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Abstract
As a supporting primitive of many mobile device appli-

cations, neighbor discovery identifies nearby devices so that
they can exchange information and collaborate in a peer-to-
peer manner. To date, discovery schemes trade a long la-
tency for energy efficiency and require a collaborative duty
cycle pattern, and thus they are not suitable for interactive
mobile applications where a user is unable to configure oth-
ers’ devices. In this paper, we propose Acc, which serves
as an on-demand generic discovery accelerating middleware
for many existing neighbor discovery schemes. Acc lever-
ages the discovery capabilities of neighbor devices, support-
ing both direct and indirect neighbor discoveries. Our eval-
uations show that Acc-assisted discovery schemes reduce la-
tency by a maximum of 51.8%, compared with the schemes
consuming the same amount of energy. We further present
and evaluate a Crowd-Alert application where Acc can be
employed by taxi drivers to accelerate selection of a direc-
tion with fewer competing taxis and more potential passen-
gers, based on a 10 GB dataset of more than 15,000 taxis in
a metropolitan area.
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1 Introduction
Personal mobile devices, e.g., smartphones and tablets,

have become popular recently, enabling numerous applica-
tions [12] [8]. Such applications rely on sensor data collected
in opportunistic fashion, which they process and share with-
in a community to monitor large-scale phenomena, e.g., ur-
ban environments [4] [6] [7], user behaviors [25] [24], trans-
portation [21] [2], and social networks [16] [17].

Many of these applications require a fast discovery of
neighbor devices in a nearby region [13] [23] [9] [14]. For
example, fast discovery is critical for firefighters to exchange
information during rescue operations [13] and for players to
interact with each other in location-based games [23]. This
quickly collected neighbor information will allow applica-
tions to effectively collaborate among participating devices.

Several state-of-the-art discovery protocols for wireless
networks [22] [26] [5] [10] [20] have been proposed to
achieve a bounded discovery latency and energy efficiency,
since the devices are mostly powered by batteries. We found,
however, that current schemes face two challenges when di-
rectly employed on personal devices.

First, typical applications of sensor networks are delay
tolerant, but in many mobile applications, humans are in-
volved in the loop, and a longer latency, even though bound-
ed, will distract user’s attention. One could argue that adjust-
ing duty cycles of existing solutions [22] [26] [5] [10] [20]
can reduce delay in neighbor discovery when so desired.
These schemes, however, require coordinated changes of du-
ty cycle patterns, a requirement only suitable for sensor net-
works where a user owns the whole network and can change
all devices’ duty cycles collaboratively. In personal device
networks, a user may be unable to configure key system pa-
rameters (e.g., duty cycles) of other users’ devices, meaning
that accelerated discovery can be achieved only by adjusting
the duty cycle of a user’s own device.

Second, many mobile applications (e.g., geo-social net-
working) running on personal devices desire a fast discovery
only when such a need arises, unlike the sensor network ap-
plications where continuous discovery is need to maintain
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network connectivity in mobile environments, and we argue
that allocating duty cycles continuously in advance of user
demands is wasteful.

Therefore in this paper, we advocate accelerated discov-
ery by individual users in an on-demand autonomous man-
ner. In particular, we consider a scenario in which an ef-
fective discovery protocol, e.g., Disco [5], has already been
deployed in networks running with a very low duty cycle.
When a faster discovery is needed by a user, an additional
energy budget (in term of additional active slots) is used to
perform an on-demand acceleration.

Our Accelerator is called Acc, which functions based on
knowledge collected by an existing discovery scheme. We
aim at a generic middleware design that can support a wide
range of discovery protocols with an arbitrary duty cycle
pattern. Technically, the key novelty of Acc is that it lever-
ages knowledge in the neighbor tables of known neighbors to
maximize the utility of additional energy (i.e., effectiveness
of additional active slots) in order to accelerate discovery of
unknown neighbors, while also introducing no changes on
any device except the discovering one.

Specifically, our contributions are as follows:
• We introduce a transparent accelerating scheme Acc

that works with many existing discovery protocols to
greatly accelerate the discovery process. To our best
knowledge, this is the first work that provides an on-
demand generic solution to accelerate a wide range of
discovery protocols under different duty cycle patterns.

• We propose a concept of spatial-temporal coverage and
formally define a model for quantifying the effective-
ness of each active slot in the acceleration of neighbor
discovery. The model is fully distributed and leverages
only information in the neighbor tables of known neigh-
bors. It does not make any assumptions regarding radio
or location models.

• Based on the spatial-temporal coverage, we design an
agile online scheduling algorithm to decide addition-
al active slots under a given energy budget. Compar-
ing our online scheduling algorithm to its theoretically
optimal Oracle version, we theoretically prove that our
online scheduling algorithm is competitive by obtaining
its competitive ratio ρ, which indicates that our online
scheduling algorithm has a bounded performance com-
pared to its Oracle version.

The evaluation results show that Acc-assisted schemes re-
duce the discovery latency by a maximum of 51.8% when
consuming the same energy. In addition, based on a 10 GB
dataset comprising about 7 days of GPS traces of more than
15,000 taxis in a large city, we further propose and evaluate a
Crowd-Alert application to show how Acc can be employed
to quickly select a direction with fewer competing taxis or
more potential passengers, It demonstrates that a smart taxi
driver can maximize the possibility of picking up a passenger
based on an accelerated neighbor discovery.

The paper is organized as follows. Section 2 introduces
related work. Section 3 describes background. Section 4
provides our design goal. Section 5 proposes the Acc design.
Section 6 and Section 7 present our implementation and sim-

ulation. Section 8 demonstrates how Acc can be used in a
taxi-dispatch system. Section 9 concludes the paper.

2 Related Work
Neighbor discovery in low-power wireless networks has

recently been studied in the literature. In general, neigh-
bor discovery schemes can be divided into three categories,
probabilistic, quorum-based, and deterministic.

The probabilistic protocols, e.g., Birthday protocol [15],
assign different probabilities for sending, receiving, and
sleeping in individual slots. Due to Birthday Paradox [18],
such probabilistic schemes offer very good performance in
the average discovery latency. But their major limitation is
a unbounded worst-case discovery latency, which leads to
a long tail on discovery probabilities over time. Moreover,
Birthday research concludes that this discovery scheme aims
for stationary networks, instead of mobile networks.

The quorum-based discovery protocols address the above
unbounded latency issue by ensuring overlapping active du-
rations between any pair of devices within a bounded time.
In these schemes, time is divided into m×m continuous slots
as a matrix, and each device selects one row and one colum-
n (called quorums) to become active. Therefore, regardless
which row and column a device chooses to become active, it
is guaranteed to have at least two common active slots with
other devices. But a main drawback of quorum-based proto-
cols is a global parameter of m, which forces all devices in
the network to have the same duty cycle [22] [26]. Although
some work has been proposed to support asymmetric duty
cycle patterns, they can support only two different duty cycle
patterns [11]. Again, the quorum-based discovery protocol-
s are also primarily proposed for stationary networks where
energy is the most pressing concern, not mobility.

The deterministic protocols are most closely related to our
work [5] [10] [20]. They recently have been proposed to
handle the global parameter problem by letting every device
distributedly select one or multiple prime numbers for itself
to represent its duty cycle. Based on the Chinese Remainder
Theorem [19], the devices would have bounded discovery
latencies. In Disco [5], each device selects two prime num-
bers and generates its period independently based on these
numbers. To improve Disco’s performance, U-Connect [10]
proposes an activation pattern using one prime and has a
shorter latency, especially in asynchronous symmetric net-
works. More recently, WiFlock [20] combines discovery
and maintenance using a collaborative beaconing mechanis-
m with time synchronization.

Our work presents a different design architecture than the
aforementioned three categories. We utilize an existing dis-
covery protocol (e.g., Disco) to guarantee a bounded discov-
ery latency by maintaining original active slots. Our design
adds only new active slots in addition to the slots specified by
the underlying discovery protocol. This unique design phi-
losophy allows an on-demand acceleration without the need
for additional coordination among mobile devices. Another
key novelty of this work is that when we add new active slot-
s, we quantify the effectiveness of each added active slot on
both direct and indirect discovery, and the latter part has not
been considered in previous discovery designs.
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3 Preliminaries for Neighbor Discovery
In this section, we introduce some background informa-

tion about in a distributed network how mobile devices can
discover each other without any infrastructure support.

Many applications include devices with highly diverse
configurations distributed in a wide geographic area, such as
low-cost sensors in the wild. Therefore, it is very difficult to
achieve global time synchronization at fine granularity. The
devices usually decide their schedules based on a distributed
yet coordinated duty cycle pattern.

To schedule its discovery, a device S divides time into
continuous fixed-length time slots. Then, based on a specific
protocol, S activates its radio and switches into a discovery
mode during a specific set of slots. After that, S broadcast-
s one or multiple discovery messages for other devices to
discover its existence. At the same time, S also listens to a
wireless channel to receive similar messages from other de-
vices. Essentially, when neighbor devices have overlapping
slots in which they enter the discovery mode, they are able
to discover each other [5] [10] [20].

Although our Acc design can work with a wide range of
discovery protocols, for the sake of clarity in this paper we
use Disco [5] as a representative example. In the evalua-
tion, we will show how Acc works with WiFlock [20] and U-
Connect [10] as well. Specifically, Disco employs the Chi-
nese Remainder Theorem [19] to guarantee a discovery la-
tency bound. Although in real implementation, Disco select-
s two different primes for a device to solve the issue of two
devices having the same prime [5], for simplicity we choose
only one prime to represent a duty cycle of a device to show
the principle of Disco. For every chosen prime number of s-
lots, the device will enter into its discovery mode for one slot.
Consequently, the actual duty cycle is equal to the reciprocal
of this chosen prime number. For example, to achieve an ap-
proximately 1% duty cycle, Disco would choose the prime
number of 101. The maximal discovery latency between two
devices, according to the Chinese Remainder Theorem, is e-
qual to the product of two prime numbers chosen by these
two devices. Figure 1 shows an example of asynchronous
discoveries among three devices S, A, and B.
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Figure 1. Neighbor Discovery Process. Device S, A, and B
start their local timers at global time 0, 0, and 3, respec-
tively. According to Disco, S will discover device A and B
at global slots 0 and 10, respectively, based on their duty
cycles, i.e., 20% ( 1

5 ), 33% ( 1
3 ), and 14% ( 1

7 ).

Note that existing asynchronous discovery protocols on-
ly assume that slots at individual devices have equal length-
s [5] [10] [20]. By sending two messages at the begin-
ning and end of an active slot, they do not require perfectly
aligned slots and are robust to clock drift. The perfect align-
ment in Figure 1 is just for illustrations.

4 Acc Design Goals
Our work is motivated by the observation that current

state-of-the-art neighbor discovery schemes suffer from long
discovery latencies for energy efficiency. In many mobile
applications, however, neighbor discovery has to be fast e-
nough to enable crucial responsive user experiences. For
traditional discovery schemes, its design goal is to discov-
er neighbors with a more energy-efficient method, no matter
how long it will take, as long as it is bounded. In contrast,
for many mobile applications where energy is not the most
pressing concern, when needed, an on-demand fast neighbor
discovery has to be done in a very short period of time before
users begin to lose their focus on the application.

These observations consequently lead to a new design
philosophy for neighbor discovery: to perform an on-
demand fast discovery within a given additional energy bud-
get, a device should discover its neighbors as quickly as pos-
sible to make applications function smoothly. Therefore, our
design goal is to more efficiently utilize the additional ener-
gy budget to accelerate the discovery process, compared to
current designs with the same amount of energy.

To illustrate the design goal, we plot testbed results on
the CDF of latency for both Disco [5] and its Acc-assisted
version, Acc-Disco, in Figure 2. One would assume that dis-
covery latency can be surely reduced if additional energy is
used. To make the comparison fair, we run Disco at a 10%
duty cycle and Acc-Disco with a 5% duty cycle allocated to
Disco for bounded latency and another 5% duty cycle allo-
cated to Acc for acceleration purpose. Therefore, Disco and
Acc-Disco have the same total energy budget. The system
details are given in Section 6.
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Figure 2. Illustration of Design Goal

In Figure 2, as shown by point X , Disco discovers more
than 99% of neighbors after a latency 40s on average. In con-
trast, as shown by point Y , Acc-Disco completes this process
within 20s. Under the same latency, Disco discovers about
60% of neighbors, as shown by point Z. Therefore, compar-
ing point Y to X , to discover all neighbors, our Acc can assist
Disco to accelerate its discovery process, by a maximum of
50%; comparing point Y to Z, under the same latency, our
Acc can assist Disco to achieve more discoveries, by a max-
imum of 40%. Based on the above observations, our key
goal is enabling Acc to optimally utilize the additional ener-
gy budget to reduce the discovery latency for the same num-
ber of neighbors rather than simply assigning this additional
budget to the existing neighbor discovery protocols.
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5 Acc Design
In this section, we introduce our detailed design for accel-

erations of neighbor discovery in mobile applications.
5.1 Main Idea

We assume an effective discovery protocol, e.g., Disco,
has already been installed in each device. Augmented fur-
ther by Acc, a device runs in one of two discovery modes:
Energy Efficient Discovery Mode, and On-demand Acceler-
ated Discovery Mode. If a fast discovery is not required, a
device S is in the first mode, i.e., only running the underly-
ing discovery protocol; otherwise, S enters the second mode,
concurrently performing Acc and the underlying discovery
protocol for both the acceleration and the bounded latency.

Energy Efficient Discovery Mode: In this mode, S per-
forms the following two steps during its original active slots
(as specified by the underlying discovery protocol), and turn-
s off its radio in the rest of slots. (1) At the beginning and
end of the original active slots, S sends a discovery message
including its neighbor table, i.e., its own duty cycle as well
as IDs and duty cycles of its current known neighbors. (2)
S may receive similar discovery messages from previously
unknown or known neighbors if they also become active in
the same slots with S. Therefore, S will collect some ac-
tivation schedules about some known neighbors, i.e., when
the known neighbors will become active again in future s-
lots. This information is very valuable, because when an
on-demand accelerating discovery is required, it will help S
to decide how to accelerate the discovery.

On-demand Accelerating Discovery Mode: When an
on-demand fast discovery is required, S enters this mode to
accelerate the discovery process with an additionally provid-
ed energy budget. In this mode, besides original active slots,
S will also become active during several additional slots to
receive discovery messages. These additional slots are op-
timal for discovering more potential neighbors in two ways:
direct neighbor discovery by S itself, and indirect neighbor
discovery by S’s known neighboring devices. This indirec-
t discovery is performed by receiving neighbor tables from
other devices in active slots. Figure 3 gives an example of
the indirect discovery.
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Figure 3. Indirect Discovery. After the discovery of a de-
vice A in the global time 0, if S can select one additional
active slot between the global time 1 to 10, S would selec-
t slot 6 for possible indirect discoveries via A, since (1) S
knows A will become active in slot 6 after the initial dis-
covery, and (2) neighbors discovered by A in slot 3, e.g.,
B, will be forwarded to S in Slot 6. So S accelerates the
discovery process of B by 4 slots, i.e., from slot 10 to 6.

A natural and key question comes up: how to select ad-
ditional active slots that are most effective when the ener-
gy budget is given. Before answering this question, we first

explain the operational difference between existing discov-
ery protocols and Acc. In existing discovery schemes, a
discovering device S discovers its neighbors only by S it-
self, without any direct collaborations with neighbors al-
ready known. Therefore, when characterizing a potential ac-
tive slot in terms of discovery, existing schemes may consid-
er only how many unknown neighbors whom S can direct-
ly discover by itself if S becomes active in this slot. These
direct discoveries can accelerate the discovery process on a
certain level, but not significantly. In contrast, our Acc char-
acterizes a potential active slot based on how many unknown
neighbors whom S’s known neighbors will discover can be
forwarded to S to achieve indirect discoveries. This indi-
rect discovery is one of the key features of Acc. Compared
to direct discoveries, these indirect discoveries significantly
accelerate the discovery process. This is because direct dis-
coveries increase only linearly, but indirect discoveries may
increase geometrically.

We break down the question of how to select addition-
al slots into two sub-questions: (1) how to evaluate the ef-
fectiveness of all potential active slots, and (2) among these
potential active slots, how to select a subset of active slots
to maximize the discovery probability and reduce discovery
latency. A potential active slot t is evaluated by a metric
of spatial-temporal coverage, which is considered as a slot
gain to quantify discovery capabilities of all known neigh-
bors becoming active at slot t. These known neighbors can
discover common unknown neighbors for S during the slot-
s that S is not active and then forward such information to
S at slot t. Since the known neighbors of S will discover
their neighbors anyway, Acc supports a transparent acceler-
ation for S running at the on-demand accelerating discovery
mode. This is because no additional effort (e.g., additional
activations) is needed for S’s neighbors running at the en-
ergy efficient-discovery mode. We present the slot gain in
the second subsection. Then we explain how to dynamical-
ly schedule a subset of active slots that maximize the total
slot gains, given a fixed energy budget (i.e., the number of
active slots to be added). We present this online scheduling
algorithm in the third subsection.
5.2 Characterization of Slot Gain

Before presenting the detailed characterization of slot
gain, we first provide some intuition behind this concept. To
discover more unknown neighbors, a discovering device S
should become active at a future slot that has the largest num-
ber of potential unknown neighbors that are also becoming
active. Therefore, intuitively, a future slot with more active
unknown neighbors should be assigned to a larger gain.

But without making further assumptions, S cannot have
this information about how many unknown neighbors will
become active in a certain future slot. Alternatively, S indeed
has information collected during previous discoveries about
how many and which kinds of S’s known neighbors will be-
come active in a certain future slot. These known neighbors
will passively forward their new collected neighbor informa-
tion to S to achieve indirect discoveries by sending neighbor
tables, if the known neighbors become active together with
S in a future slot. Again intuitively, a future slot with more
active known neighbors should be assigned to a larger gain.
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But we observe that not all known neighbors at S are e-
qually valuable for indirect neighbor discoveries. Specifical-
ly, S should favor those important known neighbors exhibit-
ing both temporal diversity and spatial similarity to S. The
temporal diversity indicates how many slots a known neigh-
bor is active even though S is not, while the spatial similarity
indicates how likely a neighbor of a known neighbor of S
is also S’s neighbor. Finally, a future slot with more active
known neighbors exhibiting both higher temporal diversity
and larger spatial similarity will be assigned to a larger gain.
5.2.1 Temporal Diversity

The temporal diversity between a pair of devices S and its
known neighbor A is determined by the difference in active
slot schedules between them. The more difference in active
slots, the more likely that via A, S can early indirectly dis-
cover new neighbors whom S was supposed to later directly
discover during S’s original active slots. For example, Fig-
ure 4 shows an example of temporal diversity.

  A

B

C

Active  SlotsInactive Slots

S

Discovery 

Global             
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

Figure 4. Example of Temporal Diversity

In Figure 4, whenever A becomes active, S also becomes
active, so the temporal diversity between them is very limit-
ed. Because A can only discover neighbors in slots where S
also does, there is limited information that A can learn but S
cannot. However, a device C frequently becomes active in s-
lots where S is inactive (e.g., slot 3, 6, 9 and 15). Given a slot
t, the more frequently C becomes active before t, the larger
the possibility that C obtains more information on the poten-
tial neighbors not yet known to S. Therefore, to maximize
the possibility that the known neighbors can forward more
information about the unknown potential neighbors to S, Ac-
c attempts to activate S at slots where more known neighbors
with higher temporal diversities become active.

At current slot t0, to calculate the temporal diversity be-
tween two device i and j at a future slot t, denoted as α

(i, j)
t0→t ,

j utilizes the ratio between the number of non-overlapping
active slots between i and j from the current slot t0 to slot t,
and the total number of slots until slot t. This ratio is given
by the following formula.

α
(i, j)
t0→t =

|m(i,i)
t0→t |− |m

(i, j)
t0→t |

t− t0
, (1)

where m(i, j)
t0→t is the common active slot set of i and j from

slot t0 to slot t; clearly, if j = i, then m(i,i)
t0→t is the total active

slot set of i from slot t0 to slot t.
As in Figure 4, we show how to obtain α

(i, j)
t0→t . Assuming

device S, A, B and C first discover each other at slot 0. At
t0 = slot 1, the temporal diversity of slot 6 for A, B and C
to S is α

(A,S)
1→6 = 0

5 , α
(B,S)
1→6 = 1

5 , and α
(C,S)
1→6 = 2

5 , respectively.

Clearly, A has the least temporal diversity to S, while C has
the most temporal diversity to S.
5.2.2 Spatial Similarity

The spatial similarity between a pair of devices S and A is
determined by the spatial closeness between them. In multi-
hop networks, not all A’s neighbors are S’s neighbors. Intu-
itively, the closer A is to S, the larger the possibility that more
common neighbors exist between them. So, to maximize the
possibility that the potential unknown neighbors forwarded
by the known neighbors to S are indeed S’s neighbors, Acc
attempts to activate S at slots where more known neighbors
with larger spatial similarities become active.

At current slot t0, to calculate the spatial similarity be-
tween device i and j, denoted as β

(i, j)
t0 , j utilizes the ratio

between the number of common known neighbors of i and
itself, and the total number of known neighbors to itself at
slot t0. This ratio is given by the following.

β
(i, j)
t0 =

|n(i, j)t0 |

|n( j, j)
t0 |

, (2)

where n(i, j)t0 is the common known neighbor set of i and j at

slot t0; clearly if i = j, n( j, j)
t0 is j’s neighbor table at slot t0.

Figure 5 shows an example about how to obtain β
(i, j)
t0 .

D

C

ID Neighbors

A B,D,E,S

B A,C

C B,S

S
A

S's Neighbor Table

B

E

Radio Range of S

Figure 5. Example of Spatial Similarity

In Figure 5, at t0 = slot 1, among 3 discovered neighbors
(i.e., A, B, and C), S shares 2, 3 and 2 neighbors with A, B and
C, respectively, including a neighbor itself. So, for directly
discovered neighbors A, B, and C, S can calculate β

(A,S)
1 = 2

3 ,

β
(B,S)
1 = 3

3 and β
(C,S)
1 = 2

3 . For indirectly discovered neigh-

bors, e.g., D, S can calculate β
(D,S)
1 = 1

3 , since only 1 (device
A) out of 3 known neighbors of S contains D in its neighbor
table.
5.2.3 Slot Gain Calculation

Based on the above observations, a discovering device S
assigns larger gains to slots that have more active devices
with higher temporal diversity and larger spatial similarity.
At current slot t0, based on Eq. 1 and 2, S calculates the slot
gain of slot t, denoted as γ

(S)
t0→t , as follows.

γ
(S)
t0→t = ∑

i∈n(S,S)t0

α
(i,S)
t0→tβ

(i,S)
t0 = ∑

i∈n(S,S)t0

(|m(i,i)
t0→t |− |m

(i,S)
t0→t |)×|n

(i,S)
t0 |

(t− t0)×|n
(S,S)
t0 |

,

(3)
where n(S,S)t0 is the neighbor table of S at slot t0.
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Ideally, if S is required to discover all its neighbors be-
coming active from slot t0 to t but without being active all
the time, then S should select a set of known neighbors who
can cover the entire radio area (i.e., spatial coverage) of S
from slot t0 to t (i.e., temporal coverage). The temporal cov-
erage is easy since we select a neighbor subset, if any, that
has neighbors continuously becoming active from slot t0 to
t, but without further assumptions regarding a device’s radio
model, the spatial coverage is hard to perform. Essentially, S
could use its complete neighbor set to represent its radio area,
but S does not know its complete neighbor set either, but on-
ly a partial known neighbor set at a specific slot. Therefore,
we employ S’s partial known neighbor set (i.e., n(S,S)t0 ) to rep-
resent its radio area, i.e., the spatial coverage for S is the
coverage of S’s known neighbor set. This strategy performs
best in a situation where the partial known neighbor set is
uniformly distributed in the complete neighbor set.

Consequently, the denominator (t − t0)× |n
(S,S)
t0 | in the

last term of Eq. 3 is the temporal-spatial coverage should be
provided for S to discover all its neighbors becoming active
from slot t0 to t; whereas the numerator (|m(i,i)

t0→t |−|m
(i,S)
t0→t |)×

|n(i,S)t0 | is the temporal-spatial coverage that a known neigh-
bor i can provide for S. Therefore, the fraction represents
among the total temporal-spatial coverage of S, how much
coverage can be provided by i who becomes active in slot t.
This is the physical meaning of slot gains.

For example, with the schedule in Figure 4 and the neigh-
bor table in Figure 5, assuming that t0 is slot 1, S can calcu-
late slot 6’s slot gain as follows.

γ
(S)
1→6 = α

(A,S)
1→6 β

(A,S)
1 +α

(B,S)
1→6 β

(B,S)
1 +α

(C,S)
1→6 β

(C,S)
1 =

0
5

2
3
+

1
5

3
3
+

2
5

2
3
=

7
15
(4)

5.3 Online Activation Scheduling
In this subsection, we present our online scheduling algo-

rithm, given an fixed duty cycle budget B and all slot gains. It
outputs a slot sequence for additional activations and updates
this sequence consistently based on the latest yet incomplete
neighbor table. Then we analyze the online scheduling algo-
rithm by comparing it to its optimal Oracle version.
5.3.1 Scheduling Algorithm

A device S can decide an additional active slot sequence
AS which includes several additional active slots, according
to three inputs as follows.

(1) Additional Energy Budget B: Given B in terms of
additional duty cycle, e.g., 2

11 beyond what has already been
consumed by an underlying discovery scheme, S can perform
discovery in some additional slots. B = 2

11 indicates that on
average every 11 slots, S can additionally become active in 2
slots besides the original active slots.

(2) Neighbor Table n(S,S)t0 in Current Slot t0: After every

active slot, n(S,S)t0 will be updated based on latest neighbor in-
formation collected during this active slot. With this updated
n(S,S)t0 , S continues to decide upon following additional active
slots based on the updated slot gains we defined in Eq. 3.

(3) Next Original Active Slot tN: Taking tN into consid-
eration is because S should not select additional active slots
after tN . This is because all slot gains may be changed after
tN , since S’s neighbor table may be changed after an active
slot. Therefore, selecting additional active slots after tN will
lead to a sub-optimal selection.

The above three inputs provide necessary information for
S to decide AS with Algorithm 1 after every active slot.

Algorithm 1 Acc Activation Scheduling

Require: (1) B; (2) n(S,S)t0 ; (3) tN ;
Ensure: Additional active slot sequence AS;

1: Calculating the number, denoted as K, of additional ac-
tive slots that S can have before tN , based on B;

2: Updating the slot gains for all remaining slots before tN ,
based on n(S,S)t0 and Eq. 3;

3: Selecting Top-K slots from all remaining slots before tN
to update AS as the additional active slots combined with
original active slots;

2nd Cycle

Original 

Active Slots

Inactive 

Slots

1st Cycle

Additional 

Active Slots

1 2 3 4 5 6 7 8 9 100

11 12 13 14 15 16 17 18 19 20 21

Current 

Slot

2nd Cycle

1st Cycle 0

11

Selection of 1 

extra active 

slot in Slot 3

1 2 3 4 5 6 7 8 9 10

12 13 14 15 16 17 18 19 20 21

Selection of 2 

extra active 

slot in Slot 1

Figure 6. Example of Activation Scheduling

Figure 6 gives an example of this algorithm. Suppose that
t0 = 1, original duty cycle is 1

11 and B is 2
11 , which means

in every 11 slots S can activate approximately 2 addition-
al active slots. Suppose that slots 3 and 10 have the top-2
largest gains among all slots before tN = slot 11. Therefore,
in the first round, S selects slot 3 and 10, and puts them into
AS. After the activation in slot 3, S updates the slot gains of
remaining slots via n(S,S)3 . Suppose that now slot 6 has the
largest slot gain, instead of slot 10, so in the second round, S
would select slot 6 as the last additional slot to update AS.
5.3.2 Competitive Analysis of Scheduling Algorithm

We analyze the performance of our online scheduling al-
gorithm by comparing it to its optimal Oracle version. In
our online scheduling, S’s incomplete neighbor table in slot
t0, n(S,S)t0 , is processed piece-by-piece in a serial fashion to
decide AS, because it is consistently updated, whereas the
Oracle version will have the complete neighbor table N(S,S),
not n(S,S)t0 , to decide AS. In the appendix, we prove that our
online scheduling is competitive by showing that the perfor-
mance ratio between it and its Oracle version, denoted as ρ,
is bounded by a parameter R, which is the size ratio between
n(S,S)t0 and N(S,S). The rationale behind this analysis is that our
online scheduling performance is proportional to the size of
n(S,S)t0 . For example, if R = 1, then our online algorithm is
as effective as its Oracle version, since R = 1 indicates that
n(S,S)t0 = N(S,S).
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Figure 7. Disco CDF
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Figure 8. WiFlock CDF
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Figure 9. Disco Distribution

Figure 10. Testbed Setup
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Figure 11. Compared Schemes

6 Testbed Evaluation
To evaluate Acc in a real world setting, we integrate Acc

with two state-of-the-art discovery protocols: Disco [5] and
WiFlock [20]. We implement the above two schemes em-
ploying 11 TelosB sensor devices with a 10 KB RAM size
on the TinyOS/Mote platform . During the testbed experi-
ments, we deploy 10 TelosB sensor devices in a one-hop grid
network and utilize a mobile toy car attached with another
TelosB as a discovering device, with a mobility pattern of
circling around the grid. The testbed is shown in Figure 10.

At individual devices, we set the time slot length to be
25ms for two reasons. (1) For direct discovery, a smaller slot
will lead to a faster discovery, but a too-small slot (< 5ms)
will lead to the jitters introduced by the TinyOS timer li-
brary [5]. (2) For indirect discovery, a bigger slot will re-
duce collisions of messages and enable more exchanges of
neighbor tables. Based on the above two reasons, we make
a tradeoff about time slot length on 25ms. Note that Wi-
Flock was implemented on modified hardware to support an
extremely small time slot 80µs [20], but in our paper we im-
plement WiFlock only on a standard hardware to examine
the principle of its collaborative beaconing mechanism.

The additional duty cycle budget B for the acceleration is
set to be 5%, the same as the original duty cycle of 5% at
every device. The 5% duty cycle is extensively studied in
Disco [5].

To evaluate the effectiveness of the slot gains we pro-
posed, we also implemented a Baseline design. This design
shares the same scheduling scheme as Acc, but it uses the
number of active devices in a slot t as the slot gain, not con-
sidering any temporal diversity or spatial similarity. So, we
implement three versions as shown in Figure 11. In all three
versions, the original duty cycle is controlled by Disco, and
the additional duty cycle is controlled by their own schemes.

Similar versions are implemented for WiFlock.
We evaluate the above schemes by three metrics: (1) the

percentage of discoveries with respect to cumulative discov-
ery time, (2) the number of discovered devices in different
time intervals, and (3) average discovery latency in differen-
t duty cycles. The first two metrics are to verify the effect
of Acc’s assistance to existing schemes in the acceleration of
discovery process. The third metric is to verify the effect of
different duty cycles on the average discovery latency.

In an experiment, after every 40 slots, i.e., about 1s, the
discovering device logs the number of neighbors it discov-
ered so far. All experiments are repeated 20 times and the
average results are reported.

6.1 Effectiveness in Acceleration of Discovery
Figure 7 plots the acceleration effect of Disco. In Fig-

ure 7, we observe that the curve of Acc-Disco is the above all
other curves in every percentage of discoveries. For exam-
ple, to discover 80% of neighbor devices, Acc-Disco, Base-
Disco, and Disco spend around 13s, 22s, and 27s, respec-
tively. Acc-Disco finishes the discovery process faster than
Disco by 51.8%, while both consume the same energy. This
is because Disco does not consider using known neighbors to
discover unknown neighbors, which leads to a longer discov-
ery process in which a device has to find its neighbors one
by one. In addition, we observe that Base-Disco outperforms
the original scheme by a maximum of 18.9% when discover-
ing more than 99% of neighbors on average. This is because
Base-Disco selects active slots with more known neighbors
becoming active, which proves the value of taking the known
neighbors into consideration. But we also observe that Ac-
c-Disco still outperforms Base-Disco by nearly 36.6% when
discovering more than 99% of neighbors. This suggests that
when selecting additional active slots, considering only the
quantity, not the quality, of devices becoming active in slots
is not enough to significantly accelerate discovery. This can
also be shown by the fact that Base-Disco discovers half of
devices’ neighbors by 8s, but finishes the whole discovery
process at 32s. The above results indicate that Acc-Disco
exhibits a significant acceleration, when compared to other
versions.

In Figure 8, we observe the similar results as in Figure 7.
Among the three versions, Acc-WiFlock achieves the high-
est performance in the percentage of discovered devices in
the most instances of the discovery process. But we also ob-
serve that the performance gain between Acc-WiFlock and
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Figure 12. WiFlock Distribution
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Figure 13. Disco Latency
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Figure 14. WiFlock Latency

other versions of WiFlock is less than that between Acc-
Disco and other versions of Disco. This is because in the col-
laborative beaconing mechanism of WiFlock, WiFlock has
already taken neighbor tables into consideration. Different
than Acc-WiFlock and Base-WiFlock, however, the neighbor
tables in WiFlock are intended to maintain the membership
of a device group to achieve synchronized listening. In Fig-
ure 8, we observe that Base-WiFlock outperforms WiFlock
as well. This demonstrates the effectiveness of considering
known neighbors for unknown neighbor discovery. But the
fact that Acc-WiFlock outperforms Base-WiFlock indicates
that considering temporal-spatial coverage, instead of only
the number of neighbors, will achieve further improvemen-
t. This is because by simply measuring the slot gain as the
number of active neighbors, Base-WiFlock can increase per-
formance in a certain level but cannot make a device become
active at the most effective slots, as Acc-WiFlock does.

Figures 9 and 12 plot the number of neighbors discov-
ered in every 8s time window under the versions of Disco
and WiFlock. These two figures provide the distribution of
discovered neighbor numbers in different phases of the dis-
covery process. From Figures 9 and 12, we observe that both
Acc-Disco and Acc-WiFlock discover the largest number of
neighbor devices during the first 8s. In contrast, the oth-
er versions discover relatively uniform numbers of devices
over time. The reason for Disco’s uniform discoveries is
obvious, since Disco performs a pair-wise discovery where
discovering more neighbors is not helpful for the discovery
of the next neighbor. But WiFlock does indeed consider a
group-based strategy. One explanation for WiFlock’s unifor-
m discoveries is that WiFlock’s synchronized listening and
one-way discovery mechanism are efficient only for an ex-
isting group of devices to discover a new device, not for a
new device to discover all its neighbors.

From the above four figures, we can conclude that when
an additional energy budget is given for an acceleration of the
discovery process, considering the number of devices active
in a slot (Baseline) can assist current discovery schemes by a
certain level, but there still is room to improve. By taking d-
ifferent qualities of known neighbors into consideration, i.e.,
the temporal diversity or spatial similarity of neighbors, Acc
can further accelerate the discovery process.

6.2 Impact of Duty Cycle
Figures 13 and 14 plot the impact of two different origi-

nal duty cycles on average discovery latencies in both Disco

and WiFlock. The average discovery latency is defined as the
time a device takes to discover all its neighbors divided by
the number of its neighbors. In these two sets of experiments,
we observe that the versions with Acc outperform the ver-
sions with Baseline and original schemes by a maximum of
42.1% and 53.8%, respectively. We also observe that the per-
formance gain between the Acc assisted versions and original
versions increases as the duty cycle increases. In Disco, this
gain increases from 47.7% to 53.8%, while in WiFlock it in-
creases from 39% to 47.3%. This indicates that as devices
become active more frequently, a discovering device can ob-
tain more information from its known neighbors by consider-
ing the temporal diversity or spatial similarity of neighbors.
Again, the performance gain between the Acc-assisted ver-
sion and the original version in WiFlock is smaller than that
in Disco, which is also because of WiFlock’s collaboration
beaconing scheme. We observe different trends in the perfor-
mance gain between Acc- and Baseline-assisted versions in
different protocols. The gain between Acc-Disco and Base-
Disco decreases from 42.1% to 37.9%, while that between
Acc-WiFlock and Base-WiFlock increases from 29.4% to
33.3%. This indicates that the slot gains utilized by Base-
line and Acc have different effects in different protocols. It
also shows that the performance gain between Acc-WiFlock
and Base-WiFlock, i.e., 29.4%, is smaller than the gain in
Disco related comparisons, i.e., 42.1%. This result is consis-
tent with the observation that the performance gain between
the Acc-assisted version and the original version in WiFlock,
i.e., 39%, is smaller than that in Disco, i.e., 47.7%.

From Figures 13 and 14, we conclude that when devices
become more active, Acc can more effectively assist the dis-
covering device to accelerate the discovery process by lever-
aging the known neighbors to discover unknown neighbors.

7 Simulation Evaluation
To evaluate the performance of Acc serving as an accel-

erating middleware to support different protocols in larger-
scale networks, we simulate Acc with three discovery proto-
cols, Disco [5], U-Connect [10] and WiFlock [20]. In our
simulation, 100 mobile devices are uniformly deployed in a
square area of 200m×200m. The transmission ranges of de-
vices are set from 20m to 110m, which lead to average device
densities from 3.6 to 55.36. We use a random waypoint mod-
el as a mobility model [1], with an average velocity 1m/s.

Note that in a mobile multi-hop network, neighboring re-
lations are consistently changing, and it is extremely costly
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Figure 15. Disco CDF
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Figure 16. U-Connect CDF
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Figure 17. WiFlock CDF
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Figure 18. Disco Latency
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Figure 19. U-Connect Latency
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Figure 20. WiFlock Latency

in terms of energy to keep the neighbor table up to date, i.e.,
immediately discover a node when it is in one device’s com-
munication range. In the evaluation, we define a neighbor
of a device A as a node who was continuously in the com-
munication range of A at least a time period p, which is the
discovery latency bound of a underlying neighbor discovery
scheme. That is, a neighbor will be discovered by Acc in
advance or by a underlying scheme eventually.

7.1 Effectiveness in Acceleration of Discovery
In Figure 15, we plot the percentages of discoveries in

terms of cumulative discovery time. From Figure 15, we ob-
serve that with the increase of cumulative discovery time,
the percentage of discoveries also increases for all versions
of Disco. Nevertheless, Acc-Disco is able to discover neigh-
bors faster than other versions under the same duty cycle. For
example, to discover more than 99% of neighbors, it takes
Acc-Disco, Base-Disco, and Disco around 1000, 1600, and
1700 slots, respectively. If each slot is about 10ms, then Acc-
Disco takes a device about 10s to discover more than 99% of
neighbors. These results show a nearly 41.1% performance
gain between Acc-Disco and Disco, which proves the val-
ue of taking known neighbors into consideration to discover
unknown neighbors. Via a 37.5% performance gain between
Acc-Disco and Base-Disco, we can verify the effectiveness
of temporal diversity and spatial similarity as a slot gain.

Similarly, in Figures 16 and 17, we plot the same sets of
curves for U-Connect and WiFlock. We also observe similar
performance trends as in Figure 15. For example, in Fig-
ure 16, to discover more than 99% of neighbors, the cumu-
lative discovery time for Acc-U-Connect, Base-U-Connect,
and U-Connect is around 850, 1300, and 1500 slots, respec-
tively. In Figure 17, we still observe that a performance

gain between Acc-WiFlock and other versions of WiFlock,
although the performance gain of Acc in WiFlock is small-
er than those in Disco and U-Connect. This is also because
in WiFlock’s collaboration beaconing scheme, WiFlock al-
ready employs the neighbor table to log the neighbors infor-
mation (e.g., waking up slots, duty cycle patterns, etc) for
further group maintenance.

From results in Figures 15, 16, and 17, we suggest that
Acc can serve as an accelerating middleware for various
schemes to accelerate the discovery process.

7.2 Impact of Duty Cycle
In this subsection, we investigate the impact of a device’s

original duty cycle on the average discovery latency in Fig-
ures 18, 19, and 20. We observe that with the increase of
the duty cycle, the average latencies of all versions for al-
l schemes decrease. But at each duty cycle, the versions
with Acc in all three different schemes achieve the small-
est latency. For example, when the duty cycle is set to 5%,
the average discovery latencies for Acc-Disco, Base-Disco,
and Disco are around 140, 200, and 380 slots, respectively.
Thus, in Disco with Acc’s assistance, the average latency to
discover one neighbor drops from 3.8s to 1.4s (at 10ms s-
lot), a difference of 63.1%. From Figures 18, 19, and 20,
we also observe that in general, as the duty cycle increases,
the performance gain between versions with Acc and origi-
nal versions increases. For example, in Figure 18, at 1% duty
cycle, the performance gain between Acc-Disco and Disco is
50.1%, while it increases to 63.1% when the duty cycle is
5%. This is because with a higher duty cycle, the devices in
the network become active more frequently, leading to more
neighborhood information sharing.
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Figure 21. Disco Latency
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Figure 22. U-Connect Latency

0 1 0 2 0 3 0 4 0 5 0 6 00
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0

Av
era

ge 
Dis

cov
ery

 La
ten

cy 
(Sl

ots
)

 D e v i c e  D e n s i t y

 W i F l o c k
 B a s e - W i F l o c k
 A c c - W i F l o c k

Figure 23. WiFlock Latency

7.3 Impact of Device Density
The impact of device density on the average discovery la-

tency is shown in Figures 21, 22, and 23. From all three
figures, we can see that as the device density increases, the
average discovery latency increases for all schemes. This
is because at higher densities, the devices have more neigh-
bors, leading to more collisions and thus more time to find
them. When the average number of neighbors increases from
3.6 to 55.36, the performance gain between original versions
and the versions assisted with Acc also increases from 22.3%
to 52.4% in Disco. This is because more known neighbor
devices are able to share neighborhood information with dis-
covering devices, thus accelerating the neighbor discovery
process. Note that even though the a bigger network density
can increase the collision among devices, a bigger network
density also achieves a more diverse neighborhood informa-
tion sharing among already known devices.

8 Crowd-Alert Application
In this section, we propose and evaluate a Crowd-Alert

application with which taxi drivers can quickly navigate op-
timal directions to travel to maximize the possibility of pick-
ing up passengers, after they drop off passengers, i.e., a faster
neighbor discovery is demanded.

A trivial solution to this problem is to install a central-
ized system that collects the location and occupancy of the
taxis and suggests areas of lesser competition, i.e., fewer oth-
er taxis, and more passengers. But such a system requires
that each taxi is equipped with cellular data connectivity (the
current centralized solution with time bounds can be provid-
ed only by a cellular data channel), which can be a potential
hindrance in terms of cost. We are thus faced with the chal-
lenge of obtaining passenger demand without the use of a
centralized solution in a timely fashion, i.e., no extra hard-
ware installation on the taxis. We envision that individual
taxi owners are equipped with smart phones that can com-
municate with each other using a peer-to-peer communica-
tion interface, e.g., ad hoc WiFi, or ad hoc WiMax, and can
install an application on their mobile devices that can obtain
the crowd levels, both in terms of number of taxis and num-
ber of passengers in a given area. Taxi drivers who install
this application can form groups of common interest to op-
timize their profits. Individual drivers using this application
can quickly navigate to areas with a low density of taxis (and
presumably a high passenger density) to maximize pickups
(and thus profits).

Our proposed protocol, Acc, provides a mechanism for
distributed discovery of neighbors in an accelerated manner,
which we will adapt to the application installed on the taxi
driver’s mobile device. We will describe our application in
further detail and evaluate the efficiency of this scheme in
discovering neighbors in a timely fashion.

8.1 Application Background
In our application, every taxi broadcasts its own status

record (i.e., date and time, availability, direction, GPS coor-
dinates, etc) to its neighboring taxis. The broadcast is per-
formed based on a concrete discovery scheme, e.g., Disco.
According to the information collected, when a taxi becomes
available and the driver wants to quickly pick up a passenger
(i.e., an on-demand acceleration is required), the taxi driver
can navigate to the optimal directions, as determined by the
number of nearby competing taxis and nearby potential pas-
sengers. These two strategies can maximize the probability
of picking up the next nearby passengers.

Generally, the fewer competing taxis, the higher the prob-
ability of picking up passengers. With distributedly collected
status records about neighboring taxis, our Crowd-Alert can
compute the location distribution of other competing taxis
that also aim to pick up new passengers.

Similarly, the more potential passengers, the higher the
probability of picking up. Without the active participation
of passengers, however, it is unrealistic to expect to obtain
such a distribution based on taxi status records alone. But
we can obtain a cumulative location distribution of passen-
gers that have just entered or exited taxis, i.e., served passen-
gers, by observing the change of the Availability Bit (from 0
to 1 or from 1 to 0) in two consecutive status records about
the same taxi. Further, we assume that a location distribu-
tion of served passengers is an indication of that of potential
passengers, but how to effectively obtain a distribution based
on the indication is outside the scope of this paper. To focus
on system level, we simply utilize the location distribution
of served passengers as that of potential passengers.

Based on the distributions of competing taxis and served
passengers, Crowd-Alert can maximize the possibility of
picking up passengers by guiding a taxi to a direction
with fewer competing taxis or more served passengers. A
faster discovery achieved by our Acc can assist a navigating
scheme to make a timely decision.



11

0 2 4 6 8 1 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Pe
rce

nta
ge 

of 
Dis

cov
eri

es 
(%

)

C u m u l a t i v e  D i s c o v e r y  T i m e  ( m i n s )

 D i s c o
 A c c - D i s c o

 

Figure 24. Disco Latency
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Figure 25. U-Connect Latency
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Figure 26. WiFlock Latency

8.2 Application Evaluation
We evaluate the Crowd-Alert application using a real

world dataset of 10GB, collected from taxis in a large city.
8.2.1 Dataset

The dataset consists of 7 days of GPS traces from more
than 15,000 taxis. The data is used by the government for ur-
ban transportation pattern search. Each taxi uploads records
on an average of every 30 seconds, with each record con-
sisting of the following parameters: (1) Plate Number; (2)
Date and Time; (3) GPS Coordinates; and (4) Availability:
whether or not a passenger is in this taxi when the record is
uploaded. Based on the above GPS trace records, we can
obtain an location distribution of competing taxis or served
passengers, as shown in Figures 27 and 28.
8.2.2 Reduction of Discovery Latency

Before we investigate the effects of Acc’s accelerations on
the navigation of taxis, we first perform a trace-driven sim-
ulation on the dataset to verify how Acc accelerates neigh-
bor discovery in this taxi network. With a total duty cycle
4
30 (equal to the uploading speed of GPS record), we com-
pare three schemes Disco, U-connect, and WiFlock with and
without the assistance of Acc.

From Figure 24, we observe that Acc-Disco is able to dis-
cover neighboring taxis faster than Disco under the same du-
ty cycle. For example, to discover all neighboring taxis, it
takes Acc-Disco and Disco around 7 minutes and 9 minutes,
respectively. These results show a 22% performance gain
between Acc-Disco and Disco. We also observe that the per-
formance gain achieves the maximum in the first half of the
discovery process where a taxi can detect more than half of
its neighboring taxis within 2 minutes. This suggests that
Acc can enable Acc-Disco to quickly find the most neighbor
taxis in a very short period of time, which can assist a driver
to more quickly drive to the optimal directions. Similarly,
in Figures 25 and 26, we plot the same sets of curves for
U-Connect and WiFlock. In both Figures 25 and 26, we al-
so observe similar performance trends between Acc-assisted
versions and original versions. For example, in Figure 25, to
discover all neighboring taxis, the cumulative discovery time
for U-Connect and Acc-U-Connect is around 6 minutes and
8 minutes, respectively, achieving a 25% performance gain.
In Figure 26, we still observe a performance gain between
Acc-WiFlock and WiFlock.

From results in Figures 24, 25, and 26, we conclude that
Acc can accelerate various discovery schemes in this taxi net-

Figure 27. Distribution of Competing Taxis. Above fig-
ure shows a taxis distribution of an area about 1 square k-
ilometer (GPS Coordinates XXX .538-XXX .547× XXX .108-
XXX .117) based on a 10s uploading time window in a rush
hour of one day, i.e., 5PM. Red points indicate the taxis with
passengers, while blue points indicate the taxis without pas-
sengers.

Figure 28. Distribution of Served Passengers. Above figure
shows a served passenger distribution in the same area as
in Figure 27 in a two hours uploading time window in one
day, i.e., from 4PM to 6PM. Red points indicate the loca-
tions of passengers entering taxis, and blue points indicate
the locations of passengers exiting taxis.



12

0 2 4 6 8 1 0 1 26 0 0

6 5 0

7 0 0

7 5 0

8 0 0

8 5 0

9 0 0

De
nsi

ty 
of 

Co
mp

eti
ng

 Ta
xis

 

C u m u l a t i v e  D r i v i n g  T i m e  ( M i n u t e s )

 G r o u n  T r u t h
 N a v i a g t i n g  w i t h  D i s c o
 N a v i a g t i n g  w i t h  A c c - D i s c o
 N a v i a g t i n g  w i t h  O r a c l e

 

Figure 29. Density in One Smart Taxi
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Figure 30. Density in 10% Smart Taxis
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Figure 31. Density of Passengers

work, and may serve as an augmenting layer to accelerate
discovery to quickly navigate taxis to optimal directions.

8.2.3 Acceleration of Navigation
In this section, we evaluate the performance of Acc in ac-

celerating the navigation for taxis in Crowd-Alert. With a to-
tal duty cycle 4

30 , we compare 3 navigating results based on
different discovery results of discovery schemes. (1) Nav-
igating with Disco; (2) Navigating with Acc-Disco; (3)
Navigating with Oracle: navigating taxis with discovery re-
sults of an Oracle discovery scheme where a taxi can instant-
ly knows these two distributions without delay. Under all
navigation, a taxi has the same preferable directions for few-
er competing taxis or more served passengers. But since the
employed discovery schemes are different, a navigation with
a faster discovery scheme may achieve better performance.
The performance is characterized by two metrics: competing
taxis density and served passengers density of taxis’ neigh-
borhoods. A faster discovery may assist a navigation scheme
to quickly navigating taxis to the area with fewer competing
taxis or more served passengers.

To show the difference with or without our application,
we also compare the above 3 schemes with Ground Truth
without Navigation, where the density is computed based
on original taxi traces without altering the routes of any taxis.
Note that given the density of competing taxis or served pas-
sengers, how to select the optimal route to achieve the op-
timal density is outside the scope of this paper. We simply
let taxis greedily select 1 out of 4 directions in an intersec-
tion according to densities in every direction and then com-
pute densities of competing taxis or served passengers in its
neighborhood every minute. We compare the performance
of Acc under two conditions, only one smart taxi using navi-
gation strategies and 10% of total taxis using them.

(a) Density of Competing Taxis
We investigate the densities of competing taxis in three

different navigating strategies, and compare them to Ground
Truth. We report the results of navigating only one taxi or
10% of total taxis to select a direction with a lower density
of competing taxis, using a 3km communication radius, in
Figure 29 and Figure 30, respectively. We assume that the
mobile device is equipped with a radio (such as WiMax) that
has a large communication radius. Recent phones such as
the HTC Max 4G and the Sprint EVO 4G are equipped with
WiMax interfaces. A smaller communication radius (e.g.,
100m in a WiFi interface) does not allow our system to fully

exploit the quick discovery scheme in a taxi network. This
is because an 100m communication radius is too small for
vehicular networks where the length of a taxi is about 5m or
6m. Therefore, a navigation based on such small communi-
cation radius will lead to an extremely low density of taxis,
and may not have any obvious performance difference under
various discovery schemes.

Only one smart taxi: In Figure 29, we observe that as
more driving time is allowed, there exists a jitter in the den-
sity of competing taxis of Ground Truth, which has no ten-
dency toward consistent increase or decrease, while those of
Disco, Acc-Disco and Oracle decrease. This is because the
taxis with Disco, Acc-Disco, and Oracle navigate to a direc-
tion with fewer competing taxis, so after 3 minutes the den-
sity of competing taxis in its neighborhood drops. Compared
to Ground Truth, after 12 minutes, under Disco the density
decreases about 14%, while under Acc-Disco the density de-
creases about 20%, whereas Oracle outperforms Disco and
Acc-Disco in all the cumulative driving times with a maximal
performance gain of 7.5% and 12.6%, respectively. From the
above results, Oracle does not significantly outperform Dis-
co and Acc-Disco. One possible reason for this phenomenon
is that the beginning time and location for this one smart taxi
is rush hour in a downtown area. Therefore, even though Or-
acle provides the local optimal direction to reduce the density
of competing taxis, the effect is limited.

10% smart taxis: Figure 30 plots results of 10% of total
taxis using our application. We observe that compared to the
results in Figure 29, all strategies have better performance,
except for Ground Truth, which remains the same. The rea-
son for the performance increase for this 10% smart taxis
scenario is that the more taxis that use our applications, the
more taxis that will select the direction with lower taxi den-
sity, which in turn will achieve a more uniform taxis distribu-
tion. Comparing Figure 29 to Figure 30, we note that the per-
formance gain between navigating with Acc-Disco and Disco
increases from 6.8% to 10.1%, indicating that Acc-Disco is
more efficient when more taxis use our application.

(b) Density of Served Passengers
We show the effectiveness of Acc to assist navigating

scheme to navigate taxis to a direction with more served pas-
sengers in Figure 31. Since the percentage of taxis using our
application is not directly relevant to the density of already
served passengers, we only show the results on the 10% of
smart taxis scenario. As in Figure 27 and 28, the density
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of served passengers is denser than densities of competing
taxis, so we use a 0.5km radius to compute the density.

Figure 31 plots comparisons of cumulative densities of
served passengers. We observe that with an increase in cu-
mulative driving time, the cumulative density of served pas-
sengers in a taxi’s neighborhood also generally increases for
all the schemes. The reason for the increases in navigation
under Disco, Acc-Disco or Oracle is obvious, because that
is the objective of our application. But the reason for the
increase for Ground Truth is not so obvious. A possible ex-
planation is that taxi drivers have rich experiences that help
them select the area to maximize the probability of picking
up, and that the location of already served passengers offer-
s a strong indication to the location of potential passenger-
s. Therefore, even without our application, experienced taxi
drivers will still go to the area with more served passenger-
s. But compared with Ground Truth, Disco can assist the
taxi drivers in finding the optimal direction more quickly via
discovery. Therefore, there is a performance gain between
Disco and Ground Truth with a maximum of 14.3% after 36
minutes. In contrast, the navigation with Acc-Disco is able to
discover neighbors even faster than that with Disco. For ex-
ample, it outperforms those under Ground Truth and Disco
with maximal gains of 25.6% and 13.2%, respectively, but
has a worse performance than Oracle. Therefore, we con-
clude that with Acc-Disco, a navigation scheme can more
quickly guide the taxi to a direction with a high density of
served passengers.

9 Conclusion
In this paper, we introduce Acc, an augmenting layer for

the acceleration of neighbor discovery in existing discov-
ery schemes. The key insight into accelerating the discov-
ery process is that known neighbors can help a device learn
unknown neighbors indirectly. Thus, based on a characteri-
zation of active slots and an online scheduling algorithm that
we proposed, Acc enables a discovering device to become
active during a few optimal additional slots beyond their o-
riginal schedules, leveraging both direct and indirect discov-
ery. We have integrated our Acc design with three protocol-
s, and extensively evaluated its performance in both small-
scale testbed experiments and large-scale simulations. The
evaluation results show that Acc is able to effectively accel-
erate the discovery process of 3 different discovery schemes
by a maximum of 51.8%. To demonstrate the applications of
Acc in the real world, we propose and evaluate a Crowd Alert
application with a 10 GB dataset about taxi GPS traces.

10 Acknowledgements
This research was supported in part by the US Na-

tional Science Foundation (NSF) grants CNS-0845994,
CNS-0917097, IBM OCR Fund, K. C. Wong Education
Foundation of Hong Kong and Singapore-MIT IDC ID-
D61000102a.

11 References
[1] D. N. Alparslan and K. Sohraby. Two-dimensional modeling and anal-

ysis of generalized random mobility models for wireless ad hoc net-
works. IEEE/ACM Trans. Netw., 2007.

[2] J. Biagioni, T. Gerlich, T. Merrifield, and J. Eriksson. Easytracker:
automatic transit tracking, mapping, and arrival time prediction using
smartphones. In SenSys ’11, 2011.

[3] R. Borodin, A.; El-Yaniv. Online computation and competitive analy-
sis. Cambridge University Press, 1998.

[4] P. Dutta, P. M. Aoki, N. Kumar, A. Mainwaring, C. Myers, W. Willett,
and A. Woodruff. Common sense: participatory urban sensing using
a network of handheld air quality monitors. In SenSys ’09, 2009.

[5] P. Dutta and D. Culler. Practical asynchronous neighbor discovery and
rendezvous for mobile sensing applications. In SenSys ’08, 2008.

[6] P. Dutta and L. Subramanian. Human-enabled microscopic environ-
mental mobile sensing and feedback. In AI-D’10, 2010.

[7] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn,
and A. T.Campbell. The bikenet mobile sensing system for cyclist
experience mapping. In Sensys’07, 2007.

[8] R. K. Ganti, F. Ye, and H. Lei. Mobile crowdsensing: current state
and future challenges. IEEE Communications Magazine, 49(11):32–
39, 2011.

[9] J.-H. Huang, S. Amjad, and S. Mishra. Cenwits: a sensor-based loose-
ly coupled search and rescue system using witnesses. In Proceedings
of the 3rd international conference on Embedded networked sensor
systems, 2005.

[10] A. Kandhalu, K. Lakshmanan, and R. R. Rajkumar. U-connect: a low-
latency energy-efficient asynchronous neighbor discovery protocol. In
IPSN’10, 2010.

[11] S. Lai, B. Ravindran, and H. Cho. Heterogenous quorum-based wake-
up scheduling in wireless sensor networks. Computers, IEEE Trans-
actions, 2010.

[12] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T.
Campbell. A survey of mobile phone sensing. Comm. Mag., 2010.

[13] H. Liu, J. Li, Z. Xie, S. Lin, K. Whitehouse, J. A. Stankovic, and
D. Siu. Automatic and robust breadcrumb system deployment for in-
door firefighter applications. In MobiSys, 2010.

[14] T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi. Implementing soft-
ware on resource-constrained mobile sensors: experiences with im-
pala and zebranet. In Proceedings of the 2nd international conference
on Mobile systems, applications, and services, MobiSys ’04, 2004.

[15] M. J. McGlynn and S. A. Borbash. Birthday protocols for low en-
ergy deployment and flexible neighbor discovery in ad hoc wireless
networks. In MobiHoc’01, 2001.

[16] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi,
S. B. Eisenman, X. Zheng, and A. T. Campbell. Sensing meets mobile
social networks: The design, implementation and evaluation of the
cenceme application. In SenSys’08, 2008.

[17] E. Miluzzo, M. Papandrea, N. D. Lane, A. M. Sarroff, S. Giordano,
and A. T. Campbell. Tapping into the vibe of the city using vibn, a
continuous sensing application for smartphones. In SCI ’11, 2011.

[18] M. Mitzenmacher and U. Upfal. Probabilitty and computing. 2007.
[19] H. L. I. Niven and H. S. Zuckerman. An introduction to the theory of

numbers. In John Wiley and Sons, 1991.
[20] A. Purohit, N. Priyantha, and J. Liu. Wiflock: Collaborative group

discovery and maintenance in mobile sensor networks. In IPSN’11,
2011.

[21] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson. Cooperative
transit tracking using smart-phones. In SenSys ’10, 2010.

[22] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh. Power-saving protocols
for ieee 802.11-based multi-hop ad hoc networks. In INFOCOM’02,
2002.

[23] Wikipedia. Location based game.
http://en.wikipedia.org/wiki/Location-based game.

[24] T. Yan, V. Kumar, and D. Ganesan. Crowdsearch: exploiting crowds
for accurate real-time image search on mobile phones. In MobiSys
’10, 2010.

[25] T. Yan, M. Marzilli, R. Holmes, D. Ganesan, and M. Corner. mcrowd:
a platform for mobile crowdsourcing. In SenSys ’09, 2009.

[26] R. Zheng, J. C. Hou, and L. Sha. Asynchronous wakeup for ad hoc
networks. In MobiHoc’03, 2003.



14

A Proof of Competitive Ratio
We analyze the performance of our scheduling by com-

paring it to its Oracle version having a complete neighbor
table N(S,S). In our scheduling, a device S’s neighbor table of
in slot t0, denoted as n(S,S)t0 , is processed piece-by-piece. This
is a classic nature of online algorithm [3], which processes it-
s incomplete input piece-by-piece from the start. Because of
this incomplete input, an online algorithm is forced to make
sub-optimal decisions [3]. To study this sub-optimality, a
competitive analysis is proposed to compare the relative per-
formance of an online algorithm to its Oracle version that
has a complete input. An online algorithm is competitive if
its competitive ratio ρ, an performance ratio between it and
its Oracle version, is bounded. To obtain ρ, we utilize qual-
ities of selected active slots to represent algorithms’ perfor-
mances, indicating how much new neighbor information can
be collected in these slots. The qualities of these slots can
be represented by slot gains. Therefore, we can analyze ρ,
by comparing the slot gains under our online scheduling and
its Oracle version, employing different neighbor tables. In
the following, we prove that ρ is bounded by a parameter R,
which is the size ratio between n(S,S)t0 and N(S,S).

Assumptions are as follows. (1) In slot t0, a device S has
already discovered a portion of its neighbors in n(S,S)t0 . (2)

A parameter R =
|n(S,S)t0

|
|N(S,S)| < 1 is given, which is the ratio be-

tween the number of neighbors in n(S,S)t0 and N(S,S). (3) All
the discovered neighbors are uniformly distributed in N(S,S).
(4) To minimize the effect of duty cycles, duty cycle pattern
for different devices are the same.

Via Eq. 3 and assumption (1), ρ is given by

1
ρ
=

γ
(S)
t0→t(Oracle)

γ
(S)
t0→t(Online)

=
∑i∈N(S,S) α

(i,S)
t0→tβ

(i,S)
t0

∑ j∈n(S,S)t0
α
( j,S)
t0→t β̄

( j,S)
t0

, (5)

where α
(i,S)
t0→t and α

( j,S)
t0→t is temporal diversity for device i ∈

N(S,S) and j ∈ n(S,S)t0 , respectively; β
(i,S)
t0 and β̄

( j,S)
t0 is spatial

similarity for device i ∈ N(S,S) and j ∈ n(S,S)t0 , respectively.
Eq. 5 can be reorganized as follows.

1
ρ
=

∑ j∈n(S,S)t0
α
( j,S)
t0→tβ

( j,S)
t0

∑ j∈n(S,S)t0
α
( j,S)
t0→t β̄

( j,S)
t0

+

∑
i∈n(S,S)t0

α
(i,S)
t0→tβ

(i,S)
t0

∑ j∈n(S,S)t0
α
( j,S)
t0→t β̄

( j,S)
t0

. (6)

where n(S,S)t0 is the complement of n(S,S)t0 , given N(S,S).
The following is to analyze the first term in Eq. 6. Ac-

cording to Eq. 2 and assumption (2), we have

β
( j,S)
t0

β̄
( j,S)
t0

=
|N( j,S)

t0 |/|N(S,S)
t0 |

|n( j,S)
t0 |/|n(S,S)t0 |

=
|N( j,S)

t0 |

|n( j,S)
t0 |

|n(S,S)t0 |

|N(S,S)
t0 |

=
R
R′
. (7)

where R′ =
|n( j,S)

t0
|

|N( j,S)
t0
|
< 1. Therefore, the first term in Eq. 6 can

be represented as follows.

∑ j∈n(S,S)t0
α
( j,S)
t0→tβ

( j,S)
t0

∑ j∈n(S,S)t0
α
( j,S)
t0→t β̄

( j,S)
t0

=

R
R′ ∑ j∈n(S,S)t0

α
( j,S)
t0→t β̄

( j,S)
t0

∑ j∈n(S,S)t0
α
( j,S)
t0→t β̄

( j,S)
t0

=
R
R′

> 1.

(8)
where R > R′ is because due to assumption (3), not all i ∈
n( j,S)

t0 are neighbors of j.
The following is to analyze the second term of Eq. 6. Due

to assumption (4), ∀i, j ∈ N(S,S), α
(i,S)
t0→t = α

( j,S)
t0→t . Therefore,

the second term in Eq. 6 can be reorganized as follows.

∑

i∈n(S,S)t0

α
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(i,S)
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j∈n(S,S)t0

α
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( j,S)
t0

=

α
(i,S)
t0→t ∑

i∈n(S,S)t0

β
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t0

α
( j,S)
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j∈n(S,S)t0

β̄
( j,S)
t0

=

∑

i∈n(S,S)t0

β
(i,S)
t0

∑
j∈n(S,S)t0

β̄
( j,S)
t0

(9)

Based on the assumption (3) that ∀ j∈ n(S,S)t0 and ∀i∈ n(S,S)t0
are randomly and uniformly distributed in N(S,S). Therefore,
∀i, j ∈ N(S,S), β

(i,S)
t0 = β

( j,S)
t0 ; ∀i, j ∈ n(S,S)t0 , β̄

(i,S)
t0 = β̄

( j,S)
t0 . So,

∑
i∈n(S,S)t0

β
(i,S)
t0

∑ j∈n(S,S)t0
β̄
( j,S)
t0

=
|n(S,S)t0 |β(i,S)

t0

|n(S,S)t0 |β̄( j,S)
t0

. (10)

Because n(S,S)t0 ∪ n(S,S)t0 = N(S,S) and
|n(S,S)t0

|
|N(S,S)| = R, we have

|n(S,S)t0 | = 1−R
R |n

(S,S)
t0 |. Therefore Eq. 10 can be rewritten as

follows.

|n(S,S)t0 |β(i,S)
t0

|n(S,S)t0 |β̄( j,S)
t0

=
1−R

R |n
(S,S)
t0 |β(i,S)

t0

|n(S,S)t0 |β̄( j,S)
t0

=
1−R

R
β
(i,S)
t0

β̄
( j,S)
t0

. (11)

Since i and j are two arbitrary devices in the networks, so

based on the analysis of Eq. 7,
β
(i,S)
t0

β̄
( j,S)
t0

> 1. So, we have

1−R
R

β
(i,S)
t0

β̄
( j,S)
t0

>
1−R

R
=

1
R
−1. (12)

Based on Eq. 8 we have the first term in Eq. 6; based on
Eq. 9, Eq. 10, Eq. 11 and Eq. 12 we have the second term in
Eq. 6. Therefore, Eq. 6 can be rewritten as follows.

1
ρ
=

R
R′

+
1−R

R
β
(i,S)
t0

β̄
( j,S)
t0

> 1+
1
R
−1 =

1
R
. (13)

Finally, we have the competitive ratio ρ.

ρ =
γ
(S)
t0→t(Online)

γ
(S)
t0→t(Oracle)

< R. (14)

According to the above analysis, we have obtained the com-
petitive ratio ρ of our online scheduling algorithm.�
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