Multi-site Cooperative Data Stream Analysis

Fred Douglis* , Michael Branson, Kirsten Hildrum, Bin RongT , Fan Ye

ABSTRACT

System S is a large-scale distributed streaming data anal-
ysis environment. Ultimately, we envision that there will
be multiple sites running the System S software, each with
their own administration and goals. However, cooperation
between these sites can frequently be of mutual benefit. We
are designing the framework to support numerous sites that
can work both independently and in cooperative fashions,
with a variety of interaction models such as peer-to-peer or
federated. Depending on the degree of site autonomy and
the relationships between any given pair of sites, the sites
would be able to share data, perform processing on behalf
of one another, or even take over tasks of a failed site. Inter-
operability is complicated by the degree of site autonomy as
well as differences in execution environments and security
policies. This paper surveys System S, describes its mod-
els for site interoperability, and discusses particular design
issues such as site failover and heterogeneity.

1. INTRODUCTION

Data Stream Management Systems take continuous streams
of input data, process that data in certain ways, and pro-
duce ongoing results. While a common way to structure
these systems is to perform traditional database operations
on the input streams [1, 7, 19], it is also possible to apply
more general application logic, at the cost of higher com-
plexity [18].

System S [3] is a project within IBM Research to enable
very sophisticated stream processing. Its goal is to extract
important information from voluminous amounts of unstruc-
tured and mostly irrelevant data. Example applications of
such a system include financial markets (predicting stock
value based on real-world events), responding to disasters
such as Hurricane Katrina, or processing sensor data such
as volcanic activity or telemetry from radio telescopes.

System S has a number of challenges, including:

Rapid reconfiguration The system must be able to ad-
just quickly to the changing requirements and prior-
ities of its users and administrators. As it does so,
It must simultaneously identify and incorporate new
inputs into its processing and cope with the loss of
existing data sources or processing capacity.

*Contact address: fdouglis@us.ibm.com
TWork done during an internship with IBM.
g p

IBM

31

Expecting overload in the common case System S has
been designed from the outset with the goal of func-
tioning well under high load: the system is assumed
to be in a constant state of overload and must con-
tinually adjust its resource allocations to support the
highest priority activities. Applications are to be de-
signed with a great deal of resilience to variations in
processing resources, missing data (i.e., data that got
pushed out by more important data [8]), available in-
put streams, and so on.

Heterogeneity We expect there will be many System S
sites, many of which have substantial capacity (thou-
sands of processing nodes and terabytes to petabytes
of storage), and some of which have more limited re-
sources and provide specialized tasks such as data ac-
quisition. Some may be operated by the same orga-
nization, such as IBM, but in general each site can
be completely autonomous and have significant varia-
tion in its execution environment, policies, and goals.
These autonomous systems may cooperate to varying
extents and in very different ways, depending on the
compatibility of any given set of sites.

The focus of this paper is the cooperation among multiple
System S sites. The cooperation takes several forms:

e Passing “primal” streams, which are brought into one
site from the outside, on to another site that needs to
analyze the same input data.

Passing “derived” streams, which are created by anal-
ysis of other streams in one site, on to another site.

Providing execution resources to another site for han-
dling overload. This overload may be due to sudden
increases in the system workload or sudden decreases
in available resources (due to partial failure).

e Shifting important processing to another site in the
case of the total failure of a site.

All these interactions must be supported in the face of other
requirements and challenges, such as site autonomy, privacy
and security constraints, and differences in execution envi-
ronments.

While significant pieces of a single System S site have been
prototyped, evaluated, and reported elsewhere [3, 13], this



paper describes the early stages of an ambitious design for
multisite operation. The rest of the paper is organized as fol-
lows. The next section describes System S in greater detail.
Section 3 discusses the ways in which sites may interoper-
ate. Section 4 describes Common Interest Policies (CIPs),
the mechanism for dictating how multiple sites may interact.
The next few sections cover specific aspects of multisite op-
eration in greater detail: distributed data acquisition (Sec-
tion 5), failover (Section 6), and heterogeneity (Section 7).
The paper finishes with related work and conclusions.

2. System S

This section summarizes the architecture of System S and
describes some of its key components:

Inquiry Services (INQ) Users pose inquiries to the sys-
tem to answer certain high-level queries: for example,
“Show me where all bottled water is in the hurricane
area.” A planner subcomponent [15, 16] determines
appropriate compositions of data sources and process-
ing in the form of jobs that can achieve the goals. It
then submits such jobs to the Job Management compo-
nent. The planner needs to take into account various
constraints such as available input sources, the priority
of the inquiry, processing available to this inquiry rel-
ative to everything else being produced by the system,
privacy and security constraints, and other factors.

Data Acquisition There are many possible streams that
an application can process, both primal streams from
outside System S and derived streams created by PEs.
A component called the Data Source Manager (DSM)
matches applications with appropriate streams, based
on the constraints (particularly data types and source
quality) specified by the applications. It returns “data
source records” that provide information to access these
data sources; see Section 5 for details.

Job Management A job in System S is a set of inter-
connected Processing Elements (PEs), which process
incoming stream objects to produce outgoing stream
objects that are routed to the appropriate PE or to
storage. The PEs can be either stateless transformers
or much more complicated stateful applications. By
combining these PEs, along with stored data, System S
enables sophisticated stream mining applications. The
PEs can run on the same or different processing nodes.
The job manager within a site is responsible for initiat-
ing and terminating jobs. It works with an optimizing
scheduler that allocates nodes to PEs based on their
priority, inter-node connectivity, bandwidth require-
ments, and other factors.

Data Fabric At the lowest level of the system, the Data
Fabric provides the transport of streams between PEs
and into persistent storage. The storage system uses
value-based retention [8] to automatically reclaim stor-
age by deleting the least valuable data at any given
time.

Each System S site runs an instance of each of these system
components, possibly as a distributed and fault-tolerant ser-
vice.

32

Each site may belong to a distinct organization and has its
own administrative domain; i.e., administrators who man-
age one site generally have no control over another site. In
this respect, distributing System S among multiple sites is
similar to Grid Computing [9]: sites negotiate some sort of
peering relationship, offering resources to each other, but
retaining a great deal of local autonomy. As with the Grid,
sites that want to collaborate for common goals and benefits
can negotiate and form “virtual organizations” (VOs). The
following sections discuss the ways in which System S sites
can potentially interoperate and the method for specifying
allowable interactions.

Finally, we note that prototypes of key elements of Sys-
tem S were completed and demonstrated over the past sev-
eral months. There is currently a large effort to develop
a single, integrated prototype and to design the extensions

necessary to support the interoperation of multiple autonomous

sites, the latter being the focus of this paper.

3. DISTRIBUTION MODELS

A single System S site provides a very powerful solution, ca-
pable of solving complex analysis problems, but cooperation
between multiple sites enhances this capability in a number
of areas:

Breadth of analysis An organization may utilize System
S to address a set of problems that require analysis,
processing all relevant data that it is able to access.
Other organizations may do similar things. But the
prospect of cooperation between two specialized orga-
nizations can create a much more diverse set of infor-
mation to analyze, expanding the set of problems that
could be solved, improving the quality of the output
of the analysis, or offering additional types of analy-
sis not available in a single organization. For exam-
ple, a multinational financial services company might
perform detailed acquisition and analysis of compa-
nies, economies, and political situations within the lo-
cal geographic region of each of its analysis sites; these
could interoperate minimally by default, but cooper-
ate closely upon a significant event or when analysis
of multinational organizations is required.

Reliability The reliability of one site can be significantly
improved if it has agreements in place with other sites
to take over key processing and storage upon failures.

Scalability Extreme scalability cannot be achieved through
unbounded growth of an individual system. The co-
operation of multiple autonomous systems can achieve
much higher levels of scalability.

There are a number of possible ways that sites may interop-
erate. These are presented below as a spectrum of distribu-
tion models, ranging from the most basic approach to the
most sophisticated. System S intends to support all of these
distribution models in one form or another.

It is important to note that sites can be arranged to sup-
port a number of different peering models. The CIPs (see
Section 4) define the relationships between sites, forming



virtual organizations. Different VOs may overlap with one
another, resulting in a given site participating in multiple
VOs. This allows for basic point-to-point (site-to-site) peer-
ing, as well as peering between entire VOs whose sites may
be arranged in a variety of ways (hierarchical, centralized,
decentralized, and so on). For simplicity, the distribution
models discussed below are described in the context of basic
point-to-point interaction between sites.

3.1 Distributed Data Source Model

In the most basic distribution model, all processing takes
place at the home site (i.e., the site performing an inquiry
making use of resources from other sites). Data source shar-
ing is achieved by directly shipping data from remote sites
across the network for processing at the home site. The
data sources may be real-time streams, or they may origi-
nate from stored data. Implementing this distribution model
creates the necessity for distributed data acquisition capa-
bilities to identify and access remote data sources (see Sec-
tion 5), and a stream processing engine that can send and
receive streams remotely.

The key advantage of this basic approach is its simplicity.
Data from another site may be used with home-grown pro-
cessing. But this approach has the potential pitfall to use
excessive amounts of processing and network bandwidth.
Streams originating at a remote site may be voluminous.
This is especially true in the case of primal streams which
may undergo little to no processing at the remote site to
reduce their size. Derived streams may be at a more man-
ageable data rate, presenting less of an issue, but in some
cases even a derived stream will be voluminous.

3.2 Distributed Processing Model

A more advanced approach moves the preliminary process-
ing of a data source to the site where it originates. This
addresses the issue of sending large amounts of data across
the network. It can also reduces duplicate processing when
two or more sites want to access the same data source from
a third site and need to perform the same or similar pro-
cessing.

This approach adds complexity, however. If a data source
is not already being accessed on the remote site, then pro-
cessing must be initiated there on behalf of the home site.
This remote initiation of processing may raise an issue of
trust between the cooperating sites, as one site is asking
the other site to execute potentially arbitrary code on its
behalf. The trust issue can be addressed through the CIP
that exists between the sites. One aspect of a CIP would
reflect the agreement each site has negotiated, by specifying
which data sources it is willing to share, and what sorts of
processing it is willing to perform on those data sources.

Different schemes may be used to achieve distributed pro-
cessing. First, it is possible to transfer effective ownership of
some resources in the remote site to the home site, letting
the home site’s scheduler allocate those processing nodes.
This requires an extreme level of cooperation and trust be-
tween the two sites. Second, it is possible to have the pro-
cessing scheduled by the remote site itself. This approach
retains a greater degree of site autonomy. In addition, it

33

may facilitate sharing if multiple sites want to access the
same stream.

3.3 Distributed Planning Model

The most sophisticated distribution model considers the avail-
ability of both data sources and processing at multiple sites
as part of the planning process. If the home site requires
several data sources from a remote site, it may be logical
to send the entire job over to the remote site. Likewise,
it might make sense to break up a set of PEs among sites
according to the availability of data sources and processing
capability at each site.

Several considerations must be made as part of distributed
planning. In order to intelligently partition a processing
graph, the availability of data and processing at each site
must be known. In addition, the load at each site must be
understood. This implies consideration of what other jobs
are running at a specific site, and how important they are in
comparison to the job being planned. Finally, the execution
of the distributed plan must be monitored carefully, to make
sure that each site involved is operating effectively, and that
the overall plan is executing as efficiently as possible across
the sites. Execution issues discovered via monitoring feed-
back can trigger replanning of some or all of the job.

This approach is much more complex than the models de-
scribed above, but it is also the most powerful. It requires
support from several components of System S, including In-
quiry Services and the scheduler. It also requires a much
higher degree of interoperability and trust between sites,
based on sites’ CIPs. At the same time, distributed plan-
ning is the key to system-wide or region-wide effectiveness
and efficiency. Multiple sites that wish to cooperate for the
good of the whole, rather than each optimizing itself inde-
pendently, can make the best use of resources by optimizing
the subdivision and placement of jobs according to their in-
puts, execution patterns, priorities, and other factors.

Another variation on distributed planning is an even more
integrated approach where the job manager and scheduler
span multiple sites, allowing them to optimize multiple sites
as a whole. This would require the greatest amount of in-
teroperability and trust between sites.

4. COMMON INTEREST POLICIES

A Common Interest Policy (CIP) specifies the boundaries,
both “forbidden” and “allowed”, of interoperability among
collaborating sites. In general, anything that is not explic-
itly allowed is forbidden. For rarer cases where sites have ex-
tremely high degrees of mutual trust, it can be the opposite.
In addition, a CIP might explicitly specify other “forbidden”
or “allowed” interoperations for subservient CIPs. (As an
example, IBM might impose a CIP across all its sites that
dictates a broad range of cooperation while simultaneously
disallowing a wide range of cooperation with sites outside
IBM.) A CIP includes such things as:

e What streams and locally stored data are remotely ac-
cessible? Since the authors of the CIP cannot predict
every stream in advance, there needs to be a way to
represent classes of streams. For instance, when creat-



Aggegrated service among D, E/
AB,C/JacrossVOs 1,2,3

Sharing among multiple

Sharing ] o
between sites D, H, G within VO2
N, C

Sharing between two
sites N, L

VO3

Figure 1: Representative sharing scenarios for distributed data
acquisition.

ing a stream, one could tag it as globally public, locally
public, or private. As another example, a CIP might
specify that all streams that have been sanitized in a
particular fashion are the only ones that can be shared.

e What costs, if any, are incurred by accessing remote
data? This would apply to streams and stored data.
The cost can be in monetary or other forms such as
barter.

e What remote resources are available, and at what costs?
Is the interaction model simply distributed access to
data sources, distributed processing, or even distributed
planning?

e What resources will one site provide another for fail-
ure recovery? When is it permitted, what types of data
can be replicated, and what are the limits on replica-
tion and remote execution?

While CIPs are negotiated by humans, they are of course
interpreted by computers. The format of CIPs is not yet
decided, but a logical choice is to base them on XML. Since
both sites and VOs are able to enter into relationships with
other sites/VOs, CIPs must support hierarchical authorities
with appropriate conflict resolution in the case of incompat-
ibilities.

S. DISTRIBUTED DATA ACQUISITION

Distributed data acquisition refers to the discovery of de-
sired data sources originating in other sites and the trans-
portation of data from those sites. Figure 1 depicts three
representative scenarios of data sharing. The first is direct
point-to-point data sharing between two sites governed by
a CIP (e.g., {N,L} and {N,C}). This scenario also involves
the transportation of remote data to the home site. The
second is data discovery among many sites belonging to the
same VO (e.g., {D,E,F,G,H} in VO 2). One site needs to
discover eligible data sources from potentially all the other
sites. The third is an aggregated service between two VOs;
for example, all sites within one VO might collectively pro-
vide service to sites in another VO (e.g., {A,B,C} in VO1
share up to 30% of data sources with {D,E} in VO2).

34

5.1 Point-to-Point Data Acquisition

This scenario is the most primitive form of data sharing;
it can be used among a small number of collaborating sites.
There is a CIP between each pair of sites that specifies what
data sources can be shared between them, and under what
conditions. When one site needs remote data sources from
others, it can send requests to the other sites. The latter
will check the CIP and determine exactly how they should
respond to the requests, such as which data source records
to return.

The discovery of remote data sources can use pull or push
mode. In the pull case, the home site sends out requests
to remote sites on demand. In the push case, remote sites
actively send some of their data source records to the home
site. To instruct remote sites which data sources they need,
the home site can insert “triggers” at remote sites. These
triggers specify the characteristics of desired data sources.
When new or existing data sources become eligible, the trig-
gers are executed and remote sites push such data source
records to the home site. It is possible for one site to use a
combination of pull and push modes.

5.2 Multiple Site Data Acquisition

When the number of collaborating sites is small (e.g., fewer
than 50-100), full mesh point-to-point data acquisition be-
tween each pair of sites may be sufficient. However, we
do not want to limit cooperation to this number of VOs
and when the number increases, a full mesh approach is not
scalable. Each site needs to manage the discovery with each
other site. The addition or withdrawal of any site affects all
other sites, not to mention the pair-wise discovery traffic.

To address these issues, we need a unified interface that can
discover data sources from all collaborating sites. One pos-
sibility is to organize the sites into a hierarchy. Each site
chooses another site as its parent. They collectively form
a tree structure. The hierarchy can naturally follow exist-
ing administrative relationships within an organization that
owns multiple sites. Organizational peers, which are not
subordinate to each other, can negotiate among themselves
and determine the hierarchy formation.

Each site summarizes its data sources in aggregated forms
and sends the summary to its parent. The summary is a con-
densed representation of the original data source records and
supports attribute-based search. It can take many different
forms. For example, the lower/upper bounds or histogram
can be used to summarize the DATA RATE attributes of a
site’s video data sources.

A parent further aggregates the summaries from its children
and itself, and sends the result up the hierarchy. In this way,
summaries are aggregated and propagated bottom-up in the
hierarchy. The root site will have a “global summary” of all
the data sources and each site has a “branch summary” of
data sources owned by its descendants.

The discovery of data sources starts from the root site. A
client site sends a request to the root, which examines its
own data sources and its children’s summaries. It returns
its eligible data sources to the client, and instructs the client
to search its child branches that have matching summaries.



In this way, the client can eventually discover eligible data
sources from all sites. More mechanisms such as caching and
redundancy are needed for the performance and resiliency
of such an approach.

5.3 Aggregated Service

When two VOs collaborate and form a larger VO, they may
choose to specify services provided to each other in aggre-
gated terms. This can happen between large organizations
each of which owns multiple sites. For example, IBM might
agree to share up to 30% of its data sources with Lenovo.
This aggregated number is a combined contribution from all
sites within IBM. IBM needs to enforce this quota so as to
avoid overcommitting its resources.

In such cases, some auditing is needed to enforce the policy.
One possibility is to have an Accounting Center (AC) for
each VO. A site must register and update its contribution
to the other VOs at the AC. Whenever a site within a VO
answers a request from outside, it also checks with the AC
to ensure that the aggregated terms are not violated. Oth-
erwise it needs to transform the results, possibly returning
less or no records, to stay within the quota.

5.4 Delegation

For security, privacy, trust, or management considerations,
one site may choose to delegate the interfacing responsibility
to another site. For instance, in a collaboration between two
large VOs, sites in one VO delegate a representative for all
search requests from the other VOs.

The delegation serves a number of purposes. First, it can
reduce security risks. Sites other than the representative do
not need to interact directly with the outside world, which
can be less trustworthy than the internal VO environment.
This is similar to having a firewall protecting an internal
network. Second, it helps to centralize and ease the man-
agement overhead. Much of the daily operational complex-
ity can be shifted to the delegation site, which is easier to
manage than managing potentially large numbers of sites
directly. For example, the AC can be located at the del-
egation site, which is at a suitable position to enforce the
aggregated service terms. For external sites, they only need
to deal with the delegation, instead of handling each of the
other sites individually.

6. FAILURE RECOVERY

Failures can occur in System S in a number of ways. Indi-
vidual PEs or applications can fail. Various system compo-
nents, both hardware (e.g., storage and computation nodes)
and software (e.g., INQ, DSM) can also fail. The failure of
system components will at a minimum cause the degrada-
tion of the site’s capability and at worst cause the failure of
the entire site. Even partial failures of system components
can dramatically impact the capacity of a site.

Failure recovery is important both within a site and between
sites, but our emphasis here is on cross-site failure recovery.
The interesting challenges include the mechanisms for sup-
porting recovery and the policies governing issues such as
site selection and frequency of backups.

35

6.1 Mechanisms

System S is intended to run effectively under overload. Many
noncritical applications can be terminated under appropri-
ate circumstances. These applications need no special sup-
port for recovery when they or the nodes on which they run
fail. Applications that are more important, yet not criti-
cal, can be restarted from scratch upon a failure without
significant loss to users. A relatively small but critical frac-
tion, however, should be resumed after a failure without loss
of state. For these, one can use well-understood failure re-
covery techniques, such as process-pairs [10] or checkpoint-
ing [11].

These techniques work well for recovering within a site.
They can also be used to run critical applications on an-
other site, either in parallel (process-pairs) or upon a failure
(checkpointing); however, the overhead of maintaining the
state across multiple sites will be substantially higher than
within a more tightly-coupled site.

To handle failures of hardware system components, two mech-
anisms are available. The first is load shedding and re-
balancing within one site. After a failure of some nodes,
low-priority jobs can be killed or suspended to make room
for high priority ones. High-priority jobs can also be redis-
tributed among the remaining nodes, thus rebalancing the
workload on the functioning nodes. The second is inter-site
offloading. If the workload of important jobs in a site ex-
ceeds the capacity of the remaining nodes, the site can shift
some of its high-priority jobs to other sites. The sites need
to pre-arrange CIPs among them to determine which jobs to
offload and how to offload them. Executing in another site
faces heterogeneity in available data sources, execution envi-
ronments, competing execution priorities, and other issues;
thus it is a course of last resort.

In rare instances, an entire site may fail. This may be the
result of a natural disaster such as floods or earthquakes, or
the simultaneous failure of each instance of a critical sys-
tem component. The primary difference between partial
and total site failure is that in the former case, the affected
site can initiate recovery actions, while in the latter case,
another site must detect and respond to the failure. The
choice of which site (or sites) backs up a given site must be
negotiated in advance, based on their CIP(s). Critical data,
such as the state necessary to run specific applications and
the stored data upon which those applications rely, must be
copied to the backup site(s) in advance. Any applications
that are critical enough to be checkpointed periodically or
run in parallel via process-pairs must be coordinated across
the sites.

6.2 Policies

There is a great deal of leeway in the CIPs between sites
regarding how to respond to failures. Questions include:

e Which site(s) should backup a given site? Some sites
will be excluded due to an unwillingness or incom-
patibility. But if multiple sites are potential backups,
which subset should we choose and how should we di-
vide and assign the work? This needs to take reliability
and associated costs into consideration. Furthermore,



should the assignment of backup sites be optimized by
each site individually or decided for the benefit of a
group of sites as a whole?

e For checkpointed applications, how often, and under
what conditions, should the checkpoints take place?

e For replicated persistent data, how does value-based
retention interact with the reliability of the data [6]7
Each extra copy of backed-up data takes space away
from a site’s own data, some of which may have only
one copy.

7. HETEROGENEITY

When multiple sites collaborate, each of them may have
a different operating environment, in terms of the runtime
environment, type system, security and privacy policies, user
namespace, and other aspects. These sites have to deal with
the heterogeneity to successfully interoperate.

7.1 Runtime Environment

Each System S site has its own runtime environment, in-
cluding PEs, stored data, and type system. The runtime
environment can vary from one site to another. Each site
can have a different set of PEs, stored data, and types, with
different names, formats, functions or interpretation. For
example, one site uses a 5-character string for type ZipCode.
Another site may not have this type, or it uses a full 9-digit
ZipCode. Transformation and mapping rules and routines
between sites are needed to ensure collaborative applications
use PEs, stored data and types correctly across sites.

PEs, stored data, and type systems are also expected to
evolve over time. Their evolutions can differ from one site
to another. Since applications using different versions of
the same PE, stored data, or data types can co-exist, it is
necessary to maintain the evolution history of them using
mechanisms such as versioning. The transformation and
mapping should also handle such evolutions, both intra-site
and across sites.

7.2 Security and Privacy

Collaborating sites may have the same or distinct security
and privacy policies. When a single organization operates
many sites, or all sites have high degrees of mutual trust and
uniformity, they may adopt a single security and privacy
policy and a common user namespace. System S assumes
lattice-based secrecy [17] and integrity policy models. Each
site will understand the format and implied relationships
of security labels used by all sites; the access rights and
restrictions encoded within a security label are uniformly
applicable throughout all the sites.

When multiple sites belonging to different organizations col-
laborate, however, uniform policies may not be feasible.
Each site needs to define its own security and privacy poli-
cies. All sites would have secrecy levels and confidential-
ity categories defined for their subjects and objects, but the
numbers of secrecy levels, sets of categories, and their mean-
ing and interpretation, can be totally different. The user
name space can also vary, and even be completely separate
from one site to another.

36

In such a scenario, policy translation and mapping are needed.
For example, in a collaborative hurricane response and re-
covery system, IBM could use two secrecy levels (public
and IBM-confidential) and no categories, whereas the Fed-
eral Emergency Management Agency (FEMA) may use four
secrecy levels (unclassified, confidential, secret, top-secret)
and a large set of categories, including a category IBM-NDA
assigned to subjects to deal with IBM confidential infor-
mation. The policy translation/mapping rules may define
that IBM sites would provide IBM confidential data only to
FEMA subjects cleared to at least the “confidential” level
and with category IBM-NDA.

8. RELATED WORK

Although System S as a whole has many distinctive features,
here we focus on the distribution and cooperation aspects
of the system.

Borealis [2] is a distributed stream processing analysis sys-
tem with a number of similarities to System S. It has explicit
support for fault tolerance [4, 12] as well as contracts to
“sell” load between sites in a federated system [5]. System S
differs fundamentally from Borealis and other stream pro-
cessing systems such as STREAM [19] and TelegraphCQ [7]
in several aspects. First, the cooperation among System S
sites encompasses a variety of interaction models, from loosely
coupled to tightly integrated. They address different levels
of cooperation needs of sites with varying degrees of trust re-
lationship, and intersite heterogeneity. Second, it supports
generic application-specific processing rather than database
operations— a more difficult problem due to higher com-
plexity, development costs and times to completion [18]. Fi-
nally, System S has an Inquiry Specification Language that
allows users to specify application declaratively at semantic
level. This is very important to allow users focus on appli-
cation level tasks, rather than deal with the complexity of
finding the optimum set and interconnection of data sources
and PEs.

Grid computing is another area of related work. Virtual
organizations arose in the context of the Grid [9] and we
adopt similar constructs in our system. In addition, there
has been substantial work in matchmaking between different
organizations based on required capabilities (e.g., Liu, et
al. [14]).

For failure recovery, the field has decades of work on tech-
niques such as process-pairs [10] and checkpointing [11]. In
this area, our emphasis is on policies such as optimizing the
selection of backup sites and providing a balance between
the goals of different sites, and to incorporate existing un-
derlying failure recovery mechanisms.

9. CONCLUSIONS AND FUTURE WORK

System S is an ambitious project, and it is undergoing ac-
tive design and implementation. The focus of this paper is
how to realize cooperative stream processing among multiple
System S sites, further increasing the scale, breadth, depth,
and reliability of analysis beyond that available within a
single site. We have identified the main problems and pre-
sented the general design, including the models and agree-
ments with which sites interoperate, the methods for sup-
porting distributed data acquisition and distributed process-



ing, support for site failover, and allowance for the hetero-
geneity within and across sites. As the design evolves and
we gain more experience with the single-site system, we ex-
pect to add to this list and refine the design. Our ultimate
objective is to realize cooperative stream processing under
extreme scales, thus fully exploiting the potential of Sys-
tem S.

Acknowledgments

We thank Brad Fawcett, Nagui Halim, Kang-Won Lee, Zhen
Liu, and the rest of the System S team for helpful feedback
on the design of cooperative System S and/or earlier drafts
of this document.

10. REFERENCES

[1] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska,
Ugur Centintemel, Mitch Cherniack, Jeong-Hyon Hwang,
Wolfgang Lindner, Anurag S. Maskey, Alexander Rasin,
Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stan
Zdonik. The design of the borealis stream processing
engine. In CIDR 2005 - Second Biennial Conference on
Innovative Data Systems Research, 2005.

[2] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur
Cetintemel, Mitch Cherniack, Jeong-Hyon Hwang,
Wolfgang Lindner, Anurag S Maskey, Alexander Rasin,
Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stan
Zdonik. The Design of the Borealis Stream Processing
Engine. In Second Biennial Conference on Innovative Data
Systems Research (CIDR 2005), Asilomar, CA, January
2005.

[3] Lisa Amini, Nevendu Jain, Anshul Sehgal, Jeremy Silber,
and Olivier Verscheure. Adaptive control of extreme-scale
stream processing systems. In Proceedings of ICDCS 2006
(to appear), 2006.

[4] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden,
and Mike Stonebraker. Fault-Tolerance in the Borealis
Distributed Stream Processing System. In ACM SIGMOD
Conf., Baltimore, MD, June 2005.

[5] Magdalena Balazinska, Hari Balakrishnan, and Mike
Stonebraker. Contract-based load management in federated
distributed systems. In Symposium on Network System
Design and Implementation, March 2004.

[6] Ranjita Bhagwan, Fred Douglis, Kirsten Hildrum,
Jeffrey O. Kephart, and William E. Walsh. Time-varying
management of data storage. In First Workshop on Hot
Topics in System Dependability, June 2005.

[7] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande,
Michaeeal J. Franklin, Joseph M. Hellerstein, Wei Hong,
Sailesh Krishnamurthy, Samuel Madden, Vijayshankar
Raman, Frederick Reiss, and Mehul A. Shah. TelegraphCQ:
Continuous dataflow processing for an uncertain world. In
Conference on Innovative Data Systems Research, 2003.

Fred Douglis, John Palmer, Elizabeth S. Richards, David
Tao, William H. Tetzlaff, John M. Tracey, and Jian Yin.
Position: Short object lifetimes require a delete-optimized
storage system. In Proceedings of 11th ACM SIGOPS
European Workshop, 2004.

Tan Foster, Carl Kesselman, and Steven Tuecke. The
anatomy of the Grid: Enabling scalable virtual
organizations. Lecture Notes in Computer Science, 2150,
2001.

Jim Gray and Andreas Reuter. Transaction Processing :
Concepts and Techniques. Morgan Kaufmann, 1992.

=)

)

[10

[11] Theo Haerder and Andreas Reuter. Principles of
transaction-oriented database recovery. In Readings in
Database Systems (2nd ed.), pages 227-242. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1994.

37

[12] Jeong-Hyon Hwang, Magdalena Balazinska, Alexander
Rasin, Ugur Cetintemel, Mike Stonebraker, and Stan
Zdonik. High-Availability Algorithms for Distributed
Stream Processing. In The 21st International Conference
on Data Engineering (ICDE 2005), Tokyo, Japan, April
2005.

Navendu Jain, Lisa Amini, Henrique Andrade, Richard
King, Yoonho Park, Philippe Selo, and Chitra
Venkatramani. Design, implementation, and evaluation of
the linear road benchmark on the stream processing core.
In 25th ACM SIGMOD International Conference on
Management of Data (SIGMOD 2006), June 2006.

Chuang Liu, Lingyun Yang, Ian Foster, and Dave Angulo.
Design and evaluation of a resource selection framework for
grid applications. In In Proceedings of the 11th IEEE
Symposium on High-Performance Distributed Computing,
July 2002.

Anton Riabov and Zhen Liu. Planning for stream
processing systems. In Proceedings of AAAI-2005, July
2005.

Anton Riabov and Zhen Liu. Scalable planning for
distributed stream processing systems. In Proceedings of
ICAPS 2006, June 2006. To appear.

Ravi Sandhu. Lattice-based access control models. IEEE
Computer, November 1993.

(14]

Michael Stonebraker, Ugur Cetintemel, and Stanley B.
Zdonik. The 8 requirements of real-time stream processing.
SIGMOD Record, 34(4):42-47, 2005.

The STREAM Group. STREAM: The Stanford stream
data manager. IEEE Data Engineering Bulletin, 26(1),
2003.





