphone is chosen as the receiver because it is close
to the earpiece speaker, and it’s less affected by the user’s
hand holding the device.

4.2 Acoustic Signal Design

There are several considerations in the emitting signal de-
sign. First, it should facilitate isolation of the segment of
interest (i.e., echoes from the face) from the other reflections,
such as interferences from clutters and self-interference from
the speaker. This requires the signal be short enough so that
echoes from objects at different distances have little overlap
in time domain. Second, the acoustic signal should be as
inaudible as possible to human ears to minimize annoyance.
An ideal frequency range should be over 20K H z. Lastly, the
designed signal frequency range should be apart from am-
bient noises (usually under 8 K H z), to enable noise removal
(e.g., using band-pass filters) and improve robustness.

According to our survey, a comfortable distance from
human eyes to the phone is 25 - 50cm, corresponding to
a time delay of ~1.4 - 2.8ms at the speed of sound. From
our experiments, when the frequency goes above 20K Hz,
serious power attenuation and worse signal to noise ratio
occur, thus echoes from faces are buried under noises.
Considering all these facts, we choose a pulse signal with
a length of 1ms with linear increasing frequencies from 16
- 22K Hz. A Hanning window [15] is applied to reshape
the pulse envelop to increase its peak to side lobe ratio, thus
producing higher SNR for echoes. For authentication modes
that require continuous sound emitting, we leave a delay of
50ms for each pulse such that echoes from two consecutive
pulses do not overlap.

4.3 Acoustic Signal Pre-processing
4.3.1 Background Noise Removal

The received raw signal goes through a 16 - 22K H z Butter-
worth band-pass filter to remove background noises, such
that weak echoes from human faces will not be buried in
the noise.

A sample recording segment of a received signal after
noise removal is shown in Figure 3. The direct path seg-
ment is the emitting signal traveling from speaker to the
microphone directly, which ideally should be a copy of the
emitting signal and has the highest amplitude. The major
echo corresponds to the mix of echoes from the major sur-
faces (e.g., cheek, forehead) of the face. Other surfaces of the
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Fig. 3. Sample recording segment of a received signal after noise
removal.

face (e.g., nose, chin) at different distances to the phone also
produce echoes, arriving earlier/later than the major echo.
The face region echoes include all these echoes, capturing the
full information of the face. Accurate segmenting the face
region echoes is critical to minimize the disturbances from
dynamic clutters around the phone, and reduce the data
dimension for model training and performance.

4.3.2 Signal Segmentation

There are two steps extracting the face region segment:
locating the direct path segment in raw recordings, then
locating the major echo thus face region segment after the
direct path segment.

Locating the Direct Path. An easy but naive assump-
tion is that a constant gap exists between the emitting
and recording, thus the direct path can be located after
that constant gap. However, both emitting and recording
must go through multiple layers of hardware and software
processing in the OS, many of which have unpredictable,
varying delays. Thus locating the direct path using a con-
stant delay is extremely unreliable. Instead, since the direct
path signal usually has the highest amplitude, using cross-
correlation to locate it is more reliable [16]. From our exper-
iments, occasional offsets of direct path signal still happen
after cross-correlation, due to ambiguities from comparable
peak values in the cross-correlation result. We propose two
techniques to enhance the stability:

i) Template Signal Calibration. Due to the hardware
(speaker/ microphone) imperfection, the received sound
signal is usually slightly different from the designed emit-
ting signal. To get an accurate “template” signal for cross-
correlation, we perform emitting and recording in a quiet
environment, so that the direct path signal can be reliably
detected and saved as a calibrated template for future cross-
correlation.

ii) Signal Fine-tuning. In addition to the Hanning win-
dow, we manually tune the signal slightly to make the
key peaks/valleys more prominent, which reduces cross-
correlation ambiguity significantly. Only the central por-
tion (15 samples) of the template signal is used in cross-
correlation, further enhancing resilience to residual noises.

Locating the Major Echo. A straightforward way for
locating the major echo is to find cross-correlation peak
location corresponding to typical phone holding distance
(e.g., 25 - 50cm) after the direct path location. However,
human face echoes can be so weak that echoes from larger
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Fig. 4. Distance measurements from acoustics, vision, and calibrated
acoustics.

obstacles faraway can have comparable amplitudes. This
makes the estimation unstable and leads to occasional loca-
tion “jumping”, thus outliers in distance measurements. The
dotted line in Figure 4 shows the distance measurements
from acoustic while the device is moving back and forth
from the face. We can observe quite some outliers due to
such “jumping” outliers. To solve this problem, we propose
a vision-aided major echo locating technique of two steps:

i) Vision Measurement Calibration. From camera image
projection principle, the closer the device to the face, the
larger the image and larger distances between facial land-
marks, and vice versa. Thus the distance from face to device
d, can be formulated as d, = 7- d , where d,, is the distance
between two facial landmarks and 7 is an unknown scale
factor specific to the user. We choose d,, as the pixel distance
between two eye landmarks as they are widely separated
and can be detected reliably. To estimate the scale factor T,
we calculate 7; for each pair-wise d., ; from acoustic distance
measurement and d,, ; in pixels. To eliminate errors caused
by acoustic distance measurement outliers, we first find the
major cluster of {7;} using density-based spatial clustering
algorithm DBSCAN [17], then leverage linear regression to
find the best 7 that minimizes the offset between d, and
7 - =. Figure 4 shows that outliers are removed in vision
cahbrated acoustic distance measurements.

ii) Vision-aided Major Echo Locating. Although vision
based distance measurement is more stable than acoustics, it
can not capture the error caused by rotations of smartphone
or user’s face. Thus the vision calibrated distance measure-
ment is used to narrow down the major echo searching
range and reduce outliers. We still use cross-correlation to
find the exact major peak location within this range. Note
that the user face cannot rotate to extreme angles, otherwise
facial landmark detection may fail.

Face Region Echoes. Since the depth of human face is
limited, we extend 10 sample points before and after the
major echo segment to cover the whole face region (allowing
a depth range of ~ 7cm), which are later used as inputs for
machine models for authentication.

4.4 Segmented Signal Analysis

The face region echoes are a combination of individual
echoes with different amplitudes and phases, thus isolat-
ing individual echoes in time domain can be very hard
due to noises. Instead, we measure the arrival time of
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each echo by a technique Frequency-Modulated Continuous
Wave (FMCW) [18] used in radars. In traditional FMCW,
the speaker transmits continuous chirp signals with linear
increasing frequency, from fmin to frmaz. To estimate the
distance from an object, FMCW compares the frequency of
the echo signal to that of a reference signal using a tech-
nique called signal mixing, to find the frequency shift Af
(shown in Figure 5), which is proportional to the distance.
Thus finding Af gives the distance (i.e., Af multiplying a
constant coefficient).

To capture minute surface geometries on the face, the
FMCW distance measurement resolution is critical. The
resolution in Af is equal to the size of one bin in the FFT,
which depends on the bandwidth used. This is why we use
a wide frequency of 16 - 22K H z, though it may be slightly
audible to some users. In Figure 5, the FFT is taken over
a duration of the face region with length T and hence the
size of one FFT bin is 1/T. Given a minimum measurable
frequency shift A fmin = 1/T, the minimum measurable
distance resolution can be computed using the slope of
signals (see Figure 5), which is the total swept bandwidth B
divided by the sweep time T. Thus the distance resolution:

d — CTOFmin :O Afmm — £
" 2 2 x slope 2B
where C is the speed of sound. Assuming C' = 343m/s at
20° Celsius, thus d; is goam/¢ — 2 88cm. Note that this
is the resolution that FMCW can separate mixed echoes.
The resolution of major echo location corresponds to one
single acoustic sample, which is 3 = 3.57Tmm, where
F, = 48K H z is the recording sampling frequency. The spec-
trogram of the segmented face region echoes after FMCW
signal mixing is then used as input for CNN training in
Section 5.1.

M

5 AcCOUSTIC AND VISUAL FEATURE EXTRACTION

We design an end-to-end hybrid machine learning frame-
work for authentication, which consists of three major com-
ponents (shown in Figure 6): a CNN based acoustic feature
extraction model, a visual feature extraction model, and an
SVM classifier for two-factor authentication.

5.1 Acoustic Feature Extraction

Traditional acoustic features such as mel-frequency cepstral
coefficients [19], chromagram [20] and spectral contrast [21]
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Fig. 6. The authentication framework consists of three major compo-
nents: image model, acoustic model and SVM classifier.

have been proven to be effective in human speech recog-
nition and voice-based authentication, but not in active
acoustic sensing as in our case. Recently, deep learning
approaches (especially CNNs) have shown great successes
in a variety of challenging tasks such as image classification
due to their powerful automatic feature extraction [22], [23].
We design a CNN based neural network which takes the
spectrogram of the segmented signal as input, and train
it on a large data set collected from users. We find that
such extracted features outperform all traditional features
(in Section 8.2).

A customized CNN architecture designed for acoustic
feature learning is shown in Table 1. We use rectified linear
unit (ReLU) as activation function for convolutional layers,
a popular choice especially for deep networks to speed up
training. Two max pooling layers with a size of 2 x 2 are
used to down-sample the input representations from their
previous activation layers. This saves computational costs
by reducing the number of parameters for both training
and inference, which is critical when the model needs to
be deployed on mobile devices. Dropout layers are added
after each max pooling layer to prevent over-fitting. Batch
normalization normalizes the output of a previous layer
by subtracting the batch mean and dividing by the batch
standard deviation, which increase the stability of the neural
network and speed up training (~ 6x speedup in our case).
Categorical cross-entropy is used as the loss function. The
dense layer with softmax activation function outputs the
probability of each class. The CNN is trained on a data
set that contains acoustic samples from 50 classes (45 users
and 5 non-human classes). Note that although the CNN is
trained for 50 classes, the objective of the trained model
is to extract features that can be used to distinguish far
more classes beyond those 50. To use the trained model as
a general acoustic feature extractor, the last layer, which is
used for final classification, is removed. Thus the remain-
ing network outputs a 128 dimensional feature vector. The
trained model has 710539 parameters, and a size of 5.47M B,
which is portable enough for mobile devices for real-time
inference.



TABLE 1
CNN layers and parameter amounts.

Layer Layer Type Output Shape | # Param
1 Conv2D + ReLU (33,61,32) 320
2 Conv2D + ReLU (31,59,32) 9248
3 Max Pooling (15,29,32)
4 Dropout (15,29,32)
5 Batch Normalization (15,29,32) 128
6 Conv2D + ReLU (15,29,64) 18496
7 Conv2D + ReLU (13,27,64) 36928
8 Max Pooling (6,13,64)
9 Dropout (6,13,64)
10 Batch Normalization (6,13,64) 256
11 Flatten (4992)
12 Dense + ReLU (128) 639104
13 Batch Normalization (128) 512
14 Dense + Softmax (50) 5547
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Fig. 7. Facial landmarks and face tracking, and landmark transformation
between two camera positions.

5.2 Visual Feature Extraction
5.2.1 Basic Facial Landmarks Detection

We extract lightweight visual features of the face to com-
plement acoustic ones. The vision techniques serve two
purposes: i) we detect facial landmarks which are later used
as basic visual features. ii) we track the user’s face on the
smartphone screen so that the user can hold the device
within some “valid” zone (thus distance and orientation)
for data collection.

We detect the 2D coordinates of facial landmarks (e.g.,
corners/tips of eyes, nose and mouth) on the image as
features, using the mobile vision API from Google [24]
on Android platform (shown in Figure 7(a)). The face is
tracked by a bounding rectangle. We observe that these
landmarks describe critical geometry features on the face,
and their locations are associated with the relative position
from the device to the face. Detailed description of the
implementation is presented in Section 7.

5.2.2 Sophisticated Visual Features Extraction

Sophisticated visual features from state-of-the-art face
recognition models such as OpenFace [25] can provide more
rich and robust information from the visual aspect. As we
use the images for facial key points extraction, we propose a
method to further extract more sophisticated visual features
to enhance the overall security of our authentication. Get-
ting a low-dimensional visual representation is crucial for
efficient classification on mobile devices where the resource
is limited. As the intrapersonal image variations such as
angles, distances and even facial expressions can cause
difficulty in classification, we adjust and normalize the face
before the actual feature extraction.

Image Pre-process

Fig. 8. Image pre-processing and visual feature extraction.

Image Pre-processing. Figure 8 shows the four stages
to pre-process the image input for training the face rep-
resentation neural network. On the mobile device, we get
the aligned face image input once the App detects there
appears the face in the red box while the red box stays
in between the green boxes as shown in Figure 9. We can
drastically reduce the computation effort for further image
processing given alignment by the first stage. In the second
stage, we aim to locate where the eyes, nose and lips are.
To mitigate the constraints from illumination conditions,
we leverage a pre-trained detector based on Histogram of
Oriented Gradients to layout the face landmarks. To make it
easier for facial recognition, thus authentication, we project
all the face landmarks to our predefined positions using
affine transformations, which have the expression as shown
in the Equation 2:

T = Agxa - B} + Bax1 = Mays - [xvya I]T (2)

szg - [A2><2 BQ><1]

where M is obtained from the relationship between
predefined landmark positions and detected positions of
landmarks in raw image inputs, and it conducts rotation,
translation and scale operations [26]. Thus no matter in
what angle the sample is taken, we can achieve roughly
the same positions for every face landmark. The affine
transformation provides an affine mapping from the raw
image to a well frontalized and normalized image input
for training. Obtaining the image with landmarks of known
positions, we crop the picture to a more compact image thus
further reducing the complexity in training.

Image Feature Extraction. Now that we achieve the
smaller size of the normalized input space, which is suitable
as the input to the deep convolutional network to achieve
a desirable low-dimensional representation, which can gen-
eralize well to faces that are new to the neural network.
We achieve this goal by taking advantage of OpenFace’s
neural network [25], which is a reduced version of nn4 pro-
posed by Google’s FaceNet [27]. The network is trained by
using a combination of classification and triplet loss, which
minimizes the distance between faces of the same identity
and enforces a margin between the different identities. After
completion of training, we leverage the pre-trained model



as a feature extractor to map the face image input to a 128-
dimensional embedding space, in which faces from the same
identity should be close together and form well separated
clusters, such that they can be easily recognized/classified.
And the extracted visual features later will be combined
with acoustic features to form a joint embedding, which is a
generic representation for anybody’s face, for classification
(i.e., final authentication).

5.3 Two-factor Authentication

The joint acoustic and visual features are used for two-factor
authentication.

Features Summary. To use basic visual features, the
facial landmarks on the image are concatenated with the
corresponding 128-dimensional CNN features as the joint
features for final authentication. Both acoustic and vision
data are collected simultaneously so that they are well
synchronized, which ensures the correspondence between
facial landmarks distribution on the screen and relative
device position, thus echo signals. As an option, we also
concatenate the 128-dimensional sophisticated visual fea-
ture and acoustic feature for even higher performance at
a cost of more computational complexity.

Classifier. One-class SVM is an unsupervised algorithm
that learns a decision function for novelty detection: classify-
ing new data as similar or different to the training set [28]. It
detects the soft boundary of the training set so as to classify
new samples as belonging to that set or not. We use one-
class SVM with radial basis function (RBF) kernel function
for final classification. It allows us to train an SVM classi-
fying model for a new user (or the same user wearing new
hats or glasses) on mobile devices easily, without requiring
large amounts of training data as in CNN.

Ideally, a user should move the device at various relative
positions to the face so as to collect sufficient training data
during user registration. In practice, this imposes more
efforts on the user, and it is hard to tell when sufficient
data has been collected. Insufficient training data will cause
higher false negatives (i.e., denial of the legitimate user).
Thus we propose a data augmentation technique, which
populates the training data by generating “synthesized”
training samples based on facial landmark transformation
and acoustic signal prediction. During this process, we
transform measured facial landmarks and acoustic signals
into synthesized ones, by assuming different poses of the
phone.

5.4 Data Augmentation

Data augmentation is commonly used to increase the
amount of data by adding slightly modified copies of al-
ready existing data or newly created synthetic data from
existing data [29]. It is an effective way to prevent over-
fitting when the data amount is relatively small. In our
design, we propose a data augmentation technique based on
camera projective geometry and sound propagation inverse-
square law.

7

In projective geometry, the projection matrix P of a 3D
point (Zw, Yuw, 2w) in the world coordinate system onto the
image plane in camera is modeled as Equation 3:

x
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where A is the scale factor for homogeneous coordi-
nates, (u,v) denotes its pixel coordinate on image, K =

fo 5 c

0 fy ¢

0 0 1
focal length f, and f,, skew s, and image center (¢, ¢;) in
pixels. [R|T] represents the extrinsic matrix of the camera,
i.e., camera’s pose in the world coordinate system, where R
is a 3 X 3 matrix for its 3D orientation, and T is a 3 x 1 matrix
for its 3D translation.

As shown in Figure 7(b), assume two cameras take
images of the same object at different distances/angles, and
z = [u,v,1]T and 2’ = [u/,v,1]T represent the object’s
pixel coordinates on two images. Without loss of generality,
we define the first camera as the world origin, thus the
projection matrix of two cameras are:

P = K[I|0], P' = K'[RIT] 4)

is the intrinsic matrix of the camera, e.g., the

where I is a 3 x 3 identity matrix.

Based on the above background of projective geometry,
we can transform the landmark pixel coordinates in one
camera to those of any new camera pose, thus augmenting
our training set.

Step 1: Compute the landmark’s world coordinates.
Given the projection matrix P and landmark pixel coordi-
nates x of the first camera, we can compute the landmark’s
world coordinates as (), Yw, zw)T = z o K _1w, where z,,
is the distance of landmark from camera center, which can
be measured via our acoustic sensing.

Step 2: Transform the landmark onto new images.
From the projection matrix of the new camera pose, we
can compute the corresponding pixel coordinates of the
landmark as:

' =K'RK 'z +K'T/z, (5)

This transform equation consists of two parts: the first
term depends on the image position alone, i.e., x, but not the
landmark’s depth z,,; the second term depends on the depth
and takes account of the camera translation. In the case of
pure translation (R = I, K' = K), Equation 5 reduces to
' =x+ KT/z,.

Step 3: Data augmentation. We augment our training set
based on Equation 5. i) Before data collection, we calibrate
the camera with a benchmark paper printing of a chessboard
with known size, thus obtain its intrinsic matrix K. ii) Given
a new camera pose of 8 = (T,¢), where T for its 3D
coordinates and ¢ = (o, 3,7) for its rotation angles along
three axes of the smartphone, we transform ¢ to the 3 x 3



rotation matrix R based on Rodrigues’s Formula [30], then
compute x’ via Equation 5.

Accordingly, following the sound propagation inverse-
square law, the face region signal segment is shifted by
the same distances, with the amplitude adjusted by the
scale equal to the inverse of the square of distance. Due to
the omni-directional property of smartphone speaker and
microphone, a slight device rotation at a fixed position
causes negligible changes in the signal, thus only device
position change accounts for acoustic signal transform.

6 AUTHENTICATION MODES

We propose three authentication modes: two-factor one-pass
authentication, low-power continuous authentication and
ultra low-power presence detection, suitable for scenarios
requiring progressively less security level but more user
convenience and power efficiency.

Two-factor One-pass Authentication. In this mode, the
user must hold the phone properly to align his face within
the valid area rectangle as shown on the screen (see Fig-
ure 9). Both visual facial landmarks from camera images and
acoustic features extracted by the trained CNN are fed to
the SVM for recognition. This incurs the most computation,
energy costs, providing the highest security level suitable
for scenarios such as phone unlock, account log in. In this
mode, we can also leverage sophisticated visual features
for higher performance. Due to the heavy computation of
sophisticated visual feature extraction, images are offloaded
to a server for inference computation.

Low-power Continuous Authentication (LP mode).
In this mode, acoustic features extracted from the CNN
are used in one-class SVM classification. It avoids power
hungry cameras and real-time video processing, providing
reduced security level suitable for scenarios such as contin-
uous access/browse of private data in banking transactions
after login is completed. The user needs to hold the phone
in position ranges similar to training data collection.

Ultra Low-power Presence Detection (ULP mode). This
mode uses acoustic signal only and an SVM model to detect
the presence of the user face. To minimize computation and
energy costs, the spectrum of a set of samples (e.g., the first
80 after the direct path signal) instead of CNN extracted
features is fed to SVM. Data collected to train the SVM
include positive samples while holding the device before
the user’s face, negative samples when putting the device
on tables, in pockets, or holding it away from the user. This
mode consumes the least power and is suitable for scenarios
like auto screen lockup when the user face is not present.

7 IMPLEMENTATION

We implement EchoPrint on multiple Android smartphones,
including SamSung S7 Edge, SamSung S8, and HuaWei P9.
Figure 9 shows the Ul The prototype consists of three major
modules: facial landmark detection, acoustic sensing, and
machine learning pipeline for authentication.

Facial Landmark Detection and Feature Extaction. We
use Google mobile vision API [24] for real-time facial land-
mark detection and face tracking. The middle red rectangle
(Figure 9) denotes the detected face area, and two green

__.--» Face Valid Area
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Landmarks

__-- Authentication Result

Segmented Signal

-
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DELETE  TRAIN ON
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Fig. 9. EchoPrint prototype application Ul.

rectangles are the predefined inner and outer bounds of
facial valid areas. The user face must be aligned within the
two green rectangles during data collection; otherwise the
acoustic data are discarded. Yellow dots are detected facial
landmarks, saved in pixel coordinates. For sophisticated
visual feature extraction, we offload video frames to a server
for inference computation.

Acoustic Sensing. The acoustic signal is pre-processed
and displayed on the screen in real-time, and the segmented
signal from the face is highlighted in blue. For better visu-
alization, we amplify the signal by 3 x after the direct path
signal.

Machine Learning Pipeline. The machine learning
pipeline requires one CNN acoustic feature extractor, one
visual feature extractor, and one SVM classifier. We train
the CNN model off-line on a PC with Intel i7-8700K CPU,
64GB memory and GTX 1080 Ti GPU. Keras [31] with
Tensorflow [32] backend is used for CNN construction and
training. The trained model is frozen and deployed on
mobile devices. We adopt one of the state-of-the-art face
recognition model — OpenFace [25] — as our visual feature
extractor, which runs on the server for feature extraction.
Using both acoustic and visual features extracted from deep
neural networks, an SVM classifier using LibSVM [33] is
trained on mobile devices. Both acoustic CNN and SVM
inferences are performed on mobile devices in real-time.

8 EVALUATION
8.1 Data Collection

We obtain the required human subjects training certificate
from our institution before data collection. 45 participants
of different ages, genders, and skin colors are recruited
in experiments. The diversity in physical appearances of
participant faces help us capture sufficient data to create
a strong feature extraction model. We also include 5 non-
human classes: printed /displayed human faces on different
materials such as paper, desktop monitor, photo on paper
box, wall and a marble sculpture. During data collection,
each participant is asked to hold the smartphone in front
of his/her face to ensure face alignment. To accommodate



5 1.0 —
0.961 © 1 r‘LI rT‘| 0ol =
0.941H] L 0.8{ =

g + @ T & T go.7 -

509 = 506 T

<0.90 é <05

0.4
0.88 3 0.3 = _%

LR LDA KNN DT NB SVM NN SPEC MFCC CHRO CONT CNN

(a) Different classifiers. (b) Different features.

Fig. 10. Different classifiers performance on extracted features from
CNN, and SVM performance using different features.

slight phone movements, participants are encouraged to
move the phone slowly to cover different poses. Data cap-
tured while the face is out of the valid area are discarded
automatically. About 120 seconds’ data is captured from
each user, at around 7 - 8M B and containing ~ 2000
samples. To ensure diversity, the data is collected in multiple
uncontrolled environments (e.g., quiet laboratories, noisy
classrooms, and outdoor environments) under different
background noises and lighting conditions. A portion of the
participants who are more accessible to us collected data
in multiple sessions at different times and locations. Facial
landmarks are also detected and recorded simultaneously,
but no facial images are recorded to protect the participants’
privacy. In total, the data set contains 91708 valid samples
from 50 classes. We divide it in three parts, 70% for model
training, 15% each for model validation and testing. Ad-
ditionally, 12 more volunteers join as new users for model
evaluation.

8.2 CNN Feature Extractor Performance

We compare the performance of different classifiers and
feature extraction methods using the test data set.

Different Classifiers. The last fully connected layer of
our trained CNN is removed so that the remaining network
is used as a general feature extractor. Such extracted features
are then fed to different classifiers for final classification.
We compare Linear Regression (LR), Linear Discriminant
Analysis (LDA), K-Nearest Neighbor (KNN), Decision Tree
(DT), Naive Bayesian (NB), Support Vector Machine (SVM)
and a standalone Neural Network (NN). The box plot in
Figure 10(a) shows the lower and upper quartiles, and the
median. The whiskers extend from the box show the range
of accuracy, and outliers beyond the whiskers are marked as
circles. We find SVM outperforms all other classifiers, and it
takes short time (15.06s compared to 65.38s of NN which
has second best performance) for training. Thus we use SVM
as the final classifier for authentication.

Different Features. We compare different commonly
used acoustic features: spectrogram (SPEC), mel-frequency
cepstral coefficients (MFCC) [19], chromagram (CHRO) [20],
spectral contrast (CONT) [21] and our CNN features. Fig-
ure 10(b) shows their accuracies using SVM classifier. Our
CNN extractor outperforms all other features and achieves
the highest accuracy of ~ 95%, which show the effectiveness
and necessity of the CNN feature extractor. Spectrogram has
less accuracy at ~ 85%, and chromagram 67%. MFCC and
CONT have much lower accuracy ~ 30%, which is what
we expected because they are mostly used for human voice
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recognition, not active acoustic sensing used in EchoPrint.
Besides, the 15.06s using CNN features to train the SVM
model is a fraction of the 134s needed when training with
spectrogram. This is a significant improvement when train-
ing a model on resource-constraint mobile devices, which is
critical for the speed of user registration.

8.3 Authentication Accuracy

In a binary classification problem, there are four results:
true positive (TP), positive samples correctly classified as
positive class; true negative (TN), negative samples correctly
classified as negative class; false positive (FP), negative
samples wrongly classified as positive class; false negative
(FN), positive sample wrongly classified as negative class.
Specifically, in authentication scenarios, a high TP means
the authorized user can get access easily, a high TN means
the system can block most attacks. The worst case is high
FP, which means unauthorized users gain access. A high FN
means the authorized user may be denied access, which is
annoying and not user-friendly. In this evaluation, we train
a one-class SVM for each subject and attack the model using
the data from the rest users. Note that the model is trained
on positive samples only, it does not have negative samples
from attackers during training.

8.3.1 Precision, Recall, F-score and BAC

We introduce precision, recall, F-score and balanced ac-
curacy (BAC) as metrics. Precision is the fraction of true
positives among all samples classified as positive, defined
as P = TPZ_%; recall is the fraction of true positives
among all positive samples, defined as R = TPZ%. A
high precision means the authorized user can pass easily,
a high recall means the authorized user is seldom denied.
When the class distribution is imbalanced, precision and
recall alone can be misleading. We also introduce F-score
and balanced accuracy (BAC), both insensitive to class
distribution. F-core is the harmonic mean of precision and
recall with a best value of 1 and worst value of 0, defined as
F-score = 2%. BAC is the average of true positive rate
(TPR = %) and true negative rate (I'NR = %),
defined as BAC' = § - (TPR + TNR). A BAC of 1 means
no false positive (i.e., successful attack) or false negative (i.e.,
denied access of legitimate users).

TABLE 2
Mean/median accuracy with vision, acoustic and joint features.

Vision Acoustic Joint
Precision (%) | 72.53 / 80.32 | 86.06 / 99.41 | 88.19 / 99.75
Recall (%) 64.05 / 64.04 | 89.82 / 89.84 | 84.08 / 90.10
F-score (%) 65.17 / 69.19 | 85.39 / 94.31 | 83.74 / 93.23
BAC (%) 81.78 / 81.83 | 94.79 / 94.88 | 91.92 / 95.04

Table 2 shows the mean and median accuracies using
vision, acoustic, and joint features. Vision (2D coordinates
of a few facial landmarks like the corners/tips of eyes, nose
and mouth) is the worst with a low average precision of
~ T72%. Acoustic achieves 86%, and joint features further
increase it to 88% while also decreasing recall by ~ 6%. That
is because simple 2D coordinates of facial features do not
capture the full characteristics of the face, thus alone they
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Fig. 11. The precision, recall, F-score and BAC of one-class SVM model
using acoustic and joint features.

do not perform well when many test subjects exist. They
can help “block” unauthorized users which happen to have
similar acoustic features, thus increasing precision. But they
also make it harder for the authorized user to pass, thus
decreasing recall. Both acoustic and joint features have an
average F-score ~ 85% and BAC above 90%. The vision fea-
tures used are not sophisticated and detailed visual features
(e.g., the contour of face) of facial appearances as used in
state-of-the-art vision-based face recognition systems. These
basic face landmarks are mainly used for face alignment,
which is critical for robust acoustic sensing. While such
facial landmarks are not intended to greatly improve recog-
nition accuracy, EchoPrint as an acoustic based approach is
free to incorporate more sophisticated facial features, e.g.,
features from a deep neural network trained on a huge face
image dataset [25]. Those would have a much higher impact
on performance improvements.

Note that the median precision (~ 99%) and F-score
(~ 94%) for both acoustic and joint features are much higher
than the respective average (83 ~ 88%). This is caused by
outliers. Figure 11 shows the box plot of all four metrics
of acoustic and joint features. A few outlier classes with
very low precision cause low average but do not affect
the median. Such outliers are mainly non-human noise
classes or human classes with very limited valid samples.
When such outliers are excluded, the averages will increase
significantly to above ~ 95%.

8.3.2 Performance on New Users

To evaluate how well the pre-trained CNN can extract
features for new users, we invite 12 additional volunteers
whose data are not used in CNN training. Each volunteer
follows the same data collection process for ~ 2 minutes’
data, half of which are used for SVM training and the other
half for testing. We train a one-class SVM model for each
volunteer, and test the model with positive samples from the
user and negative samples from all other users, including
the data from 50 classes used in CNN training. Table 3
shows that the average precision is over 98%, about 10%
increase compared to results in Table 2 due to the absence
of outlier classes. Similarly the average recall, F-score and
BAC are all improved compared to those in Table 2.

8.3.3 Data Augmentation Evaluation

We evaluate how effective data augmentation can improve
the performance by generating “synthesized” training sam-
ples when training data is limited. We split 20% samples
from the 2min data as testing set, and vary the size of
training set from 20% to 80%. The data set is shuffled
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TABLE 3
Authentication accuracy of new users.

Mean | Median | Standard Deviation
Precision (%) | 98.05 99.21 2.78
Recall (%) 89.36 89.91 1.62
F-score (%) 93.50 94.33 1.68
BAC (%) 93.75 94.52 0.85
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Fig. 12. Classification performance comparison of data augmentation
(DA) under different training data amounts.

before the splitting to make it more balanced. Figure 12
shows the precision, recall, F-score and BAC under different
amounts of training samples from 50 to 600, which are tested
against another 1054 positive testing samples and all the
91708 negative samples from existing 50 classes. It is obvious
that data augmentation improves recall significantly, thus F-
score and BAC, especially when the training samples are
very limited (e.g., <100). As the size grows, the recall with
data augmentation is always higher. However the precision
decreases to ~ 95%, which is because “synthesized” train-
ing samples have more noises, making it easier to have false
positives. The performance becomes stable with more than
400 training samples, which can be collected within one
minute when registering a new user.

8.3.4 Continuous Modes Evaluation

We evaluate the two continuous modes of presence detec-
tion and continuous authentication that uses only acoustics.

Presence Detection. We put the smartphone at different
locations as well as holding it in front of the user’s face.
The detection result is shown on the screen in real-time
so that we know the correctness. From our experiments,
it can differentiate putting on a table and holding in front
of the user with nearly 100% accuracy with unnoticeable
delay. Holding in the air sometimes may be detected as user
presence when the device is close to some major objects,
which may affect timely screen lockup.

Continuous Authentication. To ensure friendly user
experience during continuous authentication, a low false
negative rate is very important. One volunteer participates
in this experiment with a trained model using data when the
face is aligned. In the authentication phase, the volunteer
keeps using the device as normal and tries to keep it
within positions where the face is aligned, with the cam-
era disabled. We evaluate the precision, recall, F-score and
BAC when multiple authentication trials are conducted for
each cycle. Authentication trial happens every 100ms thus
one verdict from multiple trials is fast enough, causing no
noticeable delay to the user. At least one trial must pass in
a cycle to declare authentication success. Figure 13 shows
that more trials increase the recall rapidly while decreasing
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TABLE 4
Mean/median authentication accuracy of new users with vision,
acoustic and joint features.
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Fig. 14. Elapsed time and size of extracted features for training one-class
SVM classifiers using acoustic, vision and joint features.

the precision. This is because more trials give the user more
chances to pass, thus reducing denials while increasing false
positives. We choose 3 trials for each authentication circle to
balance all the metrics.

8.4 Leveraging Sophisticated Visual Features

To evaluate the impact of sophisticated visual features, we
invited 10 volunteers whose data are not used for the acous-
tic training. For each one of them, a ~ 2mins acoustic data
and 20 image samples are recorded for evaluation. Since
the image data capturing is slower, we populate the image
samples by duplicating each sample to meet the number of
the acoustic samples according to their timing.

8.4.1 Training Time Cost

To train the authentication model and evaluate the perfor-
mance, we shuffle and split the collected data into two parts,
80% for training and 20% for testing. From Figure 14, we
note that the elapsed time for training SVM with visual
features is lower than that with acoustic features, even with
the same amount of features. This is because the larger mar-
gin between different classes, the shorter time for training
SVM with the same regularization parameter C, and the
visual feature extractor is trained based on triplet loss [27],
which encourages clustering the representations of different
identities.

8.4.2 Authentication Accuracy

To analyze the impact of acoustic, visual and the combina-
tion of both on the overall authentication performance, we
compare the above performance metrics using individual
features and the joint features. For each user, we use the

positive samples in its test set as positive testing samples
and use all the data from other users as negative samples,
trying to attack the model. Figure 15 shows the results. As
we can see, leveraging acoustic features only, the precision
is above 90% with large variances, which is inferior to using
visual feature or the joint feature. However, the recall and
F-score are significantly better compared to visual features,
and slightly better than the joint features. This is because 1)
when registering new users, the number of vision samples is
limited; 2) when verifying the authentication, joint features
examine both modalities in order to produce a positive
prediction, which brings down the recall slightly. Thanks
to the sophisticated visual features, the precision of joint
features are much better than pure acoustic features, demon-
strating higher security. Note that, the results are based on
the data collected from real human subjects, there are no
image/video attacks here. Table 4 shows the authentication
results of additional 10 new users with an average preci-
sion of 99.96% and F-score of 94.07%. Note that although
the precision of joint features is slightly lower than pure
visual features, the joint features offer images/videos anti-
spoofing capabilities.

8.5 Attack Model Study

Based on our analysis about the attack models in Section 2.1,
the replay attack on the facial feature (e.g., image spoofing
attacks) is the most concerned adversarial model to our
authentication mechanism.

We conduct the image spoofing attack to our system,
which is the top concern for existing camera based authenti-
cation approaches. We print color photos of 5 volunteers in
10 different sizes on paper, and also display the photos on
desktop monitors while zooming in/out gradually, both at
various distances between 20 - 50cm to the smartphone. The
printed and displayed photos can easily pass the system if
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Fig. 16. Performance under difference noises.

only vision features are used, but none of them can pass the
acoustic or two-factor authentication. This demonstrates the
advantage and necessity of the combination of visual and
acoustic features.

In addition to the replay attacks on the image feature,
we also study the possibility of the replay attacks on the
acoustic feature. To capture the acoustic signal for replay
attack, we place the eavesdropper around the system when
the user performs authentication procedure. We note the
presence of a nearby eavesdropper would alter the acoustic
response thus producing different features, while a faraway
one cannot faithfully capture the acoustic features due to
severe attenuation. Therefore, our authentication system is
resilient to these attack models.

8.6 Miscellaneous

We evaluate the following factors that have direct impacts
on practical use.

User Appearance Changes. Appearance changes such as
wearing glasses/hats cause changes in the reflected acoustic
signals, thus more false negatives and low recall. To combat
such problems, we retrain the SVM model with data sam-
ples of new appearances in addition to the existing training
data. Figure 17 shows the average recall of 5 users with
different appearance changes before/after model update
using additional ~ 1 minute’s data. Without retraining, the
recall drops to single digits. After the retraining, it increases
back to normal levels, so correct users can pass easily. This
shows retraining is effective combating such changes.

Robustness Against Background Noise. We evaluate
the robustness again background noise under different con-
ditions: quiet room, with ambient noise (playing pop music
nearby), and with ambient plus self noise (playing music
through earpiece speaker on the same device during data col-
lection, an extreme condition). Figure 16 shows the results.
Except for a slightly lower recall, there is no major differ-
ence between quiet and ambient noise conditions, which
demonstrates EchoPrint is very robust to ambient noise. The
ambient plus self noise brings down to recall to ~ 70%, but
still the precision remains above 95%.

User Experience Study. We conduct a survey with 20
users (mostly graduate and undergraduate students) to
collect their feedback, mainly on two aspects that directly
impact user experience, the sensitivity to the emitted sound
signal and the effort for new user registration. Out of 20
users, only 4 reported able to hear the high frequency sound
from the earpiece when holding the smartphone at a normal
distance. Out of 20 users, 9 rated EchoPrint equally easy
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to register as other authentication systems such as image-
based face recognition and fingerprint sensor, 6 rated it
harder and 5 rated it easier.

8.7 Resource Consumption

We evaluate memory, CPU usage using the Android Studio
IDE Profiler tool, and power consumption using Qual-
comm’s Trepn Profiler tool [34] on Samsung S7 edge, Sam-
sung S8, and Huawei P9.

Memory & CPU Consumption. Table 5 shows the re-
source consumption on three smartphones when only basic
visual features are used. The memory consumption has an
average ~ 22M B and maximum ~ 50M B, which appears
when CNN feature extraction using tensorflow inference
is running. The average amount of time for the CPU to
complete all the machine learning inferences is low on all
phones (5 ~ 7ms). The maximum CPU time is around
~ 30ms, still very low. Such low memory and CPU usage
makes it possible to deploy EchoPrint on most existing
devices. Table 6 shows the resource consumption when
sophisticated visual features are used. In this mode, the
image data are streamed to a server for feature extraction,
which are returned to mobile device for final authentication.
Compared with using basic visual features, it only requires
slightly more memory and CPU resources at a cost of
possible delay depending on network conditions. This is
because of the most heavy computation task — sophisticated
visual feature extraction — is offloaded to the server, which
makes it possible to maintain real-time recognition on most
existing devices.

Response Delay. Response delay is the time needed for
the system to produce an authentication result after the raw
input signal is ready (Table 5). Samsung S8 has the least
delay with an average of ~ 15ms, and the other two 32
- 45ms. The delay approaches maximum when the user
keeps moving the phone trying to align the face in the valid
area, which incurs a lot of camera preview refreshing and
rendering. It is also affected by other computation-heavy
background apps. For real-time continuous authentication,
the delay between consecutive sound signal emitting is
50ms. We choose to do authentication every other emitting,
leaving sufficient time for processing. We do not evaluate
the response delay when sophisticated visual features are
used because it highly depends on the network quality.
The image data is ~ 1.4M B for each test. Depending on
the network quality, the delay time varies. However, unless
the wireless networking is highly congested, the delay is
acceptable for most use cases.



TABLE 5
Mean/max resource consumption with basic visual features.
Device | Memory (M B) CPU (ms) Delay (ms)
S7 22.0 / 50.0 6.42 / 31.59 44.87 / 91
S8 20.0 / 45.0 514 /29.04 | 1533 /35
P9 24.0 / 53.0 7.18 /23.87 | 32.68 /86
TABLE 6
Mean/max resource consumption with sophisticated visual features.
Device | Memory (M B) CPU (ms)
S7 29.3 / 54.9 7.21 / 34.21
S8 27.0 /515 6.54 / 31.25
P9 325/613 8.37 / 27.63

Power Consumption. We test the three modes and pure
vision based authentication using 2D coordinates of facial
landmarks, each for 30 minutes to measure power con-
sumption on Samsung S7 Edge, S8 and Huawei P9. We
use Qualcomm’s Trepn Profiler tool [34], which provides
power consumption in mW for a chosen application. We
subtract the background power consumption while the
screen is on, the increased power consumption caused by
different modes are shown in Table 7. The results show that
presence detection consumes minimum power, while low
power continuous authentication takes less than that of pure
light weight vision based authentication. Two-factor authen-
tication has the highest battery consumption; but it is also
designed for occasional one-pass authentication finishing in
just a few seconds, not long time continuous operation. The
slight power increase of vision based mode over LP is due to
the simple form of facial landmarks used, which are much
lighter weight compared to more sophisticated ones such as
those in OpenFace [25].

TABLE 7
Power consumption of different modes.

Device | ULP (mW) | LP (mW) | Two-factor (mW) | Vision (mW)
Eid 305 1560 2485 1815
S8 215 1500 2255 1655
P9 265 1510 2375 1725

9 RELATED WORK

Smartphone Authentication. Personal Identification Num-
ber (PIN) or a text/graphical password are the earliest
and still most widely used smartphone user authentication
methods. Despite the simplicity, the PIN or password can be
easily peeked by someone close by [4]. Speech recognition
is easy to spoof when the voice is recorded, or closely imi-
tated by advanced learning algorithms [35]. BreathPrint [36]
senses the user’s breath sound, which may change signifi-
cantly when the user has intense exercises. Vision based face
recognition is vulnerable to camouflaged images. Although
eye blinks can enhance its security [6], a recorded video can
still spoof the system. Fingerprint sensors have achieved
great security and convenience. However the sensor takes
a lot of precious space, and forging one from fingerprints
left by the user is proven practical [8]. More advanced
fingerprint sensors use ultrasonics [37] to penetrate the
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skin and construct 3D imaging, but such sensors are un-
available on most smartphones. Apple’s FacelD [10] uses
special TrueDepth sensors, bringing extra hardware costs
and requiring significant design changes. Unlike all the
above solutions, EchoPrint is the first to leverage active
acoustic sensing combined with visual features for user
authentication. It achieves high balanced accuracy (~ 95%)
using existing hardware.

Acoustic-based Face Recognition. Acoustics has been
used for face recognition in some prior work [38], [39], [40],
[41]. I. E. Dror et al. [40] recognize a limited number of five
human faces with an accuracy over 96% and the gender of
16 faces with an accuracy of 88% using bat-like sonar input
from special ultrasonic sensors. K. Kalgaonkar et al. [41]
propose a sensing mechanism based on the Doppler effect
to capture the patterns of motion of talking faces using
ultrasound. K.K. Yoong et al. [38], [39] classify up to 10
still faces with an accuracy of 99.73% using hand-crafted
features from ultrasound echo signals. Compared to all the
above work using special ultrasonic sensors which are not
available in consumer electronics, EchoPrint uses commod-
ity smartphone speakers and microphones not intended for
ultrasonic frequencies. This puts a lot of challenges on the
signal design and processing, and much more experiments
and tests to find out the best acoustic signal design provid-
ing required sensing resolution within hardware limitations,
while minimizing the audibility to users. Besides, such prior
work uses pure ultrasonic sensing without the aid from
vision, thus creating major limitations (e.g., requiring the
user to move the head at a fixed location and angle). While
EchoPrint leverages the vision to align faces using face
tracking algorithms for practical two-factor vision-acoustic
authentication.

Acoustic Sensing on Smartphones. Acoustic sensing is
widely used for distance measurement, thus applications
in localization, tracking, stress and encounter detection.
BeepBeep [42] measures the distance between two smart-
phones directly; Liu et al. [43] leverage cross-correlation to
compute the arrival time difference for keystroke snooping;
EchoTag [44] recognizes different locations and BatMap-
per [16], [45] builds indoor floor plans using echo sig-
nals. Besides, acoustic ranging can significantly improve
smartphone localization accuracy, e.g., adding constraints
among peer phones [46], deploying an anchor network
that transmits spatial beacon signals [47], or enabling high-
precision infrastructure-free mobile device tracking [48].
FingerIO [49], and LLAP [50] leverage phase shift in re-
ceived signals for near field finger gesture tracking, achiev-
ing ~ lem or higher accuracy. ApenaApp [51] monitors
the minute chest and abdomen breathing movements using
FMCW [52], and SonarBeat [53] monitors breathing beat
using signal phase shifts. Compared to them, EchoPrint
leverages acoustic features from deep neural networks for
a different purpose of user authentication.

10 DiISCUSSION

Limitations. EchoPrint is only a research prototype and far
from a well engineered product. It has several main limita-
tions: i) requirement of face alignment. To ensure both high true
positive and low false negative, face alignment is required



for authentication. It may be inconvenient to users to hold
the phone in such positions. In contrast, FaceID has much
more flexibility in device holding positions. ii) limitations
from vision. EchoPrint leverages vision algorithms for facial
landmark detection, thus inheriting their limitations. We
notice that face tracking is not stable under poor lighting,
which makes it hard for face alignment, thus more false neg-
atives. iii) user appearance changes. The current CNN feature
extractor is trained on limited data, far from exhaustive to
be robust against various appearance changes such as hats,
glasses or hair styles. Retraining the SVM model with new
data is promising for combating such changes. Similar to
FacelD, an online model updating mechanism is needed to
address such changes dynamically. iv) continuous authenti-
cation usability. Although we demonstrate EchoPrint has the
potential for pure acoustic-based continuous authentication,
it requires the smartphone aligned and in front of the user’s
face, which impacts the usability. To mitigate such problem,
we can either decrease the frequency of acoustic sampling
and authentication at a cost of decreased security, or register
users with data from different angles thus enlarging the
range of effective authentication.

Future Work. i) enhancing CNN acoustic feature extractor.
We will collect more training data from more users (e.g.,
by crowdsourcing) with larger variety. This will further im-
prove performance together with more sophisticated neural
network design. ii) integration with existing solutions. Due to
the rapid progress of deep learning, image based face recog-
nition has achieved unprecedented accuracy. EchoPrint can
be integrated with existing pure image based solutions to
enhance their anti-spoofing capability. iii) feasibility of replay
attacks. In theory the echoes can be recorded and replayed.
However a successful attack is far from trivial: weak, high
frequency echoes are difficult to record at sufficient fidelity,
and they must be replayed at proper timing after signal
emitting. The amount of hardware resources and human
efforts needed for successful attacks could be huge, and we
plan to find it out. iv) large scale experiment. We only have
~ 50 users in the current experiments, while large scale
experiment (e.g., thousands or more) is needed for a mature
solution. We will seek ways to do experiments at such scale.

11 CONCLUSION

In this paper, we propose EchoPrint, which leverages acous-
tics and vision on commodity smartphones for two-factor
authentication. A convolutional neural network is trained
on a large acoustic data set, which is then used as general
acoustic feature extractor. Acoustic features are further com-
bined with basic and sophisticated visual features to feed
an SVM based classifier for authentication. Experiments
show that EchoPrint achieves 93.75% balanced accuracy and
93.50% F-score, while the average precision is 98.05% with
basic visual features. The precision is further improved to
99.96% with sophisticated visual features.
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