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Abstract—With mobile devices extensively used in daily life, there are ample opportunities to exchange sensing data through them,
even without centralized management. In this paper, we design a peer based data exchanging model, where relay nodes move to
certain locations to connect data providers and consumers to facilitate data delivery. Consumers are willing to pay for the data and
these rewards are given to both relays and data providers. We first prove the NP-hardness of the problem on how to assign relay nodes
to proper locations, and present a centralized optimal method with an approximation ratio. Then we define an autonomous
compensation game for relays to make their individual decisions without any central authority. The sufficient and necessary condition
for the existence of Nash equilibrium is derived, and an efficient reinforcement learning solver is designed to find the exact forms of
equilibria. We analyze and compare this distributed game to the centralized social optimal solution, showing that the game incurs small
bounded social costs, and is efficient under various network sizes, number of providers, number of consumers and device mobility.
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1 INTRODUCTION

THE penetration of mobile devices with various sensors
has made peer data exchange feasible and valuable in

many daily life scenarios. In many places (e.g., roads, parks,
airports) there are high densities of mobile devices like
smartphones carried by users. Each device can collect sens-
ing data of certain types around its location, and such data
may carry important information needed by other users. For
instance, a passenger on a bus passing by an accident scene
can take a photo, which is important for drivers in nearby
blocks so they can know what is causing the jam and how
to change the route. Before taking her baby out for a walk, a
mother wants to know the air quality distribution around a
neighborhood, and pedestrians in the neighborhood could
provide such kind of data. In these scenarios, data exchange
among peer users provide valuable information, and users
are willing to pay a reward to obtain desired data.

In such peer data exchange, the one that possessing
certain data is called a provider and the one needing data
from others is called a consumer. Usually, the devices have
limited radio transmission range, and the density of mobile
devices may not always be high enough to ensure direct
connectivity among all consumers and providers. To fa-
cilitate data exchange, some relay nodes, motivated by the
economic incentive, may move to certain relay locations to
connect consumers and providers, and forward data possi-
bly over multiple hops.

In this paper, we study the following problems: what is
the optimal strategy to decide which relay node should go to
which location? If consumers requesting the same data can
pool their rewards, what is the optimal payment allocation
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algorithm among relays and providers? The strategy and
algorithm must be efficient to incur small overheads in com-
putation and node movements, and effective to incentivize
relays and providers for peer data exchange.

There are several challenges to these questions. First,
given multiple relay nodes and relay locations, there is a
combinatorial thus exponential space of who goes where,
leading to an NP-hard problem. We have to design an effi-
cient algorithm. Secondly, the reward pool must be allocated
and paid to relays and providers in a way to compensate
them fairly based on their contributions. Third, although
a centralized algorithm that computes and dictates which
relay goes where may achieve global optimal efficiency, in
reality no central authority exists and each relay may make
its own decision. The payment must be allocated effectively
among peers.

To address these challenges, we design an approxi-
mation algorithm to decide the best locations for relay
nodes with polynomial complexity. Then we define con-
crete fairness goals and establish a payment mechanism
to achieve these goals in centralized setting. To overcome
practical obstacles in the centralized allocation, we devise an
autonomous compensation game where individual relays
make their own decisions without any central authority. We
analyze the strategies that can achieve different types of
Nash equilibrium, and extra cost when providers and con-
sumers may move before relay nodes reach their respective
locations. We summarize our contributions as follows:

• We formulate the problem of finding relay locations
for relay nodes as an optimization problem in graph
theory. We show its NP-hardness and propose a cen-
tralized approximation algorithm that assigns relay
nodes to proper relay locations, and decides their
payments based on the assignment.

• We design an autonomous compensation game for
relay nodes to make decisions of where to go indi-



2

vidually. We derive the condition for the existence
of pure Nash equilibrium for the game, and design
an efficient reinforcement learning solver to find the
exact forms of equilibria.

• We show that the social cost, quantified by moving
distances of relay nodes, is linear to network size
for the distributed mechanism. Compared to the
social optimal assignment by a central authority, the
cost for distributed mechanism is bounded by two
measures of Price of Anarchy or Price of Stability.
We further analyze how practical factors such as
numbers of consumers/providers, network sizes af-
fect these bounds, and demonstrate our approach
remains feasible under provider/consumer mobility.

A preliminary version of this work has been accepted by
IWQoS-17 [21]. The rest of this paper is organized as follows:
We first review the related studies in Section 2. In Section 3
we show a network structure modeling data exchange sys-
tem and some basic assumptions. Then in Section 4 we
introduce a centralized method to manage the system. After
that, we give definition of the autonomous compensation
game for relay nodes as well as the analysis for its pure
Nash equilibrium in Section 5. To address the difficulties
in solving Nash equilibrium for general cases, we further
propose a reinforcement learning solver to it and show
its performance in Section 6. Then, we provide evaluation
for the game theory model and some numerical simulation
results in Section 7. Finally, summarize our conclusions and
discuss some future works in Section 8.

2 RELATED WORK

Data exchange among peers has been studied for some time.
Current work focuses on three main aspects: efficient and ac-
curate method for managing the exchanging process, proper
platform for peers to exchange data, and fair payment rules
for attracting participants.

Helgeson et al. provide a bottom implementation ap-
proach for managing data exchange in a network from
industrial point of view, and it could be the basis for all
data exchange model [6]. Rahman et al. study how to
assure security in the exchanging process [15]. More recent
work designs data exchange models dealing with further
constraints such as ability to recover document damage [13],
and adaption to big data [1]. Compared with our approach,
they all consider a centralized system to supervise the whole
process.

As for the choice of platform for data exchange, some
Internet platforms are studied. Jang et al. consider personal
cloud for data exchange and study how it enhances users’
experiences [8]. Recently crowdsensing network becomes
more popular due to its feasibility to accommodate actual
mobility for participants of data exchange. Some crowd-
sensing network has followed the approach of Named Data
Networking (NDN), which proposes evolving current host-
centric network architecture (IP) to a data-centric network
architecture (NDN) [23]. With this idea, Xiao et al. provide
offline and online algorithms to do multi-task assignment
in crowdsensing network [20]. But their algorithms are
designed without payment for participants, which is the
main focus of our work.

Algorithmic game theory has been partly used to study
participants’ incentive to exchange data. Gao et al. propose
an auction policy to attract more long-term user partic-
ipation, thus more data in sensor selection problem [5].
Luo et al. also design mechanisms for participatory sensing
systems to incentivize contribution from users [12]. Duan
et al. include implicit incentives, such as gratification, so-
cial position and sense of honor, as rewards to motivate
more participants [3]. Similar as our work, they are try-
ing to attract more users to participate through providing
rewards, but their designs are dealing with the payments
for providers and consumers. In contrast, our autonomous
compensation game focuses on the rewards for relay nodes,
which is also an important part in peer data exchange.

At the same time, some common mechanisms of classi-
cal game scenarios have been introduced to crowdsensing
networks. Feng et al. consider a reverse auction as an ap-
proach for assigning sensing tasks, where each participant
competing for tasks by bidding the payment he requires
and the one with lowest bid wins [4]. Li et al. design
a randomized auction for assigning tasks in crowdsens-
ing networks, specifically dealing with unbalanced load
that some sensors got few tasks but some others got to
many tasks [11]. A Stackelberg game was introduced as
an incentive framework for sensing smartphones against
crowdsourcing platforms [22]. Compared to our work, when
the assignments are done through auctions, a centralized
platform acting as auctioneer is needed to collect all the bids
and make the decision. And a Stackelberg game consists
of two separate stages, requiring more time as a practical
approach.

On the other hand, data transmissions under mobility
have attracted much interest in the past ten years. Zhao et
al. start a frame work of controlling the mobilities for data
transport ferries in a delay-tolerant network [24]. In their
model, data is relayed by ferrying nodes and stationary
nodes that work together, playing a similar role as relay
nodes in our work. They focus on designing routes for
ferrying nodes. After them, Kavitha and Altman study
similar message ferry routes design in sensor networks
using polling models [9]. Zhu et al. survey other approaches
considers exploiting social behaviors of delay-tolerant net-
work nodes to make better routing decision [25]. Our work
considers a different form for delivering data, mainly taking
advantages of peer mobile devices. We consider incentives
to facilitate their individual participation as relays, which
does not require centralized routing design. If the desired
data requires huge storage, these data ferry schemes may
also be good choice.

3 NETWORK MODEL AND BASIC ASSUMPTIONS
FOR DATA EXCHANGE

In this section, we first present our crowdsensing model
for peer data exchange and basic assumptions. Then we
illustrate how it works within the whole process through
an example.

3.1 A Crowdsensing Approach for Data Exchange
Our data exchange system consists of several kinds of
participants. Those willing to pay for specific data are
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consumers, and those who have the data, either originally
generated by themselves or just being cached by them,
are providers. Each provider may have different data, and
each consumer needs data from all providers. In general,
providers may not transmit the desired data directly to
consumers due to the distance. Some intermediate nodes,
called relays, have to move to certain locations to connect
consumers and providers. After data delivery is completed,
all these nodes send relay information about who send what
data to whom to some clearance nodes, which decide how to
divide consumers’ payments among relays and providers.
Note that it is nature that consumers can also act as relay
nodes for transmitting data to other consumers, since they
have the incentive to relay the data to others after caching
it and share the corresponding rewards. But for providers,
on the other hand, it is possible that some of them do
not have enough storage capacity for all the required data
except those they have cached. Thus we do not include any
provider as a relay node for the sake of convenience.

Before describing the whole process, we first list several
important assumptions here. Firstly, providers, consumers
and clearance nodes are uniformly distributed and their
positions do not change much in a short time. Clearance
nodes can communicate with each other, so each can ac-
quire all the relay information. Each node u entering the
system, a provider, a consumer, or a relay, has a unique
l-bit account ID number, denoted by Au and known by
themselves and the clearance nodes. Secondly we do not
consider transmission failures or cheating nodes. The relay
information has much smaller size compared to data, thus
their transmission costs are negligible and not considered.
Lastly, a relay node transmits one unit of data one time and
the amount of transmission is the number of data units.

Fig. 1: A complete process for transmitting a group of data.
The numbers beside nodes is the corresponding rewards if
a relay nodes works there.

With these assumptions, we give a brief description of
the whole process (Fig. 1.). Firstly, several consumers send
requests for some data, each naming a payment. Then,
providers with required data are found. After that, relay
locations to connect consumers and providers are found, as
well as the delivery paths. Then a central entity calculates
the reward for each location, and assigns relay nodes to
go to those locations to finish data delivery. Alternatively,
if each relay knows the information about those locations

TABLE 1: Notations

N1 Number of providers
N2 Number of consumers
k Number of necessary relay nodes
M Number of potential relay nodes
D Length of one side of network
d Transmission range
ρi i-th provider or its coordinates
σi i-th consumer or its coordinates
ξi i-th potential relay nodes
wi The i-th location or its coordinates
ri Reward associated with i-th relay location
X (wi) Set of potential relay nodes going to i-th relay location
U(ξi) Utility function of i-th potential relay nodes
dij Distance between i-th relay location and j-th potential relay node
c Constant factor between moving cost and moving distance
M0 Smallest number of potential relay nodes Nash equilibrium exists
dmax Largest distance between relay location and potential relay node
dmin Shortest distance between relay location and potential relay node

and corresponding rewards, it can make its own decision
to go to specific location, without the central entity. Once
the delivery is done, all involved nodes send messages to
clearance nodes, which decide the payments for all relays
and providers. Table 1 provides all the notations used in the
rest of our paper.

3.2 Payment Decision for Each Participant
Two key factors decide payments for relays and providers.
First, the system should get information for all the actual
transmissions. Second, the payments should be “fair” to
all participants. We will introduce a transmission graph
structure as a record of how a specific piece of data is
delivered from providers to consumers, then show how
payments are decided to achieve fairness.

To construct the transmission graph, providers and re-
lays send short messages to their nearest clearance nodes
each time they receive a piece of data from others (i.e.,
inflow message, denoted by T (i)), or send one to the next
node (i.e., outflow message, denoted by T (o)). Specifically,
when data with label L is transmitted from node u to node
v, both u and v will send a 3l+ |L|-bit tuple (L,Aρ, Au, Av),
where node ρ is the original provider of the data and |L| is
the length of the label. u may be a provider ρ or relay ξ, and
v may be a relay ξ or consumer σ.

After data delivery, all clearance nodes communicate
with each other so that all messages about the same data
are handled by the same clearance node. For each group of
providers and consumers (labeled by L̂), such messages are
used to build the whole transmission graph TG(V,E, L̂, β)
by Algorithm 1 (Table 2). The algorithm analyzes all mes-
sages to obtain participating peers as vertices and corre-
sponding transmissions as edges. din(u) and dout(u) denote
the in/out degrees for vertex u, and they are further used to
decide which role the vertex plays in the whole transmission
process.

The time/space complexities of Algorithm 1 are ana-
lyzed here. Firstly, the input size is O(Λ) where Λ is the
number of transmissions for L̂. For time complexity, the
initial setup requires a traversal of all input, which is O(Λ).
The main loop needs at most Λ(Λ−1)/2 times traverse of all
input, which is at most O(Λ3). The final step to mark each
vertex needs to traverse all the vertices and determine the
number of their neighbors, which is at mostO(Λ2). Thus the
time complexity for the whole algorithm isO(Λ3). For space
complexity, while running this algorithm, all variables that
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TABLE 2: Algorithm 1: Rebuilding Transmission Graph

Input: {T (∗)
j }

Λ
j=1 = {(L̂, Aρ̂, Auj , Avj )}Λj=1

Output: TG(L̂) = (V,E, β, ∆̂)

1: Set V =
Λ⋃
j=1

{uj , vj}, ∆̂ =
Λ⋃
j=1

{ρj} and E = ∅

2: For (û, v̂ ∈ V )
If ∃j1, j2 such that uj1 = uj2 = û, vj1 = vj2 = v̂

Add directed edge (û, v̂) into E
3: For (ũ ∈ V )

If din(ũ) > dout(ũ)
β(ũ) = 1

Else If din(ũ) = dout(ũ)
β(ũ) = 2

Else
β(ũ) = 3

need to be saved is the adjacent matrix of the graph, which
has a size of at most O(Λ2). The type of each vertex has size
of at most O(Λ). Thus the space complexity is O(Λ2).

Participants are classified by function β : V → {1, 2, 3}
into 3 types for payment decision. To be precise, nodes of
type-1 are consumers or those who act like consumers, since
they receive at least one piece of data but do not propagate
it. Meanwhile, nodes of type-2 and type-3 are relay nodes.
The difference between them is that type-2 nodes transmit
a piece of data to one peer after receiving it, but type-3
ones transmit it to multiple peers. These type-3 nodes may
be located at important positions for transmitting data, or
store the data for a long time so that even after the provider
leaves, the new coming consumers can still access the data.
In this sense, they make extra efforts in transmitting data.

With previous characterization, we can decide the pay-
ment rule.
• Type-1 nodes pay a price of data (decided in ad-

vance). All payments form the whole reward pool.
• P1 percent of the whole payment is shared equally

by the providers ρ ∈ ∆̂.
• P2 percent of the whole payment should be given

to all the vertices of type-2 and 3, and how much
each of them (say u) receives is proportional to
the ratio dout(u)∑

β(v)6=1

dout(v) . This awards each relay node

proportionally to the transmissions it does.
• The rest of the payment will be given to all the

vertices of type-3. How much a peer u receives is
proportional to the ratio dout(u)−din(u)∑

β(v)=3

dout(v)−din(v) . We use

the number of transmissions for sending out data
minus the number of transmissions for receiving
data to measure a node’s extra effort in transmitting
data, and this rule is to award it according to the
proportion of its extra efforts in all such efforts.

Note that the provider here may be the generator or a
previous relay node who stored the data. In either case,
it will be rewarded as nodes of type-3 for its effort in
transmitting data, and further rewarded according to the
second role if it is the generator.

4 CENTRALIZED METHOD TO ASSIGN RELAY
NODES

In this section, we provide a centralized method to assign
relay nodes to relay locations. Here we suppose that the

central entity knows all nodes’ positions. Providers and
consumers do not move before data delivery completes,
and relay nodes, supposed to be enough, will follow the
assignments. Meanwhile, the energy cost of transmitting
each data unit is the same. Then the assignment has two
steps. The system first finds necessary locations requiring
relay nodes to deliver data. Then it assigns proper potential
relay nodes to these locations.

Step 1: Find relay locations
Given N1 providers {ρj}N1

j=1, N2 consumers {σj}N2
j=1 in

some bounded 2-dimensional field, say a D × D square,
and a transmission range d, the system seeks the least k
locations {wj}kj=1 and corresponding edges, such that ∀i, j
there exists a path from ρi to σj via some w′ls or σ′j′s, with
all edges shorter than d. We call this relay location decision
problem. Here we want to minimize the number of relay
locations, i.e. the number of necessary relay nodes, so that
a centralized system can assign the least number of relay
nodes to relay locations.

To show the complexity of the relay location decision
problem, we refer to a NP-hard problem, namely
Steiner tree problem with minimum number of Steiner points
(STP-MSP in short), which is to find the least number of
extra points and corresponding edges within bounded
length to connect a set of terminal points {p1, p2, . . . , pn} in
two-dimensional Euclidean plane [2]. To be specific, relay
location decision problem requires a similar solution with
respect to two sets of terminal points, and one of them must
be leaf-points, i.e. having degree one.

We reduce the STP-MSP problem to relay location deci-
sion problem to show the complexity. The solution to STP-
MSP problem must be a tree and at least one of terminal
points is leaf-point (because if an extra point is leaf-point,
it could be deleted to decrease the number). So solving
a STP-MSP problem for terminal points {p1, p2, . . . , pn} is
exactly solving the relay location decision problem for a pj
being provider ρ1 and the rest of points being consumers
{σ1, σ2, . . . , σn−1}. Thus if we have an algorithm to solve
relay location decision problem, we could solve STP-MSP
problem by running it n times, selecting a pj each time as
ρ1, and find the best result among them. This shows the
relay location decision problem is also NP-hard.

Despite its NP-hardness, we provide an approximation
algorithm to solve it in Table 3. And here we only give a
rough estimate for such algorithm’s approximation ratio. In
fact Algorithm 2 without the last loop (line 8) is a ratio-
3 approximation algorithm solving STP-MSP problem, and
the last loop will increase the number of vertices in the so-
lution by at most N1. At the same time, the number of relay
locations in a solution to relay location decision problem
(denoted by k) must not exceed the number of Steiner points
in STP-MSP problem, when both N1 providers and N2 con-
sumers are terminal points. To sum up, Algorithm 2 outputs
a solution that minimizes the number of relay locations at no
more than 3k +N1. Meanwhile, k is a non-negative integer.
When k = 0, all providers can transmit data directly to
consumers, and line 3 in Algorithm 2 makes sure that in
this case the algorithm also outputs a solution that no relay
location is needed. And when k > 0, 3k+N1 ≤ (3+N1) ·k.
In conclude, the Algorithm 2’s approximation ratio, which
is the ratio between the number of locations the algorithm
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find in the worst case and the one in the optimal solution, is
N1 + 3.

And to see the time complexity of such algorithm, we
only need to look at its five loops and an operation of sort-
ing. In the third loop (line 6), there are at most O(N1 +N2)
connected components at beginning and each of them has
at most O(N1 + N2) vertices. The number of connected
components will decrease by two each round, or remain un-
changed at some round and then the loop ends. So the whole
loop consists of at most O(N1 +N2) rounds and each round
requires at most O(N1 + N2)3, and the time complexity is
O((N1 + N2)4). For the rest loops (line 3, 5, 7, 8), the time
complexity for each of them is at most O(N1 +N2)2, and the
sorting operation (line 4) is O((N1 + N2)2Log(N1 + N2)),
since there are at most O((N1 +N2)2) edges. To sum up, the
time complexity of Algorithm 2 is O((N1 +N2)4).

TABLE 3: Algorithm 2: Deciding relay locations
Input: ρ1, ρ2, . . . , ρN1 , σ1, σ2, . . . , σN2 , d
Output: Graph T = (V,E)
1: Set V = {ρ1, ρ2, . . . , ρN1 , σ1, σ2, . . . , σN2}, E = ∅
2: Let euv be the edge between u 6= v ∈ V
3: For (u ∈ {ρ1, ρ2, . . . , ρN1}, v ∈ {σ1, σ2, . . . , σN2})

If euv ≤ d
Add euv into E

4: Sort all euv’s to {ei} in length increasing order
5: For (i ∧ ei ≤ d)

If ei connects two different connected components of T
Add ei into E

6: While (∃ more than two connected components) Do
For (a, b, c ∈ V in three connected components of T )

If ∃s, s.t. edge esa, esb, esc shorter than d
Add s into V and esa, esb, esc into E

End while
7: For (i)

If ei connects two different connected components of T
Divide ei into d |ei|

d
e parts and add into T

8: For (1 ≤ i ≤ N1)
If ρi has degree larger than one

Replace ρi by a new vertex ρ′i and add (ρi, ρ
′
i) into E

In the output graph, vertices who are not from input are
relay locations, in each of which at least one relay node is
needed to help transmit data. The reward ri, i = 1, 2, . . . , k
associated with each of them can be calculated as follows.
Firstly, find a path from each provider to each consumer.
Then change these undirected edges into directed ones
according to the direction of paths they are in to get
the transmission graph. Finally use the payment rule
introduced in Section 3.

Step 2: Assign relay nodes
Given relay locations, the system chooses relay nodes closest
to these locations from potential ones, so that the summation
of distances all relay nodes should move is minimized.

To obtain this, we can first construct a complete weighted
bipartite graph G(V1, V2, E, w) where the relay locations
belong to V1 and the original positions of potential relay
nodes belong to V2. There is an edge between each vertex
u ∈ V1 and each one v ∈ V2 weighted by their distance.
Here we call it a bipartite matching that a set of edges where
no two edges share a common vertex and all vertices in V1

is included. Here we only consider the situation that the
numbers of vertices in V1 and V2 are the same, since in
practice the system could either choose a proper number

of vertices for V2 according to their appearance time, or add
virtual vertices to V1 and set the weights of edges between
virtual vertices and vertices from V2 to be 0, meaning
relay nodes going no where. Thus a feasible assignment
for relay nodes is corresponding to a bipartite matching,
and the bipartite matching where the sum of the weights
of the edges has a minimum value, called the minimum
weighted matching, is the optimal assignment in term of
the summation of distances all relay nodes should move.

With this construction, we use a modified version
of Kuhn-Munkres algorithm [14] to finds the minimum
weighted bipartite matching for G(V1, V2, E, w). The algo-
rithm is summarized in Table 4. In the defined function
Match(G,M), the alternating path means a path that begins
with an unmatched vertex and is a path in which the
edges belong alternatively to the matching and not to the
matching. Thus in the algorithm, if the path T meets another
unmatched vertex, simply taking the symmetric difference
of T and M yields another matching M ′ which matches one
more vertex than M , and such a path is often referred as an
augmenting path.

TABLE 4: Algorithm 3: Assigning relay nodes
Input: Graph G(V1, V2, E, w)
Output: Optimal assignment for relay nodes
1: Def Match(G,M) \\ Graph G, Matching M in G
2: If M matches all vertices in V1

Return M
3: Else

Let u be a vertex in V1 unmatched in M
Search an alternating path T from u
If an unmatched vertex v ∈ V2 is found in T

Use the path from u to v to augment M , yielding M ′

Return Match(G,M ′)
Else

Return T
4: Set w(u, v) = −w(u, v), ∀u ∈ V1, v ∈ V2

5: Set Vertex labels l(u) = maxv∈V2{w(u, v)} for all u ∈ V1

and l(u) = 0 for all v ∈ V2

6: Let G=(V1, V2, E=, w) be the equality subgraph where
E= = {(u, v) ∈ E|l(u) + l(v) = w(u, v)}

7: Let M be any matching in G=

8: If Match(G=,M) returns a match M
Return M

9: Else \\Match(G=,M) returns T
Let α = minu∈T∩V1,v/∈T∩V2

{l(u) + l(v)− w(u, v)}

Update l(v) =

 l(v)− α v ∈ T ∩ V1

l(v) + α v ∈ T ∩ V2

l(v) otherwise
10: Goto Line 6
11: For each relay location u ∈ V1

Assign relay node v = M(u) to u

The main time complexity of algorithm 4 comes from
repeatedly searching for desired matching in the equality
subgraph. In precise, each searching consists of at most |V1|
modification of augmenting paths for each vertex in V1,
resulting in a complexity of O(|V1|2). And such a searching
is done after updating vertex labels l(u) according to a
factor α calculated at line 9. The updating is needed for
at most O(|V1|) times, meaning a total time complexity
of O(|V1|3). As for the space complexity, the algorithm
only requires storing the graph and intermediate variables
such the alternating paths and matchings. Thus its space
complexity is O(|V1|2).
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5 AUTONOMOUS COMPENSATION GAME FOR IN-
DIVIDUAL RELAY NODE DECISIONS

The centralized method does not consider the preferences of
relay nodes. As shown in Fig. 1. (d), the reward associated
with each relay location varies a lot. A centralized system is
able to minimize the relay nodes’ moving distance so data
transmission can begin quickly. However, if relays can make
their own decisions, they may choose locations with high
rewards, not closest.

We want to design a game where relay nodes make
individual decisions of destinations, and we hope there
exists Nash equilibrium. Intuitively, a Nash equilibrium is
a group of players’ strategies where no one could strictly
benefit by changing only his own strategy. Specific to our
problem, the equilibrium means each relay node goes to a
location where he can gain the most reward if others do
not change their locations. With the assumption that every
player is rational to choose the best strategy for himself,
relay nodes will choose locations corresponding to the Nash
equilibrium individually.

Now we introduce the autonomous compensation game.
We suppose that the optimal positions for relay nodes,
as well as the corresponding rewards, are known to all
potential relay nodes, either calculated by themselves or
broadcast by the system. In this game, the reward of each
location will be equally shared by all players moving there.
So players need to find a strategy to decide where to move
to gain higher utility. Generally speaking, the utility of each
player should be the reward he receives by acting as relay
minus the energy cost of doing so and other cost for moving
to the specific position. The energy cost is proportional to
the number of transmission one does, thus proportional to
the reward. While the relationship between the moving cost
and the reward is hard to estimate. When the reward is
large enough, the moving cost can be ignored. Otherwise,
the moving cost will influence the equilibria of the game. So
we analyze both cases.

5.1 Utilities without Moving Cost

Suppose there are M players ({ξj}) and k locations ({wi})
with value (ri). Define X : {wi} → 2{ξj},X (wi) =
{j|node ξj goes to location wi}. The utility of each player is
U(ξj) = ri

|X (wi)| where j ∈ X (wi). Here we consider players
choose pure strategy, that is each one decides to go to only
one location to do transmission in a short period. Then the
corresponding pure Nash equilibrium requires

X (wi) 6= ∅, ∀i (1)
ri

|X (wi)|
≥ rj
|X (wj) + 1|

, ∀i 6= j (2)

Constraint (1) guarantees that there is at least one relay
node at each relay location, so the network is connected.
Constraint (2) ensures that when everyone chooses the strat-
egy associated to the equilibrium, each player cannot gain
more utility by changing his strategy when others keep their
strategies. Here players are homogeneous since they choose
the strategies to maximize their utilities without considering
the cost generated during their moving to specific locations.
As a result, to find an equilibrium, we only need to study
the number of players going to each location.

Before we show Theorem 1 about the condition for the
existence of Nash equilibrium, we first give an intuition how

it is derived. From constraint (1), at least one peer occupies
location wk. From his point of view, if there exists a location
wt with reward rt satisfying: rt > m · rk but |X (wt)| <
m, then he will go to wt to improve his utility. Thus, the
reward of location wi should be divided by at least d rirk e− 1
agents once ri

rk
> 2. This inspires us that if the number

of peers M = M0 =
k∑
i=1

max{1, d rirk e − 1}, there exists an

equilibrium. Furthermore, ifM > M0, we can first construct
an equilibrium allocation for M0 agents, and prove there is
an equilibrium for each M > M0 by induction. Finally the
uniqueness can be proved by contradiction.

Theorem 1. A sufficient and necessary condition for the existence
of pure Nash equilibrium is:

M ≥
k∑
i=1

max{1, d ri
rk
e − 1} (3)

where ri is in decreasing order, and the equilibrium is unique if
the equality holds.

Proof. Firstly, we prove that M ≥
k∑
i=1

max{1, d rirk e − 1}
is a necessary condition. It suffices to prove that if M <
k∑
i=1

max{1, d rirk e − 1}, the equilibrium does not exist. Sup-

pose otherwise, i.e., there is an equilibrium, under which
the allocation is denoted by X . In this case, there must be at
least one i such that |X (wi)| < max{1, d rirk e−1}, and let t be
the smallest index i satisfying |X (wi)| < max{1, d rirk e − 1}.
Since it is an equilibrium, X (wt) 6= ∅, i.e., X (wt) ≥ 1, then
max{1, d rirk e− 1} = d rirk e− 1, and further |X (wt)|+ 1 < rt

rk
.

So for any ξj ∈ X (wk), its reward is at most rk in the
equilibrium, but will increase to rt

|X (wt)|+1 > rk ≥ rk
X (wk)

if it goes to location wt, which is a contradiction.

Secondly, we prove that M ≥
k∑
i=1

max{1, d rirk e − 1}
is a sufficient condition. Here we only need to construct
a feasible allocation under such condition and prove that

it is an equilibrium. Let M0 =
k∑
i=1

max{1, d rirk e − 1} and

M1 = M −M0. To construct the allocation, we do it in two
steps. If M1 = 0, step one is enough.

In the first step, we let X 0(w1) = {ξj , j =
1, 2, . . . ,max{1, d r1rk e − 1}}, and X 0(wi) = {ξj , j =
i−1∑
l=1

max{1, d rlrk e − 1} + 1, . . . ,
i∑
l=1

max{1, d rlrk e − 1}} for

i = 2, . . . , k. Correspondingly, we let r0
i = ri

|X 0(wi)| , i =
1, 2, . . . , k.

In the second step, for t = 1, . . . ,M1:

1) find s such that rt−1
s = max

i
{rt−1
i } (if there are more

than one s’s, choose the first one)
2) update X t−1 to X t by adding ξM0+t into X t−1(ws)
3) update rt−1 to rt correspondingly.

Now we prove that by the previous two steps we
construct an equilibrium. On the one hand, we show that
the first step constructs an equilibrium for M = M0.
It is obvious that the first condition of an equilibrium,
∀i,X 0(wi) 6= ∅, holds. For the second condition, we prove
by contradiction. Suppose ∃i1, i2, i1 6= i2 such that

ri1
|X 0(wi1)|

<
ri2

|X 0(wi2)|+ 1
.
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Since |X 0(wi1)| = max{1, d ri1rk e−1}, there are three possible
cases:

1) |X 0(wi1)| = 1 and i1 = k
2) |X 0(wi1)| = 1 and i1 < k
3) |X 0(wi1)| = d ri1rk e − 1 > 1

and all these cases lead to ri1
|X 0(wi1 )| ≥ rk.

Similarly, there are three possible cases for i2:

1) |X 0(wi2)| = 1 and i2 = k
2) |X 0(wi2)| = 1 and i2 < k
3) |X 0(wi2)| = d ri2rk e − 1 > 1

In case 1), ri2
|X ′(wi2 )|+1 = rk

2 < rk. In Case 2), we derive
that d ri2rk e − 1 ≤ 1, that is ri2

rk
≤ 2, and further we get

ri2
|X ′(wi2 )|+1 =

ri2
2 ≤ rk. Finally, in case 3), ri2

|X ′(wi2 )|+1 =
ri2
d
ri2
rk
e
< rk. To sum up, ri2

|X ′(wi2 )|+1 ≤ rk, and
ri2

|X 0(wi2)|+ 1
≤ rk ≤

ri1
|X 0(wi1)|

, which leads to a contradiction.
One the other hand, we show that the second step con-

structs an equilibrium for M agents by induction. It suffices
to prove that after the first loop, we actually construct an
equilibrium for M0 + 1 agents. Let us consider X 1, and
it is obvious that the first condition of an equilibrium,
∀i,X 1(wi) 6= ∅, holds. For the second condition, we prove
by contradiction. Suppose ∃i1, i2, i1 6= i2 such that

ri1
|X 1(wi1)|

<
ri2

|X 1(wi2)|+ 1
.

Since X 0 is an equilibrium of M0 agents, and the only dif-
ference between X 0 and X 1 is X 1(ws) = X 0(ws)∪{ξM0+1},
i1 must be s. But according to the definition of s, ri1

|X 0(wi1 )| ≥
ri2

|X 0(wi2 )| , and further ri1
|X 0(wi1 )|+1 ≥

ri2
|X 0(wi2 )|+1 . This means

ri1
|X 1(wi1)|

≥ ri2
|X 1(wi2)|+ 1

, which is a contradiction.
Finally, we consider the uniqueness of the equilibrium.

From the previous analysis, if M = M0, we have con-
structed an equilibrium, where the number of players going
to each location is determined by the formula |X (wi)| =
max{1, d rirk e−1} for i = 1, 2, . . . , k. Suppose there is another
equilibrium, that means there exists at least one l < k such
that |X (wl)| < max{1, d rlrk e − 1}. With similar analysis we
know for any ξj ∈ X (wk), its reward will increase if it goes
to location wl, which is a contradiction. �

5.2 Utilities with Moving Cost
In practice, relay nodes moving to specific positions also
incur costs, which depend on the moving distances. We
define dij as the distance between wi and ξj , and it is
common to assume the cost for ξj moving to wi is c · dij
with a constant factor c. Then the utility of each agent
become U(ξj) = ri

|x(wi)| − c · dij where j ∈ X (wi). The
Nash equilibrium requires

X (wi) 6= ∅, (4)
ri

|X (wi)|
− c · dij > 0, (5)

ri
|X (wi)|

− c · dij ≥
ri′

|X (wi′) + 1|
− c · di′j , ∀i′ 6= i (6)

for ∀i and ∀j ∈ X (wi). Constraint (4) is the same as
constraint (1) and constraint (6) plays the same role as

constraint (2). Constraint (5) assures all players have pos-
itive utilities, because only then they have incentive to
participate.

Since the players are no more homogeneous, the equi-
librium is determined by not only the number of play-
ers going to each location, but also who those players
are. So we use a group of vectors ~xj = {x1j , x2j , . . . , xkj}
for j = 1, 2, . . . ,M to represent players’ strategies. Here
xij ∈ {0, 1} representing whether the player j goes to

location wi. And a simple constraint is that
k∑
i=1

xij ≤ 1 for

∀j, due to the fact each player is only able to go to at most
one location. And further constraint (4)-(6) is derived into
integer inequations:

M∑
j=1

xij − 1 ≥ 0,∀i (7)

k∑
i=1

xij(
ri

M∑
j′=1

xij′

− c · dij) > 0,∀j (8)

k∑
i=1

xij(
ri

M∑
j′=1

xij′

− c · dij)− (
ri′

1 +
M∑
j′=1

xi′j′

− c · di′j) ≥ 0

∀i′ 6= i,∀j
(9)

Generally speaking, solving a system of integer equa-
tions is an NP-hard problem and there is no common
method for approximate solution. It is possible that there are
multiple solutions to it. As a result, we seek the necessary
and sufficient condition for the existence of pure Nash
equilibrium in analytic form. Here we provide an analysis
similarly as the one before. We suppose ri is in descending
order. When the equilibrium exists, we could still consider
the utility of a player going to the location with the lowest
reward, that is ξj ∈ X (wk). Constraint (6) for him becomes:

ri
|X (wi)|+ 1

− c · dij ≤ rk − c · dkj
for each location wi. Then a necessary condition for the
existence of a solution can be derived as follows. We define
dmax = max{dij , 1 ≤ i ≤ k, 1 ≤ j ≤ M} and dmin =
min{dij , 1 ≤ i ≤ k, 1 ≤ j ≤ M}. And consider for each i,
in the above inequality dij < dmax and dkj > dmin, then
|X (wi)| ≥ ri

rn+c·(dmax−dmin) . Combined with constraint (4),
which is |X (wi)| > 0, and the fact |X (wi)| is an integer, we
have the following necessary condition

M ≥
k∑
i=1

max{1, d ri
rk + c · (dmax − dmin)

e − 1} (10)

However, the necessary condition above is not sufficient,
as Fig. 2. illustrates. In the example, condition (10) is satis-
fied, but any possible choice of these two players could not
satisfy all constraints (4)-(6).

5.3 Dynamic Approach in Practice
According to Theorem 1 in Section 5.1, if there are enough
players, the pure Nash equilibrium exists for the case that
moving cost is ignored. However, it is very important that
such equilibrium can be approached in practice. This is
because in most circumstance, the peers join the game,
meaning deciding to relay data, in a series of time. In this
part, we maintain all the notations in previous analysis and
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Fig. 2: An example showing the Nash equilibrium may
not exist. Each circle stands for a relay locations with the
number inside showing the corresponding reward. Each
solid point stands for the original location of a potential
relay and the number on each edge is the distance between
two locations. We use solid lines to describe the settings and
directed dashed lines for positive choice of relay nodes. (1)
The setting of the example. Here the necessary condition
(Eqn. 10) is satisfied. (2) Players ξ1 and ξ2 may choose
strategies to maximize their utility, but leaving location w1

empty, and further failing the whole transmission.

suppose that there is at most one player joining the game
at a time. Without lose of generality, we suppose player ξ1
is the first one, followed by ξ2, and so on. Now we show
how the equilibrium is approached when the moving cost is
relative low with respect to the rewards:

(1) Before the M0-th (M0 =
k∑
i=1

max{1, d rirk e − 1} defined as

before) player joins, each player chooses the location with
highest actual reward, that is the reward for each peer going
there, at the moment he decides to participate. If there are
more than two such kind of locations, choose the one with
lowest total reward. This makes sure that when there areM0

players, their choice is exactly the equilibrium we construct
in the proof of Theorem 1.
(2) After that, each player still chooses the location with
highest actual reward when he comes. But if there are more
than two such kind of locations, choose the one with highest
total reward. According to the proof of Theorem 1, we know
the equilibrium always holds after any players join in this
way.

However, if the moving cost cannot be ignored, the
previous strategy is not always suitable. Peers may regret
their choices after their followers appear, as the example in
Fig. 3 shows. In practice, it is possible that a peer is willing to
turn around to go to another location after knowing others’
choices, but this may incur more moving cost which is hard
to measure. Thus in our analysis, we assume that players are
not able to change their destinations after they have made
decisions.

6 A REINFORCEMENT LEARNING SOLVER FOR
AUTONOMOUS COMPENSATION GAME

To address the difficulties in solving Nash equilibria when
moving costs cannot be ignored, we propose a new ap-
proach through reinforcement learning [17] in this section.

As we introduced in Section 5.2, solving the integer in-
equations corresponding the equilibria is an NP-hard prob-
lem, and a direct approach, searching through all possible
values for variables and check the validity, requires expo-
nential time complexity (O(kM )). For such kind of games

18w1

6w2

ξ1
ξ2

4

2

5

2

(1)

18w1

6w2

ξ1
ξ2

4

2

(2)

18w1

6w2

ξ1
ξ2

4
5

(3)

Fig. 3: An example showing whether the Nash equilibrium
can be approached depends on the order of players joining
the game. We use the same representation as Fig. 2. (1) The
setting of the example. (2) If ξ1 joins first, the equilibrium
is achieved. (3) If ξ2 joins first, the equilibrium cannot be
achieved.

with complicated strategy spaces, reinforcement learning
methods have been commonly applied to find approxi-
mated optimal strategies for players or Nash equilibria for
the game [7], [18], especially after its great success in the
Go game [16]. We adopt reinforcement learning (RL) as a
solver framework for general autonomous compensation
game, illustrated in Fig. 4a.

6.1 Markov Decision Process in Autonomous Compen-
sation Game
A Markov decision process (MDP) is a 4-tuple, (S,A, T,R),
where S is the set of states, and A is the set of actions.
T ast = st+1 is the transition function indicating that if we
choose action a at time t in state st, the process will lead
to state st+1 at time t + 1. Ras is the reward at the time t,
transiting from state s to state st+1, due to action a.

We can model the process of an agent solving a Nash
equilibrium, i.e. solving inequations (7)-(9), as an MDP.
Here we consider the input of an autonomous compensation
game, M players ({ξj}), k locations ({wi}) with value (ri),
as well as the distances between them {dij} and the constant
c, are given. At the beginning, all the locations are empty
and the players come in the order from ξ1 to ξM and
decide which locations to go. Thus, for each player ξj , the
agent observes a state sj (the situation of the game when
player ξj comes), and its policy chooses an action aj (i.e
one location ξj goes to). Then the reward Ras is partially
obtained (described later), and the next player ξj+1 comes
and the state of the game changes to sj+1. Specifically, after
the last player ξM goes to location aM , the process ends. In
other words, state sM is called terminal state. The process
is shown in Fig. 4b. It is named ”Markov” because the
transition from state sj to sj+1 can be decided only by sj
and aj , which is also known as Markov property.
State: Basically, each state sj in MDP consists of two parts,
the feature of player ξj (including his ordinality and the dis-
tance between him and each location) and the observation
of the game (including values of locations and the number
of players in each location).
Action: Actions in MDP include locations ({1, 2, . . . , k}) and
a special action (0) representing going nowhere. The policy
π(·) decides which action to choose to maximize the reward.
Specifically, if action aj 6= 0 is taken for player ξj , it means
xaj ,j = 1 and xij = 0 for i 6= aj .
Transition: Corresponding to states, transitions in MDP also
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(a) Overall framework. (b) The Markov Decision Process
Fig. 4: (a) The overall framework. The squares represent states in a trajectory. The circles are corresponding actions the
policy decides. The results are evaluated after the whole trajectory. Then the policy is updated accordingly. (b) Part of the
Markov Decision Process for an autonomous compensation game.

include two parts. For each state sj , the feature of player
ξj transmits to the one of the next player ξj+1 and the
observation of the game changes according to the fact that
ξj goes to location aj .
Reward: Generally speaking, the state-action reward R

aj
sj

corresponding to each player cannot be decided accurately
until all players’ actions are decided. This is because each
player’s utility in the game depends on all other players’
decisions. Thus we calculated the reward for the whole
trajectory (Rajsj for j = 1, 2, . . . ,M ) at the terminal state,
and back-propagate the reward signal through the trajec-
tory, which is commonly called delayed reward. To be
precise, we sum the values of the left-hand-side of all the
inequations (7)-(9) with proper normalization as the delayed
reward. The summation is naturally higher if an equilibrium
is obtained. On the other hand, we can observe that for
each player ξj , once the action aj 6= 0, the inequation
M∑
j=1

xaj ,j − 1 ≥ 0 is guaranteed. Similarly, if for some player

ξj ,
k∑
i=1

xij(
ri

j∑
j′=1

xij′

− c · dij) < 0 after the first j actions

are decided, then the corresponding inequation in (8) is
invalid no matter what the rest actions are. This means we
can decide an immediate reward for each state-action pair
by checking these validations. As a result, we calculate the
state-action rewardRajsj by the sum of the immediate reward
and delayed reward.

6.2 Policy Gradient Method

An RL agent learns to maximize its expected future rewards
in MDP. Each time the agent chooses an action a when the
current state is s according a policy π(θ), a ∼ π(s, θ), where
θ is a parameter of the neural network. We can evaluate the
policy π(θ) according to their expected reward,

J(θ) = Eπ(θ)[
M∑
j=1

Rπ(sj ,θ)
sj ] (11)

Therefore, we can directly optimize the parameter θ to
maximize J . According to the policy gradient theorem [17],
we can calculate the gradient by:

∇θJ(θ) = Eπ(θ)[
M∑
j=1

∇θlog(π(aj |sj , θ))
M∑
j=1

Rπ(sj ,θ)
sj ], (12)

Then the learning process consists of a group of batches
Γ = {Γi}. In each batch t, we sample |Γt| trajectories to
estimate the expected reward. The order of players in each
trajectory is randomly selected. And we optimize θ for each
batch Γt by the following update formula,

θ ← θ + α
1

|Γi|

|Γi|∑
t=1

M∑
j=1

∇θlog(π(aj,t|sj,t, θ))
M∑
j=1

Rπ(sj,t,θ)
sj,t ,

(13)
where α is the learning rate.

The whole algorithm is shown in Tab. 5.

TABLE 5: Algorithm 4: Reinforcement Learning Solver

Input: Batch number numBatch, batch size bs, α, {ri},{dij}, c
Output: The policy network θ
1: Initialized the policy network θ
2: For batch ∈ {1, 2, . . . , numBatch}
3: For t ∈ {1, 2, . . . , bs}
4: Shuffle the order of players
5: Generate a trajectory (s1,t, a1,t, . . . , sM,t, aM,t) by θ

and calculate the corresponding rewards
6: Update θ according to Eqn.13

Finally, if there exists no Nash equilibrium for a specific
input, it corresponds to case where values of locations are
not high enough to facilitate peer data exchange. Thus, we
should increase the values, or equivalently decrease the
constant c when solving the equilibria, and repeat.

7 PERFORMANCE EVALUATION FOR DATA EX-
CHANGE SYSTEM

In this section, we evaluate our design in four as-
pects. We first show that the transmission overhead is
roughly a linear function of the network size, or num-
bers of providers/consumers. Then we show how practi-
cal provider/consumer mobility impact the performance.
After that, we analyze Nash equilibrium and find the up-
per/lower bounds of the extra costs incurred when potential
relay nodes make individual decisions. Finally, we present
an evaluation for the novel RL solver, in the senses of
both precision and efficiency when it is used to find Nash
equilibrium.
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7.1 Transmission Overhead as Functions of Network
Size

We present the relationship between transmission overhead
and the numbers of providers and consumers in the net-
work. Since there is no closed form solution for finding
proper positions for relay nodes, we use approximation
algorithms. Fig. 5 shows the total transmission overhead
as functions to the numbers of providers/consumers, and
network diameter. The results are averaged over 1000 runs,
where all consumers, providers and potential relay nodes
are independently and uniformly distributed in a D × D
square. We can see that when the transmission overhead

Fig. 5: Total transmission overhead as functions of numbers
of providers/consumers (N1/N2) with different D’s.

is almost proportional to the number of providers or con-
sumers when one of them remain fixed. This is mainly
because providers and consumers contribute similarly to
transmissions. The only difference is that consumers may
also act as relay nodes so they can earn back part of
what they pay for the data. Another observation is that
as network diameter increases, the transmission overhead
increases linearly. This is because a larger space of the
same numbers of consumers and providers need more relay
nodes, thus more transmissions to delivery data.

7.2 Impact of Practical Mobility

In reality, providers and consumers are not always static. To
analyze how devices’ mobility influences data exchange, we
follow the model in [10] that finds the nodes’ speeds and
pause times each follow a log-normal distribution.

We assume providers and consumers are walking
around slowly in the D × D square, and following Log-
Normal distributions denoted by lnN (µ, σ2). In precise, for
each provider or consumer, its speed can be factorized into
two speeds on both of the two-dimensional coordinates.
The absolute values of these speeds follow Log-Normal
distribution, and their directions on each dimension are ran-
domly chosen. Potential relay nodes can move at 10km/h
on average to assigned locations, and providers/consumers
will stop once all relay nodes reach their destinations and
data delivery starts. Here we define a concept of second
move. When relay nodes reach their destinations, some of
these locations may no longer be suitable for data delivery
because providers/consumers have moved. Thus a fraction
of relay nodes may need to move a second time to some
new locations.

Fig. 6 shows how the average speed of
providers/consumers impact second move overhead.

It varies from static, normal walking (3km/h) to slow
running (5km/h). The probability that second move
happens increases almost linearly as providers/consumers
move faster (Fig. 6.(a)). This is intuitive because the faster
they move, the more likely some original relay locations
become obsolete. The fraction of relay nodes that need
a second move, however, fluctuate but remains at a low
percentage (8 ∼ 12% in Fig. 6.(b)). Thus when second move
is needed, only one in ten relay node is affected. Also the
total second move distance as a ratio of previous move’s
total distance, is also small (7 ∼ 15% in Fig. 6.(b)). These
show that the mobility of providers/consumers has small
chance (5 ∼ 25%) of incurring a very small additional
overhead.

7.3 Metric for Nash Equilibrium

In autonomous compensation game, each potential relay
node chooses strategy of going to some relay location indi-
vidually. It is nature that they would like to choose locations
with high rewards. Thus more relay nodes go to those
relatively ”richer” locations. When the Nash equilibrium is
achieved, the utility of each relay node is nearly equal, so
that no one is willing to change to another location. Loca-
tions with high reward have more relay nodes. They work
together to relay data, even though one is enough. This can
be regarded as a “inefficiency” due to individual choices.
We can use a welfare function of cost form to measure the
inefficiency, and compare it to the social optimal assignment.
Meanwhile, more than one Nash equilibrium may exist. The
best or the worst equilibrium as quantified by the welfare
correspond to the two metrics of Price of Anarchy (PoA in
short) and Price of Stability (PoS).

7.3.1 Price of Anarchy

Consider a game G = (N,S, U), defined by a set of players
N , strategy sets Si for each player and utilities Ui : S → R.
The cost form welfare function, C : S → R, is defined as a
measure of cost of each outcome that is to be minimized.
Let E ⊆ S be the set of strategies in equilibrium. The
Price of Anarchy is defined as the ratio between the optimal
“centralized” solution and the “worst equilibrium”:

PoA =
maxs∈E C(s)

mins∈S C(s)
In this game, the numbers of relay nodes, relay locations,

the range of rewards of all locations, the range of moving
costs are possible factors influencing PoA. Among them,
the range of rewards affects only the existence of Nash
equilibrium.

Now we analyze how the other three factors affect PoA.
The total moving cost is considered as social welfare which
should be minimized, and the optimal solution can be found
according to the analyze in Section 4. In the simplest model,
all relay nodes ignore the moving cost when choosing
strategies. Assume there are k locations and M agents

(M ≥ M0 =
k∑
i=1

max{1, d rirk e − 1} as analyzed before),

and denote dmax and dmin the longest and shortest distance
between any agent and any location. A lower bound for
optimal social welfare is k · dmin and an upper bound for
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Fig. 6: Performance of our approach as a function of average speed v (km/h) of providers and consumers with impact of
N1 (N2 fixed). (a) Second move probability vs v. (b) Fraction of second move nodes vs v. (c) Second move overhead vs v.
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Fig. 7: An example showing a Nash equilibrium is not al-
ways social optimal. We use the same representation as Fig.
2. (1) The setting of the example. (2) The optimal assignment
for relay nodes. (3) A Nash equilibrium but not optimal.

the worst equilibrium is M · dmax. So the correspondingly
upper bound for Price of Anarchy is

M · dmax
k · dmin

=
Mδ

k
(14)

For fixed numbers of locations and distance range, i.e.,
dmax
dmin

= δ for some constant δ, the more participants relaying
data, the larger PoA is. This is intuitive since when more
people are doing a fixed amount of work, there will be more
unnecessary cost.

Meanwhile, for fixed number of potential relay nodes
(sufficiently large such that M > M0) and the distance
range, i.e. dmax

dmin
= δ for some constant δ, the more relay

locations, the smaller PoA is. Intuitively when more amount
of work are given to a fixed number of people, there will be
less waste due to competition.

According to Eqn. 14, when the numbers of potential
relay nodes and locations are fixed, PoA may increase as
the distance range δ increases. This reflects an important
feature of Nash equilibrium - players will not deviate the
equilibrium point unless others’ strategies change, even
when this equilibrium is not the social optimal. Note that
this also means the solution of Nash equilibrium does
not satisfy envy-free condition (i.e., no pair of participants
want to exchange their locations with each other). Figure 7
illustrates a simple example. Consider two locations w1 and
w2 with correspondingly rewards r1 = 7 and r2 = 5, and
two potential relay nodes v1 and v2. Moving cost is also
shown in the figure. The assignment that v1 goes tow1 while
v2 goes to w2 is the optimal solution, for both social welfare
and Nash equilibrium. However, another assignment that v1

goes to w2 while v2 goes to w1 is also a Nash equilibrium,
since v1 does not want to change to w1 if v2 does not change,
and vise versa.

7.3.2 Price of Stability
With the same setting as PoA, PoS measures the ratio be-
tween the “best equilibrium” and the optimal “centralized”
solution:

PoS =
mins∈E C(s)

mins∈S C(s)
By definition, 1 ≤ PoS ≤ PoA. The closer they are to 1,
the less inefficiency in the equilibrium. The metric of PoA is
an upper bound, and the metric of PoS is the lower bound
for the inefficiency in an equilibrium. The impact factors
of PoS is the same as those of PoA. The optimal solution
is exactly the same as before. For the best equilibrium, the
upper bound corresponds to the assignment where k nodes
go to the same locations as in the optimal solution, and
others go to the furthest locations. Then we deduce an upper
bound for PoS:
1 +

(M − k) · dmax
k · dmin

= 1 +
(M − k)δ

k
=
Mδ

k
− (δ− 1) (15)

For fixed number of locations and distance range, i.e.
dmax
dmin

= δ for some constant δ, the more participants re-
laying data, the larger PoS is, the same intuition that more
unnecessary cost for more people doing a fixed amount of
work.

Meanwhile, for fixed number of potential relay nodes
(sufficient large such that M > M0) and the distance range,
i.e. dmaxdmin

= δ for some constant δ, PoS decreases similarly
as PoA when the number of relay locations increases, with
same intuition that less waste for fixed number of people
competing more amount of work.

7.4 Numeric Evaluation of PoA/PoS
We evaluate the impact of different factors in PoA/PoS
following similar settings with simulation.

Fig. 8. shows that PoA and PoS are monotonously de-
creasing as the number of providers (consumers) increases
while number of consumers (providers respectively) fixed.
The curves are similar to inverse proportional functions,
consistent with our earlier theoretical analysis.

Fig. 9 shows PoA and PoS are both positive related to the
number of potential relay nodes (M ), similar as previous
analysis. We also find that the gap between PoS and PoA
becomes narrower when more providers/consumers exist.
The gap is caused by multiple Nash equilibria. Thus less
equilibrium and narrower gap exist when there are more
providers and consumers.

Fig. 10 shows that PoA and PoS follow earlier analysis
at when network diameter (D) is small but becomes unrea-
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Fig. 8: PoA/PoS as a function of N1 (N2) with impact of N2

(N1respectively). M = 50, D = 1km.

Fig. 9: PoA/PoS as a function of M with impact of N2 (N1

fixed) or N1 (N2 fixed respectively). D = 1km. (a) PoA vs
M when N1 = 3. (b) PoS vs M when N1 = 3. (c) PoA vs M
when N2 = 3. (d) PoS vs M when N2 = 3.

sonable when D is larger than 1.5km. This may be caused
by the fixed price for each piece of data, regardless to the
distribution of providers and consumers. When providers
and consumers are in a larger square, more relay nodes are
needed, resulting in a decrease of reward to each of them.
This shows increasing the price for data for larger network
diameter is necessary.

7.5 Evaluation for the RL Solver

The framework of RL solver, based on neural networks,
provides approximation solutions to our problem. It begins
from searching some feasible solutions randomly, followed
by evaluation, and then justifies its searching direction
accordingly and repeats. In this learning process, multiple
Nash equilibria, if existing, can be found efficiently, but
it is possible that there are other equilibria ignored. In
comparison, one may consider exhaustively searching all
feasible solutions (traversal search), or randomly selecting

Fig. 10: PoA/PoS as a function of D with impact of N2 (N1

fixed) or N1 (N2 fixed respectively). M = 100. (a) PoA vs
D when N1 = 3. (b) PoS vs D when N1 = 3. (c) PoA vs D
when N2 = 7. (d) PoS vs D when N2 = 7.

some feasible solutions (random search) to check which ones
satisfy Nash equilibrium conditions. Basically, a traversal
search takes exponential time complexity, but it can find all
Nash equilibria if existing, or validate the non-existence for
sure. And random search costs much less time in searching,
but there is no guarantee for finally finding a Nash equilib-
rium. Thus, we compare the RL solver with both methods
through numerical experiments and evaluate them in two
aspects, precision and efficiency. The precision refers to the
proportion of repeated experiments that at least one Nash
equilibrium is found. The efficiency can be reflected by the
running time, the number of iterations in precise, when the
first Nash equilibrium is found.

The results shown in Fig. 11 are precision and average
running time over 100 repeated experiments, where nec-
essary relay nodes and potential relay nodes are indepen-
dently and uniformly distributed in a D × D square. In
precise, for each number of necessary relay locations k, we
randomly generate these locations first, then the potential
relay nodes one by one, until the necessary condition in
Eqn. 10 is satisfied. In each repeated experiment, we set
D = 1km and choose ri for ∀i randomly from {1, 2, . . . , 10}.
The neural network of our RL solver is three-layers fully
connected neural network with the hidden layer being a size
of 128. If our RL solver does not find any Nash Equilibrium
within 200 iterations (1000 iterations for random search),
we say it cannot find the NE, and the the running time is
recorded as 200 (1000 for random search).

As we can see, the precision and efficiency of RL solver
is stable as the number of necessary relay nodes k increases.
The solver costs much less iterations compared to random
and traversal search, and also guarantees on almost 100%
precision for finding the Nash equilibria. Traversal search
always finds all equilibria as it should do, but it has much
lower efficiency and cannot finish in reasonable time when
the search space becomes larger. For the same reason, we
show the predicted precision and efficiency for it when k
get larger as dotted lines in figures. On the other hand,
the precision of random search descends sharply with k
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(a) (b)

Fig. 11: Evaluation in precision and efficiency among RL solver, random search and traversal search, with respect to the
number of necessary relay nodes k in autonomous compensation games. (a) The precision, i.e. the proportion of repeated
experiments that at least one Nash equilibrium is found, with the increase of k. (b) The running time, i.e. the number of
iterations when the first Nash equilibrium is found, with the increase of k.

increases. This is because the search space expands expo-
nentially where random search becomes less likely to find
a solution. In the meantime, RL solver holds a constantly
updated policy through the learning process which leads to
the ability to adapt to the environment.

8 CONCLUSION AND FUTURE WORK

We design a crowd sensing incentive framework for peer
data exchange where consumers need data from providers,
and relay node facilitate the exchange by going to relay lo-
cations to connect them. Relays and providers gain utilities
by relaying or generating desired data. We first propose a
centralized method to assign relay nodes to locations, then
introduce a new autonomous compensation game model
for them to make decisions individually. We analyze the
condition for the existence of the Nash equilibrium, eval-
uate how different factors impact the overhead. We also
compare the inefficiency in individual decision to that of
social optimal assignment, and find that it does not increase
too much when participants have more freedom choosing
their strategies. This is obtained due to the bounds in the
increasing rate of the Price of Anarchy and the Price of
Stability.

In consideration to more practical settings, there are
some extension for future work, not only to the basic model
to facilitate peer data exchange, but also to better under-
stand the autonomous compensation game. In this section,
we list two of them.

In the current system, the price for each piece of data
is the same. From previous analysis to Fig. 10, it will
make the system more robust if it uses dynamic pricing
for data according to the network size. At the same time,
providers may be willing to post prices depending on the
value of their data, which should also be heterogeneous.
The corresponding theoretical issue is how heterogeneous
prices influence the Nash equilibrium of the compensation
game.

As Fig. 3 shows, when players in a compensation game
join the game in a series of time, some of them may be

willing to change their mind after knowing others’ choices.
Similarly, it is possible that some consumers regret their
original requests and want to pay for only part of data. It is
an interesting theoretical problem to calculate the condition
under which these behaviors happen. Meanwhile, estimat-
ing how many peers doing so is quite important for the real
system.
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