
VeTrack: Real Time Vehicle Tracking in Uninstrumented
Indoor Environments

Mingmin Zhao1, Tao Ye1, Ruipeng Gao1, Fan Ye2, Yizhou Wang1, Guojie Luo1

1EECS School, Peking University, Beijing 100871, China
2ECE Department, Stony Brook University, Stony Brook, NY 11794, USA

{zhaomingmin, pkuyetao, gaoruipeng, Yizhou.Wang, gluo}@pku.edu.cn, fan.ye@stonybrook.edu

ABSTRACT
Although location awareness and turn-by-turn instructions
are prevalent outdoors due to GPS, we are back into the
darkness in uninstrumented indoor environments such as un-
derground parking structures. We get confused, disoriented
when driving in these mazes, and frequently forget where
we parked, ending up circling back and forth upon return.
In this paper, we propose VeTrack, a smartphone-only sys-
tem that tracks the vehicle’s location in real time using the
phone’s inertial sensors. It does not require any environment
instrumentation or cloud backend. It uses a novel “shadow”
tracing method to accurately estimate the vehicle’s trajecto-
ries despite arbitrary phone/vehicle poses and frequent dis-
turbances. We develop algorithms in a Sequential Monte
Carlo framework to represent vehicle states probabilistically,
and harness constraints by the garage map and detected
landmarks to robustly infer the vehicle location. We also
find landmark (e.g., speed bumps, turns) recognition meth-
ods reliable against noises, disturbances from bumpy rides
and even hand-held movements. We implement a highly effi-
cient prototype and conduct extensive experiments in multi-
ple parking structures of different sizes and structures, with
multiple vehicles and drivers. We find that VeTrack can es-
timate the vehicle’s real time location with almost negligible
latency, with error of 2 ∼ 4 parking spaces at 80-percentile.

1. INTRODUCTION
Thanks to decades of efforts in GPS systems and devices,

drivers know their locations at any time outdoors. The lo-
cation awareness enables drivers to make proper decisions
and gives them a sense of “control.” However, whenever we
drive into indoor environments such as underground parking
garages, or multi-level parking structures where GPS signals
can hardly penetrate, we lose this location awareness. Not
only do we get confused, disoriented in maze-like structures,
frequently we do not even remember where we park the car,
ending up circling back and forth searching for the vehicle.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SenSys’15, November 1–4, 2015, Seoul, South Korea..
c© 2015 ACM. ISBN 978-1-4503-3631-4/15/11 ...$15.00.

DOI: http://dx.doi.org/10.1145/2809695.2809726.

Providing real time vehicle tracking capability indoors
will satisfy the fundamental and constant cognitive needs of
drivers to orient themselves relative to a large and unfamiliar
environment. Knowing where they are generates a sense of
control and induces calmness psychologically, both greatly
enhancing the driving experience. In smart parking sys-
tems where free parking space information is available, real
time tracking will enable turn-by-turn instructions guiding
drivers to those spaces, or at least areas where more spaces
are likely available. The final parking location recorded can
also be used to direct the driver back upon return, avoiding
any back and forth search.

However, real time vehicle tracking indoors is far from
straightforward. First, mainstream indoor localization tech-
nology leverages RF signals such as WiFi [7, 46] and cel-
lular [28], which can be sparse, intermittent or simply non-
existent in many uninstrumented environments. Instrument-
ing the environment [4, 5] unfortunately is not always feasi-
ble: the acquisition, installation and maintenance of sensors
require significant time, financial costs and human efforts;
simply wiring legacy environments can be a major under-
taking. The lack of radio signals also means lack of In-
ternet connectivity: no cloud service is reachable and all
sensing/computing have to happen locally.

In this paper, we propose VeTrack, a real time vehicle
tracking system that utilizes inertial sensors in the smart-
phone to provide accurate vehicle location. It does not rely
on GPS/RF signals, or any additional sensors instrument-
ing the environment. All sensing and computation occur in
the phone and no cloud backend is needed. A driver sim-
ply starts the VeTrack application before entering a parking
structure, then VeTrack will track the vehicle movements,
estimate and display its location in a garage map in real
time, and record the final parking location, which can be
used by the driver later to find the vehicle.

Such an inertial and phone-only solution entails a series
of non-trivial challenges. First, many different scenarios ex-
ist for the phone pose (i.e., relative orientation between its
coordinate system to that of the vehicle), which is needed to
transform phone movements into vehicle movements. The
phone may be placed in arbitrary positions - lying flat on a
surface, slanted into a cup holder. The vehicle may drive on
a non-horizontal, sloped surface; it may not go straight up or
down the slope (e.g., slanted parking spaces). Furthermore,
unpredictable human or road condition disturbances (e.g.,
moved together with the driver’s pants’ pockets, or picked
up from a cupholder; speed bumps or jerky driving jolting
the phone) may change the phone pose frequently. Despite

all these different scenarios and disturbances, the phone’s
pose must be reliably and quickly estimated.

Second, due to the lack of periodic acceleration patterns
like a person’s walking [23, 26, 33], the traveling distance of
a vehicle cannot be easily estimated. Although landmarks
(e.g., speed bumps, turns) causing unique inertial data pat-
terns can calibrate the location [39], distinguishing such
patterns from other movements robustly (e.g., driver pick-
ing up and then laying down the phone), and recognizing
them reliably despite different parking structures, vehicles
and drivers, remain open questions.

Finally, we have to balance the conflict between track-
ing accuracy and latency. Delaying the location determi-
nation allows more time for computation and sensing, thus
higher tracking accuracy. However, this delay inevitably in-
creases tracking latency, which adversely impacts real time
performance and user experience. How to develop efficient
tracking algorithms to achieve both reasonable accuracy and
acceptable latency, while using resources only on the phone,
is another great challenge.

VeTrack consists of several components to deal with the
above challenges to achieve accurate, real time tracking.
First, we propose a novel“shadow trajectory”tracing method
that greatly simplifies phone pose estimation and vehicle
movements computation. It can handle slopes and slanted
driving on slopes; it is highly robust to inevitable noises, and
can quickly re-estimate the pose after each disturbance. We
devise robust landmark detection algorithms that can reli-
ably distinguish landmarks from disturbances (e.g., drivers
picking up the phone) causing seemingly similar inertial pat-
terns. Based on the vehicle movements and detected land-
marks, we develop a highly robust yet efficient probabilistic
framework to track a vehicle’s location.

In summary, we make the following contributions:

• We develop a novel robust and efficient “shadow tra-
jectory” tracing method. Unlike existing methods [17,
40,47] that track the 3-axis relative angles between the
phone and vehicle, it only tracks a single heading di-
rection difference. To the best of our knowledge, it is
the first that can handle slopes and slanted driving on
slopes, and re-estimates a changed pose almost instan-
taneously.

• We design states and algorithms in a Sequential Monte
Carlo framework that leverages constraints from garage
maps and detected landmarks to reliably infer a ve-
hicle’s location. It uses probability distributions to
represent a vehicle’s states. We further propose a one-
dimensional skeleton road model to reduce the vehicle
state complexity, and a prediction-rollback mechanism
to cut down tracking latency, both by one order of
magnitude to enable real time tracking.

• We propose robust landmark detection algorithms to
recognize commonly encountered landmarks. They can
reliably distinguish true landmarks from disturbances
that exhibit similar inertial data patterns.

• We implement a prototype and conduct extensive ex-
periments with different parking structures, vehicles
and drivers. We find that it can track the vehicle in real
time against even disturbances such as drivers picking
up the phone. It has almost negligible tracking latency,
10◦ pose and 2 ∼ 4 parking spaces’ location errors at

80-percentile, which are sufficient for most real time
driving and parked vehicle finding.

Next, we give a brief overview (Section 2), describe the
shadow trajectory tracing (Section 3), Sequential Monte Carlo
algorithm design and the simplified road skeleton model
(Section 4), landmark detection algorithms and prediction-
rollback (Section 5). We report evaluation (Section 6), re-
view related work (Section 7). After a discussion of limita-
tions (Section 8), we conclude the paper.

2. DESIGN OVERVIEW

Inertial
data

Floor
map

Shadow Trajectory Tracing

Road Skeleton Model

3D tracing

2D tracing

Probabilistic Real-time
Tracking

Sequential Monte
Carlo algorithm

Real-time prediction
and rollback

2D roads

1D roads Landmark detection

Figure 1: Shadow trajectory tracing simplifies 3D
vehicle tracing into 2D shadow tracing while road
skeleton model further reduces 2D tracing into 1D.
VeTrack represents vehicle states probabilistically
and uses Sequential Monte Carlo framework for ro-
bust tracking. It uses landmark detection to cali-
brate vehicle states and prediction/rollback for min-
imum latency.

VeTrack utilizes smartphone inertial data and garage floor
maps (assumed already available). The two components of
shadow trajectory tracing and skeleton road model simplify
the problem, while the probabilistic framework utilizes land-
mark detection results and prediction/rollback mechanism
for robust and real time tracking (Figure 1). Shadow tra-
jectory tracing tracks the shadow of the vehicle on 2D plane
instead of the vehicle in 3D space; the road skeleton model
abstracts 2D strip roads into 1D line segments to remove
inconsequential details while keeping the basic shape and
topology.

To deal with noises and disturbances in data, VeTrack ex-
plicitly represents the states of vehicles (e.g., locations) with
probabilities and we develop algorithms in Sequential Monte
Carlo framework for robust tracking. They leverage land-
mark detection results to help calibrate the vehicle locations
to where such landmarks exist, and the prediction/rollback
mechanism to generate instantaneous landmark recognition
results without waiting for completely passing of landmarks.

3. TRAJECTORY TRACING

3.1 Conventional Approach
The standard approach to infer a vehicle’s current lo-

cation −→x (t) is double integration of acceleration: −→x (t) =∫∫ −→a (t)dt. This requires the vehicle’s acceleration in the
global coordinate systemG be estimated, and is usually done
in three steps in existing work [17,40,47].

Assume the 3 axes of the vehicle’s coordinate system are
XV , Y V and ZV . First the gravity direction is obtained

using mobile OS APIs [1] that use low-pass Butterworth
filters to remove high frequency components caused by ro-
tation and translation movements [48]. It is assumed to be
the direction of ZV in the phone’s coordinate system (i.e.,
vehicles moving on level ground).

Next the gravity direction component is deducted to ob-
tain the acceleration on the horizontal plane. The direction
of maximum acceleration (caused by vehicle accelerating or
decelerating) is estimated as Y V (i.e., forward direction). Fi-
nally, XV is determined as the cross product of Y V and ZV

using the right-hand rule. The XV , Y V and ZV directions
in the phone’s coordinate system give a transformation ma-
trix that converts the phone’s acceleration into that of the
vehicle.

However, during investigation we find several limitations:
First, when a vehicle is on a slope (straight up/down or
slanted), the direction of gravity is no longer the Z-axis of
the vehicle. Second, accelerometers are highly noisy and
susceptible to various disturbances from driving dynamics
and road conditions. Thus the direction of the maximum
horizontal acceleration may not always be the Y -axis. In
experiments we find that it has around 40o errors at 80-
percentile (Section 6.2). Finally, to reliably detect the direc-
tion of maximum horizontal acceleration, a changed phone
pose must remain the same at least 4s [47], which may be
impossible when frequent disturbances exist.

3.2 Shadow Trajectory Tracing

A

A

V

V

3D trajectory

2D trajectory

O

O

(a)

V

A

P

A

G

1

2

34

O

X

Y

X

Y

(b)

Figure 2: (a) Intuition: points O and O′ are the

positions of the vehicle and its shadow.
−−→
OV and

−→
OA

are the velocity and acceleration of vehicle in the
3D space. V ′ and A′ are the projection of V and A
onto the 2D ground. (b) Illustration of the method
to estimate ∠1 from ∠2, ∠3 and ∠4.

To overcome the above limitations, we propose a“shadow”
trajectory tracing method that traces the movement of the
vehicle’s shadow projected onto the 2D horizontal plane
(Figure 2(a)). Points O and O′ represent the positions of

the vehicle and its shadow.
−−→
OV and

−→
OA are the velocity

and acceleration of the vehicle in 3D space. V ′ and A′ are
the projection of V and A onto the 2D ground. It can be

shown easily that
−−−→
O′V ′ and

−−−→
O′A′ are the velocity and accel-

eration of the shadow. This is simply because the projection
eliminates the vertical direction component but preserves
those on the horizontal plane, thus the shadow and vehicle
have the same horizontal acceleration, and thus the same
2D plane velocity and coordinates.

We use another method to trace the shadow location. In-
stead of direct double integrating on the original accelera-
tion vector (−→x (t) =

∫∫ −→a (t)dt), we use the moving direc-

tion of the shadow (unit length vector
−→
T (t)) and its speed

amplitude s(t): −→x (t) =
∫ −→
T (t) · s(t)dt, where s(t) can be

computed as
∫
a(t)dt, integration of the acceleration ampli-

tude along moving direction. Although there are still two
integrations, the impact of vertical direction noises is elimi-

nated due to the projection, and the moving direction
−→
T (t)

can be measured reliably by gyroscope and maps (i.e., for-
ward/backward along pathways only). Thus our method
achieves better accuracy and robustness than the conven-
tional approach.

We need to estimate three variables in this method (Fig-

ure 2(b)): 1) the shadow’s moving direction
−−−→
O′V ′ (i.e.,

−→
T (t))

in the global coordinate system. 2) the horizontal (i.e.,

shadow’s) acceleration
−−−→
O′A′. 3) angle ∠V ′O′A′ (∠1), the

angle between the horizontal acceleration vector and vehi-
cle’s shadow’s heading (i.e., moving) direction; this is used
to project the shadow’s acceleration along the vehicle mov-

ing direction
−−−→
O′V ′ to get tangential acceleration amplitude

|
−−−→
O′A′′|(i.e., s(t)).

Next we explain how to estimate them in three steps.
1) When the vehicle is driving straight, the shadow’s mov-

ing direction is approximated by the direction of the road,
which can be obtained from the garage map and the current
location estimation. When the vehicle is turning around a
corner, VeTrack accumulates the gyroscope’s “yaw” (around
gravity direction) to modify the heading direction until the
vehicle goes straight again. We develop robust algorithms to
distinguish straight driving from turning and disturbances
(Section 5).

2) From existing mobile OS APIs [1], the gravity direction
can be detected. We deduct the gravity direction component
from the phone’s acceleration vector to obtain the horizontal

acceleration vector
−−−→
O′A′.

3) Figure 2(b) illustrates how to calculate ∠1 (∠V ′O′A′):
∠1 = ∠2 + ∠3− ∠4 (i.e.,∠V ′O′A′ = ∠GO′P ′ + ∠P ′O′A′ −
∠GO′V ′).

−−→
O′G,

−−−→
O′P ′,

−−−→
O′V ′ are the Y-axes of the global,

phone’s shadow’s and vehicle’s shadow’s coordinate system.
3.1) ∠2 is the phone’s shadow’s heading direction in the
global coordinate system. Its relative changes can be ob-
tained reliably from the gyroscope’s “yaw”, and we use a
distribution around the compass’ reading upon entering the
garage to initialize it. Because the Sequential Monte Carlo
framework can calibrate and quickly reduce the error (Sec-
tion 4), an accurate initial direction is not necessary. 3.2)
∠3 is essentially the horizontal acceleration direction in the
phone’s shadow’s coordinate system, which is already ob-
tained in step 2). 3.3) ∠4 is the vehicle’s shadow’s moving
direction in the global coordinate system, already obtained
in step 1).

Shadow trajectory tracing and 3D tracing are theoretically
equivalent when there are no noises. However, shadow trac-
ing needs much less variables and is subject to less noises.
1) Shadow tracing does not need to track variables in the
vertical dimension (e.g., altitude, angle, speed and acceler-
ation). All of them are subject to noises and require more
complexity to estimate. 2) On the horizontal plane, the mov-
ing direction can be estimated accurately based on the prior
knowledge of road directions (Section 4.4). The distance is
computed using the acceleration amplitude along the moving
direction. Thus inertial noises perpendicular to the moving
direction do not impact the distance estimation. 3) Shadow
tracing uses gyroscopes to estimate pose, while conventional

3D tracing uses accelerometers that are more susceptible to
external disturbances. Therefore, shadow tracing is much
less complex, subject to less noises, and thus achieves better
accuracy and higher robustness.

During experiments, we find that: our shadow tracing
method can handle arbitrary phone and vehicle poses and
the vehicle can go straight up/down or slanted on a slope. It
has much smaller errors (5 ∼ 10◦ at 80-percentile) and better
robustness. It also re-estimates a changed phone pose almost
instantaneously because gyroscopes have little latency; thus
it can handle frequent disturbances.

4. REAL TIME TRACKING

4.1 Intuition
The basic idea to locate the vehicle is to leverage two

types of constraints imposed by the map, namely paths and
landmarks. Given a trajectory estimated from inertial data
(Figure 3), there are only a few paths on the map that can
accommodate the trajectory. Each detected landmark (e.g.,
a speed bump or turn) can pinpoint the vehicle to a few
possible locations. Jointly considering the two constraints
can further reduce the uncertainty and limit the possible
placement of the trajectory, thus revealing the vehicle loca-
tion. We will first describe the tracking design here, then
landmark detection in Section 5.

+
Detected

Figure 3: Using both map constraints and detected
landmarks can narrow down the possible placement
of the trajectory more quickly.

To achieve robust and real time tracking, we need to ad-
dress a dual challenge. First, the inertial data have sig-
nificant noises and disturbances. Smartphones do not pos-
sess speedometer or odometer to directly measure the ve-
locity or distance; they are obtained from acceleration inte-
gration, which is known to generate cubic error accumula-
tion [39]. External disturbances (e.g., hand-held movements
or road conditions) causing sudden and drastic changes may
not be completely separated from vehicle movements. To-
gether they make it impossible to obtain accurate trajecto-
ries from inertial data only. Second, the requirement of low
latency tracking demands efficient algorithms that can run
on resource-limited phones. We have to minimize computa-
tional complexity so no cloud backend is needed.

To achieve robustness, we use probability distributions to
explicitly represent vehicle states (e.g., location and speed)
and the Sequential Monte Carlo (SMC) method to maintain
the states. This is inspired by probabilistic robotics [35]:
instead of a single “best guess”, the probability distributions
cover the whole space of possible hypotheses about vehicle
locations, and use evidences from sensing data to validate
the likelihoods of these hypotheses. This results in much
better robustness to noises in data. To achieve efficiency,

we use a 1D “skeleton road” model that abstracts paths into
one dimensional line segments. We find this dramatically
reduces the size of vehicle states. Thus the number of hy-
potheses is cut by almost one order of magnitude, which
is critical to achieve real time tracking on resource limited
phones. Next we will describe the road skeleton model and
the detailed SMC design.

4.2 Road Skeleton Model
The road skeleton model greatly simplifies the represen-

tation of garage maps. It abstracts away inconsequential
details and keeps only the essential aspects important to
tracking. Thus it helps reduce computational overheads in
the probabilistic framework. We assume that garage maps
are available (e.g., from operators), while how to construct
them is beyond the scope of this paper.

Given a map of 3D multi-level parking structure, we rep-
resent each level by projecting its map onto a 2D horizontal
plane perpendicular to the gravity direction. Thus the ve-
hicle location can be represented by a number indicating
the current level, and a 2D coordinate for its location on
this level. To accommodate changes when a vehicle moves
across adjacent levels, we introduce “virtual boundaries” in
the middle of the ramp connecting two levels. As shown
in Fig.4(b), a vehicle crossing the dash line of the virtual
boundary between levels will be assigned a different level
number. This kind of 2D representation suits the needs for
shadow tracing while retaining the essential topology and
shape for tracking.

Note that we call it 2D representation because the floor
level remains unchanged and does not need detection most
of the time. It is updated only when the vehicle crosses vir-
tual boundaries between levels. Its estimation is also much
simpler and easier than accurate 2D tracking, where most
challenges exist.

Entrance

Exit

3D multi-level parking structure

Virtual Boundary

Virtual Boundary

Virtual Boundary

Floor B1

Floor B2

Floor B3

2D Projection Floorplan of B2

1D Skeleton Model of Floor B2

(a)

(b)

(c)

Figure 4: (a) shows the 3D floor plans of a multi-
level parking structure. A vehicle enters the en-
trance on the floor B1, goes down to other two lev-
els crossing the virtual boundaries. (b) shows the
2D projection of Floor B2 in (a). (c) shows the 1D
road skeleton model of (b). Points on (c) represent
landmarks, corresponding to bumps and corners in
(a) and (b).

The key insight for the skeleton model is that the road
width is not necessary for tracking vehicle locations. Since
the paths are usually narrow enough for only one vehicle in
each direction, the vehicle location has little freedom in the
width direction. Thus we simplify the road representation

with their medial axis, and roads become 1D line segments
without any width (Fig.4(c)).

Compared to a straightforward 2D strip representation
of roads, the skeleton model reduces the freedom of vehicle
location by one dimension, thus greatly cutting down the
state space size in the probabilistic framework and resulting
in one order of magnitude less complexity.

4.3 Probabilistic Tracking Framework
The tracking problem is formulated as a Sequential Monte

Carlo (SMC) problem, specifically, the particle filtering frame-
work [21]. The vehicle states (e.g., location, speed) at time t
are represented by a multi-dimensional random variable s(t).
Each hypothesis (with concrete values for each dimension of
s(t)) is called a “particle” and a collection of J particles

{s(j)t }Jj=1 are used to represent the distribution of possible
vehicle states at time t.

The framework operates on discrete time {1, ..., t−1, t, ...}
and repeat three steps for each time slot. Without loss of

generality, we assume J particles {s(j)t−1}Jj=1 already exist at
t− 1 and describe the progress from t− 1 to t.

State update predicts the set of states {ŝ(j)t }Jj=1 at time

t based on two known inputs, the previous state {s(j)t−1}Jj=1

and most recent movement mt such as the speed, accelera-
tion that govern the movement of the vehicle. For example,
given the previous location and most recent speed, one can
predict a vehicle’s next location. To capture uncertainties
in movement and previous states, a random noise is added

to the estimated location. Thus J predictions {ŝ(j)t }Jj=1 are
generated.

Weight update uses measurements zt made at time t to
examine how much evidence exists for each prediction, so as

to adjust the weights of particles {ŝ(j)t }Jj=1. The likelihood
p(zt|st), how likely the measurement zt would happen given

state st, is the evidence. A prediction ŝ
(j)
t with a higher

likelihood p(zt|st = ŝ
(j)
t) will receive a proportionally higher

weight w
(j)
t = w

(j)
t−1p(zt|st = ŝ

(j)
t). Then all weights are

normalized to ensure that {w(j)
t }Jj=1 sum to 1.

Resampling draws J particles from the current state pre-

diction set {ŝ(j)t }Jj=1 with probabilities proportional to their

weights {w(j)
t }Jj=1, thus creating the new state set {s(j)t }Jj=1

to replace the old set {s(j)t−1}Jj=1. Then the next iteration
starts.

Note that the above is only a framework. The critical task
is the detailed design of particle states, update, resampling
procedures. Thus we cannot simply copy what has been
done in related work, and have to carefully design algorithms
tailored to our specific problem.

4.4 Tracking Algorithms

4.4.1 State and Initialization
Our particle state is a collection of factors that can impact

the vehicle tracking. Since the number of particles grows ex-
ponentially with the dimensionality of the state, we select
most related factors to reduce the complexity while still pre-
serving tracking accuracy. Our particle states include:

• level number k,

• position on 2D floor plane X = (x, y),

• speed of the vehicle v,

• α/β, phone/vehicle shadows’ 2D heading directions.

The first dimension k is introduced for multi-level struc-
tures. Position of the vehicle is represented as a 2D coor-
dinate X = (x, y) for convenience. In reality, due to the
1D skeleton road model, the position actually has only one
degree of freedom. This greatly reduces the number of par-
ticles needed.

Initialization of particles: We use certain prior knowl-
edge to initialize the particles’ state. The last GPS location
before entering the parking structure is used to infer the en-
trance, thus the level number k and 2D entrance location
(x, y). The vehicle speed v is assumed to start from zero.
The vehicle heading direction β is approximated by the di-
rection of the entrance path segment, and the phone head-
ing direction α is drawn from a distribution based on the
compass reading before entering the garage. As shown later
(Section 6), the phone’s heading direction can be calibrated
to within 15◦, showing strong robustness against compass
errors known to be non-trivial [37].

4.4.2 State Update
For a particle with state (kt−1, xt−1, yt−1, vt−1, αt−1,

βt−1), we create a prediction (k̂t, x̂t, ŷt, v̂t, α̂t, β̂t) given move-
ment mt = (ax, ay, ωz) where ax, ay and ωz are X, Y-axis
accelerations and Z-axis angular speed in the coordinate sys-
tem of the phone’s shadow.

First, (x̂t, ŷt) is updated as follow:

x̂t = xt−1 + vt−1∆t · cosβt−1 + εx, (1)

ŷt = yt−1 + vt−1∆t · sinβt−1 + εy, (2)

where εx, εy are Gaussian noises. If (x̂t, ŷt) is no longer
on the skeleton, we project it back to the skeleton. Level
number k̂t is updated when a particle passes through a vir-
tual boundary around the floor-connecting-ramp, otherwise
k̂t = kt−1.

Next, velocity vt is updated as follow:

ât = ay · cos γt − ax · sin γt + εa, (3)

v̂t = vt−1 + at ·∆t+ εv, (4)

where γt is the angle between the Y axes of the two shadows’
coordinate systems and εa, εv are Gaussian noises.

Finally, αt and βt are updated as follows:

α̂t = αt−1 + ωz∆t+ εα, (5)

β̂t =

{
βt−1 + ωz∆t+ εβ , if turn = True;
road direction at (kt, xt, yt), otherwise.

(6)
where εα, εβ are random Gaussian noises. The above al-

lows the phone to change its angle α to accommodate oc-
casional hand-held or jolting movements, while such move-
ments will not alter the vehicle’s angle β if the vehicle is
known to travel straight.

4.4.3 Weight Update
Weight update uses detected landmarks and floor plan

constraints to recalculate the “importance” of the current
particle states. The basic idea is to penalize particles that
behave inconsistently given the floor plan constraints. For

example, since a vehicle cannot travel perpendicularly to
path direction, a particle with velocity orthogonal to the
road direction will be penalized. It will have much smaller
weights and less likely to be drawn during resampling.

We compute the weight wt as

wt := wt−1

2∏
i=0

wti, (7)

Each wti is described as follows.

• Constraints imposed by the map. We define wt0 =
cos2(βt−βt−1). It is designed to penalize particles that
have a drastic change in the vehicle heading direction,
since during most of the time a vehicle does not make
dramatic turns.

• Detected landmarks. When an i-th type landmark
1 is detected, wti of the current state is updated as
N (Di(xt, yt); 0, σ2

i) where Di(xt, yt) is the distance to
the closest landmark of the same type and σ2

i is a pa-
rameter controlling the scale of the distance. If no
landmark is detected, wti = 1. This method penalizes
the predicted states far away from detected landmarks.

Finally all weights are normalized so they sum up to 1.

4.4.4 Resampling
A replacement particle is selected from the predicted par-

ticle set {ŝ(j)t }Jj=1 where each particle ŝ
(j)
t has probability

w
(j)
t being selected. This is repeated J times and J parti-

cles are selected to form the new state set {s(j)t }Jj=1. Then
the next iteration starts.

5. LANDMARK DETECTION
A parking structure usually has a limited number of land-

marks (e.g., speed bumps and turns), and their locations can
be marked on a garage map. When a vehicle passes over a
landmark, it causes distinctive inertial data patterns, which
can be recognized to calibrate the vehicle’s location.

However, realizing accurate and realtime landmark de-
tection is not trivial because: 1) road conditions and hand
movements impose disturbances on inertial sensor readings;
and 2) to minimize delay, landmark recognition results are
needed based on partial data before the vehicle completely
passes a landmark. We present landmark detection algo-
rithms robust to noises and hand movements, and a pre-
diction and rollback mechanism for instantaneous landmark
detection.

5.1 Types of Landmarks
Speed bumps generate jolts, hence acceleration fluctu-

ations in the Z-axis when a vehicle passes over. Note that
drainage trench covers, fire shutter bottom supports may
also cause similar jolting patterns. We include them as
“bumps” as well in the garage map.

Many factors can cause ambiguities in bump detection.
For example, Figure 5 shows the acceleration signal along
the Z-axis as a vehicle starts and passes over four bumps
along a straight road. The first tremor in the left green box

1We use only bump and corner here because their locations
are precise; turns are used in vehicle angle β update in Eqn 6.

(around 10 ∼ 17s marked with “J”) is caused by the vehi-
cle’s starting acceleration. It lasts longer but with smaller
magnitude compared to those caused by the bumps (in red
boxes marked “B1”-“B4”). The tremor in the right green
box (around 60s marked “M”) is due to the user’s action -
holding the phone in hand, then uplifting the phone to check
the location. They generate vertical acceleration that may
be confused with those by bumps.

J

B1 B2 B3 B4
M

B: bump; J: jerking during start; M: hand movement

A
cc

e
le

ra
ti

o
n

 (
m

/s
2
)

9.8

-9.8

0

0 20s 40s 60s 80s

Figure 5: Acceleration along the Z-axis. There are
starting acceleration (J), four bumps (B1-B4) and
one hand movement (M) along the trajectory.

Detected turns

Fetch phone
from pocket Hand movements

No

Yes

(a) Turn detection

Detected corners

Yes

No

(b) Corner detection

Figure 6: Turn and corner detection. (a) Three turn
periods are correctly detected, even there are sev-
eral different hand movements. (b) 4 corners are
correctly separated, even when only 3 turned are
detected.

Turns are defined as durations in which a vehicle con-
tinuously changes its driving direction, usually around road
corners. They can be detected from the gyroscope read-
ings of angular velocities around the gravity direction (i.e.,
“yaw”). During turns a vehicle’s direction differs from the
road direction. Its direction changes in such periods are ac-
cumulated to track the vehicle’s heading direction.

There exists work [47] using simple thresholding on turn-
ing angles to detect turns. However, we find they cannot re-
liably distinguish vehicle turns from hand movements (e.g.,
putting the phone on adjacent seat and picking it up to check
the location).

Corners. A turn may span over an extended period, from
its start to the end. The corner where two road segments join
can be used to precisely calibrate the vehicle’s location. The
main challenge is consecutive turns: they might be detected
as a single one, hence missing some corners. For example,
in Figure 6(a), the first two turns may be detected as only
one turn period.

We observe that when a vehicle passes at a corner, its an-
gular velocity usually is at a local maxima, corresponding
to the maximum turn of the steering wheel. To identify cor-
ners precisely, we use a sliding window to find local maxima
of angular velocities within each turning period. Each lo-
cal maxima is marked as a corner. Figure 6(b) shows that
the left most two consecutive corners within the same turn
period are properly separated.

5.2 Feature and Classification Algorithm
We use machine learning techniques to recognize bumps

and turns. Corners are detected within turns using the
above local maxima searching. The critical issue is what
features should be used. Although one may feed the raw
signal directly to these algorithms, it is usually much more
efficient to design succinct, distinctive features from raw sig-
nals.

For bumps, we divide acceleration along the Z-axis into
2-second windows sliding at 0.2s intervals. This window size
is chosen empirically such that both front and rear wheels
can cross the bump for complete bump-passing. For turns,
we use gyroscope angular velocities around the vertical di-
rection, and divide the signal the same way. We observe
that smaller windows lead to drastic accuracy drop, while
larger ones incurs more delay.

We observe that there are two kinds of common hand
movements that may be confused with bumps or turns: 1)
hold the phone in hand, and occasionally uplift it to check
the location; 2) put the phone in pockets/nearby seat, pick
up the phone to check the location and then lay it down.
The first causes a jitter in Z-axis acceleration, and might be
confused with bumps; the second also has Z-axis gyroscope
changes, and might be confused with turns.

We have tried a number of different feature designs, both
time-domain and frequency-domain, to help distinguish such
ambiguities. We list five feature sets which are found to
have considerable accuracy and low computation complexity
(detailed performance in Section 6).

(1) STAT35 (35 dimensions): we equally divide one win-
dow into 5 segments, and compute a 7-dimensional feature [29]
from each segment, including the mean, maximum, second
maximum, minimum, and second minimum absolute values,
the standard deviation and the root-mean-square.

(2) DSTAT35 (70 dimensions): In addition to STAT35,
we also generate a “differential signal” (i.e., the difference
between two consecutive readings) from the raw signal, and
extract a similar 7-dimensional feature from each of its 5
segments.

(3) FFT5 (5 dimensions): we do FFT on the raw signal
in the whole window, and use the coefficients of the first five
harmonics as a 5-dimensional feature.

(4) S7FFT5 (35 dimensions): in addition to FFT5, we
also extract the same 5 coefficients from each of two half-size
windows, and four quarter-size windows. Thus we obtain 35
dimensions from 7 windows.

(5) DFFT5 (10 dimensions): the first five FFT coeffi-
cients of both raw and differential signals.

We explore a few most common machine learning algo-
rithms, Logistic Regression (LR) [9] and Support Vector
Machine (SVM) [9]. After feature extraction, we manually
label the data for training. We find that SVM has higher
accuracy with slight more complexity than LR, while both
can run fast enough on the phone. So we finally decide to

use SVM in experiments. We find it has bump and turn de-
tection accuracies (percentage of correctly labeled samples)
around 93% (details in Section 6.2).

We have also tried some threshold-based methods on tem-
poral [14] and frequency domain [22] features, but find it is
impossible to set universally effective thresholds, and the
frequency power densities by hand movements can be very
similar to those of landmarks. Thus they are not sufficiently
robust.

5.3 Prediction and Rollback
The reliability of landmark detection depends on the“com-

pleteness” of the signal. If the window covers the full dura-
tion of passing a landmark, more numbers of distinctive fea-
tures can be extracted, and the detection would be more re-
liable. In reality, this may not always be possible. The land-
mark detection is repeated at certain intervals, but many in-
tervals may not be precisely aligned with complete landmark-
passing durations. One naive solution is to wait until the
passing has completed. Thus more features can be extracted
for reliable detection. However, this inevitably increases
tracking latency and causes jitters in location estimation
and display, adversely impacting user experience.

We use a simple prediction technique to make decisions
based on data from such partial durations. To identify
whether a car is passing a landmark at time t, assume that
the signal spanning from t − τ to t + τ covering the full 2τ
landmark-passing duration is needed for best results. At any
time t, we use data in window [t− 2τ, t] to do the detection.
The results are used by the real time tracking component
to estimate the vehicle location. At time t + τ , the data of
full landmark-passing duration become available. We clas-
sify data in [t − τ, t + τ] and verify if the prediction made
at t is correct. Nothing needs to be done if it is. If it was
wrong, we rollback all the states in the tracking component
to t, and repeat the computation with the correct detection
to re-estimate the location.

This simple technique is based on the observation that
most of the time the vehicle is driving straight and land-
marks are rare events. Thus the prediction remains correct
most of the time (i.e., during straight driving), and mis-
takes/rollbacks happen only occasionally (i.e., when a land-
mark is encountered). From our experiments, rollbacks hap-
pen in a small fraction (∼ 10%) of the time. Thus we ensure
low latency most of the time because there is no waiting,
while preserving detection accuracy through occasional roll-
back, which incurs more computation but is found to have
acceptable latency (0.1 ∼ 0.3s) (Section 6).

6. PERFORMANCE EVALUATION

6.1 Methodology
We implement VeTrack on iOS 6/7/8 so it can run on

iPhone 4/4s/5/5s/6. Our code contains a combination of
C, C++ for algorithms and Objective C for sensor and GUI
operations. A sensor data collector sends continuous data to
landmark detectors to produce detection results. Then the
real time tracking component uses such output to estimate
the vehicle’s location, which is displayed on the screen. The
initialization (e.g, loading map data) takes less than 0.5 sec-
ond. Sensors are sampled at 50Hz and the particle states
are evolved at the same intervals (20ms). Since each land-
mark lasts for many 20ms-intervals, the detectors classify

Figure 7: Floor maps of three underground park-
ing lots: (a) university campus: 180m × 50m with
79 parking spots, 12 bumps and 11 turns. (b) of-
fice building: 250m × 90m with 298 parking spots,
19 bumps and 10 turns. (c) shopping mall: 3-level
120m×80m with 423 parking spots, 10 bumps and 27
turns. The chosen parking spots and entrance are
marked for each lot.

the landmark state once every 10 samples (i.e., every 0.2
second), which reduces computing burden.

We conduct experiments in three underground parking
lots: a 250m× 90m one in an office building, a 180m× 50m
one in a university campus and a 3-level 120m × 80m one
in a shopping mall (floor plans shown in Figure 7). There
are 298, 79, 423 parking spots, 19, 12, 10 bumps, 10, 11, 27
turns and 4, 2, 6 slopes, respectively.

For each parking lot, we collect 20 separate trajectories
each starting from the entrance to one of the parking spots
(shown in Figure 7) for inertial sensor data at different poses.
The average driving time for trajectories is 2∼3 minutes, and
the longest one 4.5 minutes. Exemplar trajectories to five
test spots are illustrated in Figure 8.

A

B

C

D E

O

Figure 8: Driving trajectories and test spots. Each
trajectory begins at the entrance O and ends at one
of the test spots (A to E).

For all three lots, we use a mould to hold 4 iPhones with
4 different poses: horizontal, lean, vertical and box (Fig-
ure 9(a)). To further test the performance and robustness
of our system, we use 4 more iPhones for the challenging
3-level parking lot with one in driver’s right pants’ pocket,
one in a bag on a seat and two held in hand. The one
in pocket is subject to continuous gas/brake pedal actions
by the driver, while the one in bag to vehicle movements.
Once in a while, one hand-held phone is picked up and put
down on the user’s thigh, causing Z-axis accelerations sim-
ilar to those by bumps; the other is picked up from and
laid down to adjacent seat, causing Z-axis angular changes
similar as those by turns. These 8 poses hopefully cover all

Horizontal

Lean

Box

Vertical

Front of vehicle

(a) (b)

Figure 9: Mould and VeTrack UI.

common driving scenarios. The UI of VeTrack is shown in
Figure 9(b).

We use video to obtain the ground truth of vehicle loca-
tion over time. During the course of driving, one person
holds an iPad parallel to the vehicle’s heading direction to
record videos from the passenger window. After driving, we
manually examine the video frame by frame to find when the
vehicle passed distinctive objects (e.g., pillars) with known
locations on the map. Such frames have those objects in the
middle of the image, thus the error is bounded by 0.5 vehicle
length and usually much better.

To align inertial data and video collected from different
devices temporally, we first synchronize the time on all the
iPhones and iPad. Then different people holding different
devices will start the data collecting/recording applications
at the same time. These operations establish the correspon-
dence of data in the time series of different devices.

6.2 Evaluation of Individual Components
Landmark classification accuracy. To train landmark

detectors and test their performance, we use recorded videos
to find encountered landmarks and label their locations on
the whole trajectory. Then we use sliding windows to gen-
erate labeled segments of sensor readings. Note that dis-
turbances caused by hand movements are labeled as non-
bump and non-turn because they should not be confused
with bumps or turns. In total we generate 14739 segments
for bump detector and 57962 segments for turn detector.

We evaluate classification accuracy (percentage of test
samples correctly classified) of six different sets of features
(described in Section 5). We randomly choose 50% of the
whole dataset to train the SVM classifier and others to test
the performance. We repeat it 20 times and report the av-
erage performance in Table 1. It shows that they all have
high accuracy around 90%. We decide to use DFFT5 with
relatively high accuracies (93.0% and 92.5% for bump and
turn) and low complexity in further evaluation.

Table 1: Accuracies of different feature sets.
dimension bump turn

STAT35 35 92.7% 92.8%
DSTAT35 70 92.6% 93.4%

FFT5 5 91.8% 92.2%
S7FFT5 35 92.5% 92.6%

DFFT5 (chosen) 10 93.0% 92.5%

We repeat the test across different garages: using the data
from one as training and another as testing. In reality, we
can only obtain data from a limited number of garages for
training, at least initially. Thus this test critically exam-
ines whether high accuracies are possible for vast numbers

Office Campus Mall
0.8

0.85

0.9

0.95

1
Bump Detection

Precision
Recall

(a)

Office Campus Mall
0.8

0.85

0.9

0.95

1
Turn Detection

Precision
Recall

(b)

Figure 10: Precision and recall of bump and turn
detection in three different garages.

of unknown garages. Table 2 shows the cross-test accura-
cies of bump and turn detection, respectively. Each row
represents training data and column test data. We observe
that the accuracies are around, and some well above 90%.
This encouraging evidence shows that it is very possible to
retain the accuracy when training data are available from
only limited numbers of garages.

Table 2: Cross-test of bump/turn detection (%)
train/test office campus mall

office 95.5/93.6 91.9/95.6 90.1/90.3
campus 93.7/94.1 93.9/96.3 88.5/90.8

mall 94.1/92.3 90.6/94.6 91.5/91.0

Precision and recall of landmark detection.
After training landmark detectors, we further test their

precision (ratio of true detections among all detected land-
marks) and recall (ratio of true detections to groundtruth
number of such landmarks) over whole traces. They tell how
likely the detector makes mistakes (high precision means less
chances for mistakes), and how close all groundtruth ones are
detected (high recall means more real ones are detected). An
ideal detector would have 100% precision and recall.

The precision and recall of bump and turn detection are
shown in Figure 10. Both prediction and recall of bump
detection are over 91% and those of turn are over 96%. Turn
detection has better performance because it uses features
from more reliable gyroscope data. We also find that poses
in the mould has the best performance because they have the
least disturbances; those in pocket and bag are better than
in those in hand because they do not experience disturbances
from hand movements.

Accuracy of shadow tracing. The performance of tra-
jectory tracing highly depends on the accuracy of phone pose
estimation (relative orientation between the phone and ve-
hicle’s coordinate systems). We compare its accuracy in 3D
and 2D tracing methods. Similar to other work [17, 40], we
use principle component analysis (PCA) in 3D method to
find the maximum acceleration direction as Y -axis. To ob-
tain the ground truth, we fix a phone to the vehicle and
align its axes to those of the vehicle. The error is defined as
the angle between the estimated and ground truth Y -axis of
the phone. For fair comparison, we project the 3D pose to
horizontal plane before calculating its error.

The CDFs of errors (Figure 11) show that: 1) Our 2D
method is more accurate, with the 90-percentile error at
10 ∼ 15o while that of the 3D method is around 50o ∼ 70o,
which in reality would make accurate tracking impossible.
2) The 2D method is more robust to disturbances in unsta-
ble poses such as pocket/bag and hand-held, whereas the

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Pose estimation error in PCA(degree)

C
D

F

Mould
Pocket & Bag
Hand

(a)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Pose estimation error in VeTrack(degree)

C
D

F

Mould
Pocket & Bag
Hand

(b)

Figure 11: CDFs of pose estimation error: (a) 3D
method. (b) Our 2D method.
3D method has much larger errors for the latter two. This
shows that our shadow tracing is indeed much more practi-
cal for real driving conditions. In addition, we find that the
PCA needs a window of 4s for unchanged pose, while the
2D method is almost instantaneous.

6.3 Realtime Tracking Latency
Realtime tracking latency is the time the tracking

component needs to finish computing the location after ob-
taining sensor data at t. When there are prediction mistakes,
it also includes latencies for detecting mistakes, rollback and
re-computing of the current location. This is measured on
iPhone 4s, a relatively slower model. As shown in Table 3,
landmark detection for bump, turn and corner each cost
∼ 0.2ms. In almost ∼ 90% of time where predictions are cor-
rect, one round of tracking is computed within 1.7ms. The
2.3ms computing finishes within the 20ms particle state up-
date interval, causing no real time delay. For about ∼ 10%
of time, recovering for bump, turn and corner errors (each
∼3%) take 64ms, 47ms and 193ms. The worst case is less
than 0.2s, hardly noticeable to human users.

Table 3: Realtime Tracking Latency.
bump turn corner

landmark detection 0.21ms 0.22ms 0.22ms
90% realtime tracking 1.7ms

10% rollback 47ms 64ms 193ms

Figure 12 shows the latency as a function of number of
particles, each curve for one different type of wrong predic-
tions resulting in rollback. All curves grows linearly, sim-
ply because of the linear overhead to update more particles.
Note that the difference between latencies of different curves
is caused by different sizes of rollback windows (1s, 1s and
3s for bump, turn and corner detection errors, respectively).
Although bump and turn detection have the same rollback
window sizes, recovering turn errors has slightly higher com-
putation overhead. In experiments we find that 100 ∼ 200
particles can already achieve high accuracy, which incurs
only 0.05 ∼ 0.2s) latency. Such disruptions are minimal and
not always perceptible by users.

6.4 Tracking Location Errors
Parking location errors. The final parking location is

important because drivers use it to find the vehicle upon
return. We use the number of parking spaces between the
real and estimated locations as the metric, since the search
effort depends more on how many vehicles to examine, not
the absolute distance.

In order to compare all 8 poses, we show the results in
the mall garage. Figure 14(a) shows the 4 phones in the
mould. They have relatively small errors: all four poses

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Localizarion error(parking space)

C
D

F

Horizontal
Lean
Vertical
Box

(a)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Localizarion error(parking space)

C
D

F

Mould
Pocket & Bag
Hand

(b)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Localizarion error(parking space)

C
D

F

Driver 1
Driver 2
Driver 3
Driver 4

(c)

0 2 4 6
0

0.2

0.4

0.6

0.8

1

Localizarion error(parking space)

C
D

F

Office garage
Campus garage
Mall garage

(d)

0 2 4 6
0

0.2

0.4

0.6

0.8

1

Realtime localization error(parking spaces)

C
D

F

Horizontal
Lean
Vertical
Box

(e)

0 2 4 6
0

0.2

0.4

0.6

0.8

1

Realtime localization error(parking spaces)

C
D

F

Mould
Pocket & Bag
Hand

(f)

0 2 4 6
0

0.2

0.4

0.6

0.8

1

Realtime localization error(parking spaces)

C
D

F

Driver 1
Driver 2
Driver 3
Driver 4

(g)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Realtime localization error(parking spaces)

C
D

F

Office garage
Campus garage
Mall garage

(h)

Figure 14: Final parking location errors (1st row) and realtime tracking location errors (2nd row). (a)(e)
4 phones in the mould. (b)(f) in mould, pocket&bag, and hands. (c)(g) different drivers. (d)(h) different
garages.

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

Number of particles

co
m

p
u

ta
ti

o
n

al
 o

ve
rh

ea
d

 o
f

ro
llb

ac
k(

s)

Corner prediction error
Bump prediction error
Turn prediction error

Figure 12: Latency
by different rollback
types and numbers of
particles.

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

Number of particles

A
ve

ra
g

e
lo

ca
liz

at
io

n
 e

rr
o

rs
(p

ar
ki

n
g

 s
p

ac
e)

Baseline
VeTrack

Figure 13: Tracking
error by numbers of
particles.

have similar performance, with 90-percentile error less than
2 parking spaces. The maximum error is less than 3 parking
spaces, which is sufficient for remote keys to trigger a honk
to locate the car.

Figure 14(b) shows results for different pose categories.
Poses in the mould category achieve the best performance,
i.e., ∼ 2 parking spaces at 90-percentile, with maximum er-
ror of 3 parking spaces. Those in the pocket or bag endure
small disturbances thus achieve performance that is a little
worse than mould category, i.e., ∼ 2 parking spaces at 90-
percentile, with maximum error of 4 parking spaces. Those
in hand have largest errors, i.e., ∼ 4 parking spaces at 90-
percentile, with maximum error of 5 parking spaces. These
larger errors are due to hand disturbances causing more in-
correct landmark detections.

We also evaluate the impact of different drivers. Fig-
ure 14(c) shows those of two taxi drivers (1 and 3) driv-
ing cabs and two volunteer drivers (2 and 4) driving their
own cars. The results do not differ too much among dif-
ferent drivers; all have 1.5 ∼ 3 parking space errors at 80-
percentile, while the maximum error of 5 parking spaces is
from a taxi driver who drives very aggressively, which causes
more incorrect detections.

Finally we evaluate impact of the type of parking garage.
The 90-percentile errors are around 2,3 and 5 parking spaces,

ABC

D

Average realtime localization errors
(unit in meters) are shown in circles.

Arrows represent road directions.

Figure 15: Average realtime tracking errors on dif-
ferent garage locations.

respectively, and maximum errors are 3, 5 and 6 parking
spaces, respectively. The difference is caused by different
structures. The office garage has best results because it has
regular shapes (7(b)) and smooth paved surfaces which min-
imize road disturbances. The campus garage is the worst be-
cause of its irregular shape (7(a)), especially the“Z”-junction
of two consecutive turns where many drives take a shortcut
instead of two 90-degree turns.

Real time location error. We present the CDFs of real
time tracking error in the second row of Figure 14, arranged
the same as the first row. The trends are similar in general,
but real time errors are generally 50 ∼ 100% larger than cor-
responding parking errors. For example, Figure 14(e) shows
all 4 poses in the mould have 90-percentile error around 4
parking spaces. The maximum error is ∼ 5 parking spaces.
While those in Figure 14(a) are 2 and 3 parking spaces. Fig-
ure 14(f) shows that poses in the mould have the least errors,
while those in hand have largest errors, the same trend as
Figure 14(b) while all errors are about 60% larger than those
in Figure 14(b). Figure 14(g) and (h) are similar as well.

This is because: 1) For final parking location we penalize
particles still having non-negligible speeds after the vehicle

has stopped. Thus remaining particles are those that have
correctly “guessed” the vehicle states. 2) Real time errors in-
clude many locations in the middle of long straight driving,
where no landmarks are available for calibration. Such loca-
tions tend to have larger errors. 3) The vehicle location has
much larger uncertainty at the beginning. Thus relatively
greater errors are included in real time results. But final
location is usually after multiple calibrations, thus better
accuracy.

Spatial distribution of real time tracking errors
on a garage map with 3 bumps and 8 turns is shown in
Figure 15. Each circle has a number, the error averaged
over different traces and poses for that location. We observe
that in general the error grows on straight paths, and is
reduced after encountering landmarks (e.g., from 4.9m after
a corner A, growing to 7.9m then reduced to 4.6m after a
bump B; 9.7m at C before a corner to 3.9m at D).

The number of particles also impact tracking accu-
racy. We compare VeTrack with a straightforward base-
line that uses 3D tracing and 2D road strips, without two
critical components of 2D tracing and 1D roads, Figure 13
shows results for the mall. VeTrack’s average localization
error quickly converges to ∼ 2.5 parking spaces when there
are 200 particles (the office and campus garages need only
100 ∼ 150 particles). More particles do not further decrease
the error because they are still subject to landmark detec-
tion mistakes. The baseline needs about 1000 particles to
stabilize, and it is around 5 parking spaces. This shows that
VeTrack needs about one order of magnitude less particles,
thus ensuring efficient computing for real time tracking on
the phone; it also has better accuracy because of the two
critical components.

7. RELATED WORK
Phone pose estimation. Existing work [17, 24, 40] es-

timates the 3D pose of the phone. The latest one, A3 [48],
detects high confidence compass and accelerometer measure-
ments to calibrate accumulative gyroscope errors. The typi-
cal approach [41] in vehicular applications is to use the grav-
ity direction as the Z-axis of the vehicle, assuming it is on
level ground; gyroscope is used to determine whether the
vehicle is driving straight; and the direction of maximum
acceleration is assumed to be the Y-axis of the vehicle. As
explained in Section 3, it cannot handle vehicles on a slope,
and the direction of maximum acceleration may not be vehi-
cle forwarding direction. The estimation also requires long
time of unchanged pose, unsuitable under frequent distur-
bances.

Landmark detection. Distinctive data patterns in dif-
ferent sensing modalities of smartphones have been exploited
for purposes including indoor localization [6, 32, 39]. Simi-
larly, VeTrack detects distinctive inertial sensor patterns by
road conditions (e.g., bumps and turns) to calibrate the lo-
cation estimation. Its algorithms are designed specifically
for robustness against noises and disturbances on inertial
data from indoor driving.

Robotic localization. SLAM is a popular technique for
a robot to acquire a map of its environment while simultane-
ously localizing itself in this map [25]. It has been adapted
for indoor localization leveraging WiFi signals [15]. Unlike
SLAM, VeTrack assumes the map is available and deter-
mines the vehicle location. This is equivalent to robot lo-

calization which finds the pose of a robot relative to a given
map [35].

Earlier work on robot localization uses Kalman Filters [38]
and Markov localization [35]. More recent Sequential Monte
Carlo (SMC) [16, 36] uses a set of samples (i.e., “particles”)
drawn from a probability distribution to represent the po-
sition. The samples evolve over time based on the action
model and measurements [35].

VeTrack uses the same SMC approach. But SMC is only a
framework: what states are needed to model the dynamics of
the physical system, what algorithms are needed to update
such states, are all problem dependent. Also smartphone in-
ertial data have significant noises and disturbances; they do
not have high precision sensors such as laser rangers, high
definition cameras, wheels that can provide accurate mea-
surements for robots. Thus the state/weight initialization
and update have to be carefully designed to produce reason-
able results despite low quality data.

Dead-reckoning. Dead reckoning is a well explored ap-
proach that estimates the future location of a moving object
(e.g., ground vehicle, robot or aircraft [3,8,20]) based on its
past position and speed. Compared with them, VeTrack
does not have special, high precision sensors (e.g., odome-
ter in robotics or radar [27] for ground vehicles), while the
required accuracy is much higher than that of aviation.

Dead reckoning has been used for indoor localization using
smartphones equipped with multiple inertial sensors [12,30].
Its main problem is fast error accumulation due to inertial
data noises and a lot of work has attempted to mitigate the
accumulation. Foot-mounted sensors have been shown ef-
fective in reducing the error [31,43]. Smartphones are more
difficult because their poses are unknown and can change.
Some outdoor localization work (e.g., CompAcc [13]) em-
ploys periodic GPS measurements to recalibrate the loca-
tion. UnLoc [39] replaces GPS with virtual indoor land-
marks with unique sensor data patterns for calibration.

To prevent the error accumulation, VeTrack simultane-
ously harnesses constraints imposed by the map and envi-
ronment landmarks. Landmark locations most likely remain
unchanged for months or even years. The 2D pose estima-
tion handles unknown and possibly changing phone poses.
Their output provide calibration opportunities in the SMC
framework to minimize error accumulation.

Estimation of vehicle states. There have been many
research efforts using smartphones’ embedded sensors to mon-
itor the states of vehicles (e.g. dangerous driving alert [23],
car speaker [44] and CarSafe [45]); inspect the road anomaly
or conditions (e.g., Pothole Patrol [14]); and detect traffic
accidents (Nericell [24] and WreckWatch [42]). The vehicle
speed is a critical input in many such applications. While it
is easy to calculate the speed using GPS outdoors [19, 34],
the signal can be weak or even unavailable for indoor parking
lots. Some alternative solutions leverage the phone’s signal
strength to estimate the vehicle speed [10,11]. VeTrack uses
inertial data only, thus it works without any RF signal or
extra sensor instrumentation.

There have been autonomous parking system prototypes
where a vehicle can sense the environment, detect available
spots and finally park itself (e.g., CoCar [2]). Such systems
usually leverage high precision cameras, laser rangers and
advanced computer vision techniques, which are not feasible
within the much constrained hardware of commodity smart-
phones.

8. DISCUSSION
Uncertainty in starting locations and speed. Dur-

ing the initialization of particles, we assume the location is
at entrance and the speed zero. However, when the VeTrack
app starts, the car may have already entered the garage.
Thus the start of the trace may not be the entrance and the
velocity not zero. This assumption can be easily removed by
sampling from an empirical distribution to set the initial lo-
cation and velocity. We do need more particles to represent
the distribution, but the constraints imposed by paths and
landmarks will quickly narrow down the possible locations of
the vehicle. In one experiment we tried a speed distribution
between 0 − 10m/s and 3000 particles. We find that after
2 − 3 landmarks the location estimation quickly converges
and the system can still achieve high accuracy. Basically
when enough landmarks exist, the uncertainty can still be
reduced and vehicle location determined.

Unsupervised feature learning. We design certain fea-
tures manually for machine learning techniques. However,
those features might not be the optimal under all circum-
stances; more efficient features specific to different environ-
ment may exist. We plan to investigate unsupervised feature
learning [18] to automatically devise features for better per-
formance and generality.

Stationary or reverse conditions. There are certain
movement patterns not yet considered in this work: when
the parking lot is congested, the vehicle may exhibit stop-
and-go movements with long stationary periods; drivers may
back up the vehicle into parking spaces. We plan to add
stationary and reverse detection algorithms so that these
conditions can be properly recognized and handled within
the real time tracking component.

Simultaneous disturbances and landmarks. In our
experiments disturbances such as hand-held movements hap-
pen only during straight driving but not bumps or turns.
This is a reasonable assumption for a single driver that is
most likely focusing on driving through these landmarks,
and will not have the extra cognitive bandwidth to pick up
the phone and look. However, if the phone is held by a pas-
senger, hand-held movements could happen any time, even
with small probabilities. We will investigate what impact
this may have on VeTrack and further improve the robust-
ness of our detection algorithms.

Other types of landmarks. In VeTrack, we mainly
use bumps and turns as landmarks to recalibrate the loca-
tion of vehicles. However, other types of landmarks (e.g.,
spots with RF signals or special magnetic fields) could also
be incorporated. Whenever available, they provide addi-
tional constraints and calibration opportunities that limit
the possible locations of the vehicle and would further im-
prove the accuracy. It’s just unfortunate that in the three
underground parking structures we experimented, no RF
signal were available. This is because the functional areas of
those buildings (e.g., office, malls) are usually above ground.
Thus no WiFi APs are deployed underground. We acknowl-
edge although this is not uncommon in big Asian cities due
to high population density, in other parts of the world (e.g.,
North America) above-ground parking structures can take
advantage of WiFi signals wherever available.

Generalization of techniques. The real time tracking
problem itself is quite specific. However the shadow trajec-
tory tracing and 2D phone pose estimation techniques are
essential to model and infer vehicle dynamics where arbi-

trary phone pose or special driving conditions (e.g., slopes
or even slanted driving on slopes) exist. Thus the benefits
are general to phone-vehicular applications, not just under-
ground navigation.

Landmark mapping. Garage maps may not necessarily
have landmark locations measured and marked. In reality
we did not find this too much an overhead. Within half an
hour we were able to manually measure their locations and
mark them on maps. Because this is a one-time effort with
long-lasting benefits, we believe it is worthwhile.

More varieties in different factors. The performance
of VeTrack may depend on many factors, including the struc-
tures of parking lots, drivers, vehicle and phone make/models.
We intentionally choose parking structures of three different
building types (office, campus and mall), with several drivers
and vehicle make/models. For example, the one in the mall
has circular connecting ramps which are common for multi-
level parking structures. We find that the yaw reading from
gyroscope can reliably tell the turned angle and thus the
location on such cylinder ramps.

Although we have tried our best to extend these factors,
they are not exhaustive due to our limited resources and
manpower. Nevertheless, we believe the most challenging
part is the accurate 2D tracking of vehicle location, which
we have designed multiple techniques and addressed exten-
sively. We plan to conduct more comprehensive experiments
in more types of parking structures, drivers, vehicle and
phone make/models to identify potential limits and improve
the design.

9. CONCLUSIONS
In this paper we describe VeTrack which tracks a vehicle’s

location in real time and records its final parking location.
It does not depend on GPS or WiFi signals which may be
unavailable, or additional sensors to instrument the indoor
environment. VeTrack uses only inertial data, and all sens-
ing/computing happen locally on the phone. It uses a novel
shadow trajectory tracing method to convert smartphone
movements to vehicle ones. It also detects landmarks such
as speed bumps and turns robustly. A probabilistic frame-
work estimates its location under constraints from detected
landmarks and garage maps. It also utilizes a 1D skeleton
road model to greatly reduce the computing complexity.

Prototype experiments in three parking structures and
with several drivers, vehicle make/models have shown that
VeTrack can track the vehicle location around a few park-
ing spaces, with negligible latency most of the time. Thus it
provides critical indoor location for universal location aware-
ness of drivers. Currently VeTrack still has quite some limi-
tations, such as manual feature design, simultaneous distur-
bances as discussed previously. We plan to further investi-
gate along these directions to make it mature and practical
in the real world.

10. ACKNOWLEDGMENT
We thank the anonymous reviewers for their constructive

critique, and our shepherd Marco Gruteser for his valuable
feedback and advice, all of which have helped us greatly im-
prove this paper. We also thank Kaigui Bian for his input
during early investigation of the work. This work is sup-
ported in part by NSF CNS-1513719, NSFC 61231010 and
Beijing Municipal NSF 4142022.

11. REFERENCES
[1] Apple Developer Center.

https://developer.apple.com/.

[2] CoCar: Autonomous Parking in an Underground
Parking Garage.
https://www.youtube.com/watch?v=G4XYMbtH758.

[3] Inertial navigation system, Wikipedia.
https://en.wikipedia.org/wiki/Inertial navigation system.

[4] Parking sensors mesh network.
http://www.streetline.com/parking-analytics/parking-
sensors-mesh-network/.

[5] SFpark. http://sfpark.org/how-it-works/the-sensors/.

[6] M. Azizyan, I. Constandache, and R. Roy Choudhury.
Surroundsense: Mobile phone localization via
ambience fingerprinting. In Proceedings of the 15th
Annual International Conference on Mobile
Computing and Networking, MobiCom ’09, pages
261–272, New York, NY, USA, 2009. ACM.

[7] P. Bahl and V. N. Padmanabhan. RADAR: An
in-building RF-based user location and tracking
system. In IEEE INFOCOM, 2000.

[8] D. M. Bevly and B. Parkinson. Cascaded kalman
filters for accurate estimation of multiple biases,
dead-reckoning navigation, and full state feedback
control of ground vehicles. Control Systems
Technology, IEEE Transactions on, 15(2):199–208,
2007.

[9] C. M. Bishop et al. Pattern recognition and machine
learning, volume 1. springer New York, 2006.

[10] G. Chandrasekaran, T. Vu, A. Varshavsky,
M. Gruteser, R. Martin, J. Yang, and Y. Chen.
Tracking vehicular speed variations by warping mobile
phone signal strengths. In Pervasive Computing and
Communications (PerCom), 2011 IEEE International
Conference on, pages 213–221, March 2011.

[11] G. Chandrasekaran, T. Vu, A. Varshavsky,
M. Gruteser, R. P. Martin, J. Yang, and Y. Chen.
Vehicular speed estimation using received signal
strength from mobile phones. In Proceedings of the
12th ACM International Conference on Ubiquitous
Computing, Ubicomp ’10, pages 237–240, New York,
NY, USA, 2010. ACM.

[12] I. Constandache, X. Bao, M. Azizyan, and R. R.
Choudhury. Did you see bob?: Human localization
using mobile phones. In Proceedings of the Sixteenth
Annual International Conference on Mobile
Computing and Networking, MobiCom ’10, pages
149–160, New York, NY, USA, 2010. ACM.

[13] I. Constandache, R. Choudhury, and I. Rhee. Towards
mobile phone localization without war-driving. In
INFOCOM, 2010 Proceedings IEEE, pages 1–9, 2010.

[14] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden,
and H. Balakrishnan. The pothole patrol: Using a
mobile sensor network for road surface monitoring. In
Proceedings of the 6th International Conference on
Mobile Systems, Applications, and Services, MobiSys
’08, pages 29–39, New York, NY, USA, 2008. ACM.

[15] B. Ferris, D. Fox, and N. D. Lawrence. Wifi-slam
using gaussian process latent variable models. In
IJCAI, volume 7, pages 2480–2485, 2007.

[16] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte
carlo localization: Efficient position estimation for
mobile robots. AAAI/IAAI, 1999:343–349, 1999.

[17] H. Han, J. Yu, H. Zhu, Y. Chen, J. Yang, Y. Zhu,
G. Xue, and M. Li. Senspeed: Sensing driving
conditions to estimate vehicle speed in urban
environments.

[18] G. Hinton, S. Osindero, and Y.-W. Teh. A fast
learning algorithm for deep belief nets. Neural
computation, 18(7):1527–1554, 2006.

[19] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work,
J.-C. Herrera, A. M. Bayen, M. Annavaram, and
Q. Jacobson. Virtual trip lines for distributed
privacy-preserving traffic monitoring. In Proceedings of
the 6th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’08, pages 15–28,
New York, NY, USA, 2008. ACM.

[20] Y. Kanayama, Y. Kimura, F. Miyazaki, and
T. Noguchi. A stable tracking control method for an
autonomous mobile robot. In Robotics and
Automation, 1990. Proceedings., 1990 IEEE
International Conference on, pages 384–389 vol.1,
May 1990.

[21] K. Kanazawa, D. Koller, and S. Russell. Stochastic
simulation algorithms for dynamic probabilistic
networks. In Proceedings of the Eleventh conference on
Uncertainty in artificial intelligence, pages 346–351.
Morgan Kaufmann Publishers Inc., 1995.

[22] K. Li, M. Lu, F. Lu, Q. Lv, L. Shang, and
D. Maksimovic. Personalized driving behavior
monitoring and analysis for emerging hybrid vehicles.
Pervasive Computing, 2012.

[23] J. Lindqvist and J. Hong. Undistracted driving: A
mobile phone that doesn’t distract. In Proceedings of
the 12th Workshop on Mobile Computing Systems and
Applications, HotMobile ’11, pages 70–75, New York,
NY, USA, 2011. ACM.

[24] P. Mohan, V. N. Padmanabhan, and R. Ramjee.
Nericell: Using mobile smartphones for rich
monitoring of road and traffic conditions. In
Proceedings of the 6th ACM Conference on Embedded
Network Sensor Systems, SenSys ’08, pages 357–358,
New York, NY, USA, 2008. ACM.

[25] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit.
Fastslam: A factored solution to the simultaneous
localization and mapping problem. In AAAI/IAAI,
pages 593–598, 2002.

[26] S. Nawaz, C. Efstratiou, and C. Mascolo. Parksense:
A smartphone based sensing system for on-street
parking. In Proceedings of the 19th Annual
International Conference on Mobile Computing &
Networking, MobiCom ’13, pages 75–86, New York,
NY, USA, 2013. ACM.

[27] D. H. Nguyen, J. H. Kay, B. J. Orchard, and R. H.
Whiting. Classification and tracking of moving ground
vehicles. Lincoln Laboratory Journal, 13(2):275–308,
2002.

[28] V. Otsason, A. Varshavsky, A. LaMarca, and
E. De Lara. Accurate gsm indoor localization. In
UbiComp 2005: Ubiquitous Computing, pages
141–158. Springer, 2005.

[29] S. Preece, J. Goulermas, L. Kenney, and D. Howard.
A comparison of feature extraction methods for the

classification of dynamic activities from accelerometer
data.

[30] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and
R. Sen. Zee: Zero-effort crowdsourcing for indoor
localization. In Proceedings of the 18th Annual
International Conference on Mobile Computing and
Networking, Mobicom ’12, pages 293–304, New York,
NY, USA, 2012. ACM.

[31] P. Robertson, M. Angermann, and B. Krach.
Simultaneous localization and mapping for pedestrians
using only foot-mounted inertial sensors. In
Proceedings of the 11th International Conference on
Ubiquitous Computing, Ubicomp ’09, pages 93–96,
New York, NY, USA, 2009. ACM.

[32] S. P. Tarzia, P. A. Dinda, R. P. Dick, and G. Memik.
Indoor localization without infrastructure using the
acoustic background spectrum. In Proceedings of the
9th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’11, pages
155–168, New York, NY, USA, 2011. ACM.

[33] A. Thiagarajan, J. Biagioni, T. Gerlich, and
J. Eriksson. Cooperative transit tracking using
smart-phones. In Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems,
SenSys ’10, pages 85–98, New York, NY, USA, 2010.
ACM.

[34] A. Thiagarajan, L. Ravindranath, K. LaCurts,
S. Madden, H. Balakrishnan, S. Toledo, and
J. Eriksson. Vtrack: Accurate, energy-aware road
traffic delay estimation using mobile phones. In
Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’09, pages 85–98,
New York, NY, USA, 2009. ACM.

[35] S. Thrun, W. Burgard, D. Fox, et al. Probabilistic
robotics, volume 1. MIT press Cambridge, 2005.

[36] S. Thrun, D. Fox, W. Burgard, and F. Dellaert.
Robust monte carlo localization for mobile robots.
Artificial intelligence, 128(1):99–141, 2001.

[37] Y. Tian, R. Gao, K. Bian, F. Ye, T. Wang, Y. Wang,
and X. Li. Towards ubiquitous indoor localization
service leveraging environmental physical features.
2014.

[38] E. A. Wan and R. Van Der Merwe. The unscented
kalman filter for nonlinear estimation. In Adaptive
Systems for Signal Processing, Communications, and
Control Symposium 2000. AS-SPCC. The IEEE 2000,
pages 153–158. IEEE, 2000.

[39] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef,
and R. R. Choudhury. No need to war-drive:
Unsupervised indoor localization. In Proceedings of the

10th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’12, pages
197–210, New York, NY, USA, 2012. ACM.

[40] Y. Wang, J. Yang, H. Liu, Y. Chen, M. Gruteser, and
R. P. Martin. Sensing vehicle dynamics for
determining driver phone use. In Proceeding of the
11th annual international conference on Mobile
systems, applications, and services, pages 41–54.
ACM, 2013.

[41] Y. Wang, J. Yang, H. Liu, Y. Chen, M. Gruteser, and
R. P. Martin. Sensing vehicle dynamics for
determining driver phone use. In Proceeding of the
11th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’13,
pages 41–54, New York, NY, USA, 2013. ACM.

[42] J. White, C. Thompson, H. Turner, B. Dougherty, and
D. C. Schmidt. Wreckwatch: Automatic traffic
accident detection and notification with smartphones.
Mob. Netw. Appl., 16(3):285–303, June 2011.

[43] O. Woodman and R. Harle. Pedestrian localisation for
indoor environments. In Proceedings of the 10th
International Conference on Ubiquitous Computing,
UbiComp ’08, pages 114–123, New York, NY, USA,
2008. ACM.

[44] J. Yang, S. Sidhom, G. Chandrasekaran, T. Vu,
H. Liu, N. Cecan, Y. Chen, M. Gruteser, and R. P.
Martin. Detecting driver phone use leveraging car
speakers. In Proceedings of the 17th Annual
International Conference on Mobile Computing and
Networking, MobiCom ’11, pages 97–108, New York,
NY, USA, 2011. ACM.

[45] C.-W. You, N. D. Lane, F. Chen, R. Wang, Z. Chen,
T. J. Bao, M. Montes-de Oca, Y. Cheng, M. Lin,
L. Torresani, and A. T. Campbell. Carsafe app:
Alerting drowsy and distracted drivers using dual
cameras on smartphones. In Proceeding of the 11th
Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys ’13, pages
461–462, New York, NY, USA, 2013. ACM.

[46] M. Youssef and A. Agrawala. The horus wlan location
determination system. In ACM MobiSys, 2005.

[47] M. Zhao, R. Gao, J. Zhu, T. Ye, F. Ye, Y. Wang,
K. Bian, G. Luo, and M. Zhang. Veloc: finding your
car in the parking lot. In Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems,
pages 346–347. ACM, 2014.

[48] P. Zhou, M. Li, and G. Shen. Use it free: Instantly
knowing your phone attitude. In Proceedings of the
20th annual international conference on Mobile
computing and networking, pages 605–616. ACM,
2014.

