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ABSTRACT

The lack of digital floor plans is a huge obstacle to per-
vasive indoor location based services (LBS). Recent floor
plan construction work crowdsources mobile sensing data
from smartphone users for scalability. However, they incur
long time (e.g., weeks or months) and tremendous efforts
in data collection, and many rely on images thus suffering
technical and privacy limitations. In this paper, we propose
BatMapper, which explores a previously untapped sensing
modality — acoustics — for fast, fine grained and low cost
floor plan construction. We design sound signals suitable
for heterogeneous microphones on commodity smartphones,
and acoustic signal processing techniques to produce accu-
rate distance measurements to nearby objects. We further
develop robust probabilistic echo-object association, recur-
sive outlier removal and probabilistic resampling algorithms
to identify the correspondence between distances and object-
s, thus the geometry of corridors and rooms. We compen-
sate minute hand sway movements to identify small surface
recessions, thus detecting doors automatically. Experiments
in real buildings show BatMapper achieves 1 —2c¢m distance
accuracy in ranges up around 4m; a 2 ~ 3 minute walk
generates fine grained corridor shapes, detects doors at 92%
precision and 1 ~ 2m location error at 90-percentile; and
tens of seconds of measurement gestures produce room ge-
ometry with errors < 0.3m at 80-percentile, at 1 — 2 orders
of magnitude less data amounts and user efforts.
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1. INTRODUCTION

Online digital maps (e.g., Google Maps) have provided
great convenience for location based services (LBS) outdoors
such as finding nearby point-of-interests (POIs) and naviga-
tion. However, for indoor environments where people spend
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over 80% of the time [17], such maps are extremely scarce
and unavailable in most buildings. This has become a huge
obstacle to pervasive indoor LBS.

Accurate, scalable indoor floor plan construction at low
costs is urgently needed. Autonomous robots equipped with
high precision special sensors (e.g., laser rangers [33], depth
cameras [16], sonars [35] ) can produce high quality maps.
However, the high manufacturing costs, operational and
logistic obstacles make it difficult to deploy robots in large
quantities. Recently some work [2, 8, 15, 5, 4] have leveraged
crowdsourced data (e.g., WiF1i, inertial, images) from com-
modity mobile devices to achieve scalability. However, they
require large amounts of data to combat inevitable errors
and noises in crowdsourcing, hence expensive total efforts
and long data collection times. Those using images also
face common limitations in vision techniques: dark/changed
lighting, blurry images, glass walls, and restrictions on photo-
taking due to privacy concerns.

In this paper, we propose BatMapper, a novel acoustic
sensing based system for accurate floor plan construction
using commodity smartphones. Unlike inertial [2] or WiFi
data [19, 12] that are inherently noisy, acoustics is capable of
producing very accurate (e.g., a few cm’s) distance measure-
ments. Unlike images [8], its performance is not affected by
lighting conditions or transparent objects, nor does it cause
privacy concerns. A single person can finish the measure-
ments of a floor in a few minutes, eliminating the long time
needed to crowdsource large amounts [11] of data from many
users.

Despite its potentials, accurate and robust acoustic based
floor plan construction is far from straightforward. Com-
modity smartphone speakers and microphones are designed
with power, sensitivity intended mainly for low frequency
human voice and music; their characteristics are not con-
ducive for acoustic mapping. Due to the existence of nu-
merous surrounding objects, many echoes, not just those
bouncing off large surfaces like walls, but also those from
smaller objects or over multiple surfaces, will be received.
We must reliably determine which echoes, thus distances,
correspond to interested objects/surfaces. Finally, the ac-
tivities and efforts needed from the user must be convenient
and minimal, so as to cover the whole floor in short time.

We make the following contributions in this work:

o We explore different acoustic signal designs and identi-
fy frequencies, pulse lengths, modulation and reshap-
ing suitable for heterogeneous microphones in com-
modity smartphones, and echo detection techniques
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Figure 1: BatMapper takes acoustic and inertial da-
ta and uses a series of algorithms to produce the
geometry of corridors and rooms, thus the full floor
map.

that achieve ranging accuracy of 1 — 2¢m in distances
up to ~ 4dm.

e We analyze the constraints and dependencies in dis-
tances among echoes from different surfaces, and de-
velop probabilistic evidence accumulation and recur-
sive outlier removal algorithms to reliably associate
echo distances to reflection surfaces. We compensate
the minute hand sway movement during walking, and
automatically detect doors by their small recessions,
thus increased distances.

e We propose measurement gestures and a probabilistic
resampling algorithm for fast, robust room size/shape
estimation in tens of seconds. We design classifica-
tion algorithms to distinguish corridor segments, turn-
ing corners, open spaces, and cluttered areas for fine
grained and more robust mapping.

e We build a prototype and extensive experiments in
real buildings show that a 2 ~ 3 minute walk can pro-
duce fine-grained corridor shapes and detect recessed
doors at precision of 92% and location error of 1 ~ 2m
at 90-percentile; the measurement gesture can esti-
mate room geometry at errors < 0.3m at 80-percentile.
Compared to state of the art, the amounts of user ef-
forts and data are both reduced by 1 ~ 2 orders of
magnitude.

To the best of our knowledge, BatMapper is the first to ex-
plore acoustic sensing for floor plan construction using com-
modity smartphones, demonstrating robust, accurate results
while cutting user efforts and data amounts by orders of
magnitude.

2. OVERVIEW

BatMapper leverages three sensing modalities: acoustic,
gyroscope and accelerometer for fast, accurate floor plan
construction (Figure 1). The user walks along corridors and
inside rooms while holding the phone. The phone keeps
emitting and recording sound signals. It detects sound re-
flections (i.e., echoes) and measures their distances/amplitudes,

from which relative positions of objects (e.g., walls) are in-
ferred, and combined with user traces for floor plans.

By measuring the time between the sound emission and
echo reception, the distances to objects are estimated. Al-
though sonar systems have used such principles for exploring
and mapping the ocean floor for decades, smartphone hard-
ware is not designed for acoustic mapping purposes. Un-
like sonar systems customarily equipped with arrays of tens
of ultrasound transducers, the phone usually has one main
speaker, two microphones with heterogeneous characteristics,
the top for recording and background noise cancellation, the
bottom for near field human voice. The speaker and mi-
crophones are intended for low frequency human voice and
music (up to ~ 1K /4K Hz), not high frequency ultrasound.

We design a series of algorithms to overcome these diffi-
culties. We design sound signals suitable for heterogeneous
microphones, and processing techniques to produce multiple
echo candidates and their distances, amplitudes. The can-
didates are inherently noisy due to cluttered objects, multi-
surface reflections, and lack direction information. FEcho-
object association, detecting which echo thus distance corre-
sponds to which object (e.g., walls), is critical.

We propose robust algorithms for echo-object association
to derive geometries of corridors and irregular rooms: a prob-
abilistic evidence accumulation wall-distance association al-
gorithm computes probabilities of echoes bouncing off differ-
ent surfaces using relationships among various distances; a
recursive outlier removal further eliminates residual incorrect
associations caused by cluttered/moving objects. A sway
compensation technique is designed to extract and compen-
sate hand sway during walking and its disturbance to dis-
tance, thus small surface recessions (~ 10cm) are reliably
identified and door locations detected. Distinct patterns in
inertial and distances are combined to classify corridors, cor-
ners, open spaces and cluttered areas. A probabilistic can-
didate resampling algorithm can measure regular room ge-
ometry in tens of seconds using left-right phone movement
gestures.

3. ACOUSTIC SENSING

The acoustic ranging module in BatMapper consists of
sound emitting, sound recording by two microphones, and a
series of signal processing steps to produce distance/amplitude
measurements for echo candidates in both microphones (Fig-
ure 2). Unlike some existing work [10] that only shows the
received echoes and requires the user to guess and manually
pick the one for a specific object, we leverage dual micro-
phones and develop signal processing techniques for accu-
rate and reliable peak detection, thus echo distance mea-
surements.

3.1 Sound Signal Design

Due to the hardware limitations and heterogeneous prop-
erties of the two microphones, the sound signal design criti-
cally impacts the ranging accuracy and reliability. After ex-
tensive experiments and analysis of different frequency mod-
ulations, pulse lengths and wave shapes, we use a two-pulse
signal, one at 3ms and frequency range 8 ~ 16K Hz and
the other 1ms and 8 ~ 10K Hz, both linear frequency in-
creasing sine waves with Hanning window reshaping [13] and
separated by 40ms delay (Figure 3).

Frequency Modulation and Pulse Length. We lever-
age a chirp signal with linear frequency increase over time,



Frequency Modulation Window Reshaping
LTS i “I“ ! '))
VTN it

T

| -

Top Mic | cross-correlate
S.d .
Echo
_L> . Echo Peak .

‘g'_,_» Noise Removal P Generaton [ ggggge;itgg

Bottom Mic

Figure 2: A particular sound signal and multiple
signal processing steps produce echo candidates.
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Figure 3: The signal contains two pulses: higher
frequency with longer duration for top microphone,
and lower frequency with shorter duration for the
bottom one.

commonly used in sonar systems. It has an fo of the car-
rier frequency, fi the final frequency. The frequency keeps
increasing linearly from fy to fi. We choose two frequen-
cies based on several factors of commodity smartphone hard-
ware. First, the frequency range should not exceed the phys-
ical capability of a normal smartphone speaker, which is
usually capped below 20K Hz. Second, the frequency range
should be set apart from background noise, such as human
voice usually under 1K Hz, and music instruments under
4KHz. Hence we set the minimum carrier frequency as
8K Hz. Third, we need to consider heterogeneous frequency
response properties of the two microphones. The bottom
one is designed for close range human voice capturing, and
the other (usually at the top) for background noise cancella-
tion. We conduct extensive experiments with sound signals
of different frequency ranges, intensities and lengths. We
find that the top microphone is more sensitive but has high-
er noise levels. The bottom one has less noise, and sensitive
to lower frequencies (e.g., human voice). We experiment
with different frequency ranges and find that a wider range
[fo, f1] makes the echo peaks more distinct, thus easier to
detect. Lastly, with the same emitting energy, low frequency
sounds propagate farther than high frequency ones. Reflec-
tions could be too weak to be detected if the frequency is set
too high. Increasing the chirp length can also increase the
total energy, but it also increases overlaps between adjacent
echoes from objects of similar distances, hence reducing the
measurement resolution. The final signal design is a bal-
ance among all the above factors, with two signals of 1ms
8 — 10K H z for the bottom microphone, and 3ms 8 —16 K Hz
for the top one suitable for their properties.

Final Signal for Emitting. We apply a Hanning win-
dow [13] on the two pulses to reshape their envelops to in-
crease their peak to side lobe ratio, thus higher signal to
noise ratio (SNR). We join the two pulses and separate them

by a delay in between, so one emitting signal includes two
pulses for both microphones. To ensure echoes from two
pulses do not overlap, the delay must be sufficient. From
experiments, objects more than 6 meters away create very
weak echoes, which can be ignored. Thus the minimum de-
lay between two pulses corresponds to the farthest range,

which is 3?1’;:/23 = 35ms. We give a bit buffer space and set

it at 40ms. This would allow 1000/(3+40+1+440) ~ 12H=
emitting frequency, sufficient for a user to take fine grained
measurements while walking.

3.2 Echo Candidates Generation

Noise Removal. The received signals will go through a
Butterworth bandpass filter, 8 ~ 10K Hz and 8 ~ 16K Hz
for the bottom/top microphone, to remove background noise.
Without such filtering, weak reflections can be buried in the
noise. This step is critical for collecting data in noisy envi-
ronments.

Echo Peak Generation. Next we cross-correlate the
signal with its respective pulse, a common technique [26]
that produces a peak for each echo, and obtain the upper en-
velop for the signal. Then we chop the envelop into segments
of small time windows of 35ms, each containing echoes from
one pulse only.

We need to determine the start of these windows. The
first peak will always be the direct sound from the speaker
to the microphone, and it has the highest amplitude. It will
be used as the starting point. Before we find peak locations,
we use a low pass filter moving average to eliminate small
outlier peaks and smooth the envelop.

Echo Candidates Generation. For each emitted chirp,
multiple peaks corresponding to different echoes are detect-
ed. E.g., a chirp in a small room will create echoes from all
sidewalls, the ceiling and floor, even echoes reflected multi-
ple times. How to associate echoes to objects, deciding which
corresponds to which, is critical to derive the geometry of
the environment.

Using a threshold, we can select only the top-K strongest
peaks, which are hopefully from larger, closer objects. More
candidates will cover those interested objects (e.g., wall sur-
faces), but too many candidates may also include echoes
from other smaller, irrelevant objects (e.g., desks, chairs),
making distance-wall association more difficult. After exten-
sive experiments, we choose top 6 peaks for the top micro-
phone, because it is more sensitive and has stronger echoes
from faraway objects, and top 10 for the bottom one, be-
cause it is less sensitive and may miss echoes from faraway
walls.

4. FLOOR PLAN CONSTRUCTION

A floor plan includes corridors and rooms. The shapes,
sizes of corridors and the locations of doors along corridors
form the map skeleton; the contours of rooms augment the
skeleton and complete the map.

4.1 Corridor Construction

We combine user traces and acoustic distance measure-
ments to both sides of walls for fast, light weight, and accu-
rate corridor construction. The user holds the phone hori-
zontally, and walks along corridors continuously. A few min-
utes’ walking is enough to cover a floor of decent sizes (e.g.,
40 x 40m?). This incurs minimal user efforts, and minimal
phone rotations which minimizes gyroscope drifts for robust
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Figure 4: Position of speaker and microphones on
the phone, and sound travelling paths of strong e-
choes in corridor.

user traces. Door locations are automatically determined
by detecting small distance increases caused by doors usu-
ally slightly recessed (~ 10cm) from walls. To handle many
echoes and outliers from sound reverberation over multiple
surfaces (e.g., floor, ceiling, and sidewalls) and moving ob-
jects/people, we design a probabilistic evidence accumula-
tion algorithm, and recursive outlier removal to robustly
associate distances to different sidewalls. Inevitable hand
movements during walking cause distance variations com-
parable to the small recess depth of doors. Distance may
be increased/decreased, causing false detection or missing
of doors. We design a sway compensation technique that
can correct such minute distance variations for reliable, au-
tomatic door detection.

Distance-Wall Association. To identify which distance
corresponds to which objects, thus the geometry of corri-
dors, we analyze the relationships among the distances and
amplitudes of echo candidates from both microphones, and
devise a probabilistic evidence accumulation (PEA) method
for distance-wall association.

Figure 4 shows a phone held perpendicular to both side-
walls in a corridor, and reflection paths of strong echoes re-
ceived by microphones *. In Figure 4(a), d1, d2 are distances
from the speaker to the left/right wall (the width of corri-
dor d = di + d2); l1 and I are the constant distances from
speaker to the two microphones (the length of the phone
l=11+12).

In path 1,2 (Figure 4(b)), the sound bounces off the right
wall once, and is received by top/bottom microphones. The
echoes are likely very strong due to short travel distances,
and similarly for echoes from left wall in path 3, 4 (Fig-
ure 4(c)). The echoes bouncing both sidewalls can still be
detected, with less amplitude due to longer travel distances
(Figure 4(d)). In reality, we find the top microphone can
detect echoes from path 1,3,5 in most cases, and the bottom
microphone can detect those from path 2 but miss some from
path 4, 6 due to its low sensitivity to far field sounds.

Let {ct}, {d'}, {st} (i = {1,--- ,6}) denote the sets of the
6 strongest echo candidates, their distance measurements
and amplitudes from the top microphone; {c}, {d°}, {s°}
(¢ ={1,---,10}) those from the bottom microphone. Giv-

'Echoes coming from floor/ceiling have much less ampli-
tudes because microphone openings are facing sidewalls.
Their echo travel distance relationships also differ from those
of sidewalls, thus will generate much smaller probabilities
and be filtered out by PEA.

en these sets, our problem is to estimate the probability
P(ci : path k) that a given candidate cj',u € {t,b} travel-
s along path k. The distances of candidates with greatest
probabilities will be used to infer path lengths, thus corridor
geometry such as width [.

1) P(c? : path 2): we combine two evidences. If ¢! is a
direct echo from the right wall, a) it is likely to have the
highest amplitude in {s?}. Thus

Py = fi(1 - s/ max(s})) (1)

where fi(-) ~ N(0,07) is the PDF function of a Gaussian
distribution, commonly used in Bayesian Networks to rep-
resent probabilities of such evidences. b) considering path
1 and 2, there must exist a candidate from top microphone
c'; that travels path 1 where d§~ —d? = 1. We model this
probability as:

Py = fa(min(| dj — di = 1)) (2)

where f2(-) ~ N(0,03). We combine the two evidences to
compute P(ct : path 2) = P - Ps.

2) P(c! : path 3): we combine three evidences. If ¢} is a
direct echo from the left wall, a) it is likely to have a high
amplitude in {s!} 2. We model this probability as:

Py = fo(1 - st/ max(s!)) 3)

where f3(-) ~ N(0,03). b) a c! along path 1 can gener-
ate a high amplitude. We exclude it by the evidence of a
corresponding c;’- along path 2 computed in step 1. A large
P(cg’- : path 2) indicates less likely c! goes path 2.

Pi=1- P(cl]’- : path 2) (4)
where j = argmin (| df — d} — 1 |). c) two other echoes ¢/, c},
J
must exist such that dﬁ + d§ — dfc = [;. Hence

Ps = fs(min | dj +dj — dj, — I |); (5)
gk

where j,k € {1,...,6},j # i,k #i,j # k, f5(-) ~ N(0,02).
We combine the three evidences for P(c! : path 3) = P3Py -
Ps.

3) P(ct : path 5): if echo c! bounces off right then left wall
along path 5: a) considering distance relationship among
path 1,3,5. There must exist two other echoes cé,cfC such
that df — d’; —di =1y, hence

Ps =f5(min | di —dj — dj + 1 |); (6)

where j,k € {1,...,6},7 # i,k # i,7 # k and f5(-) ~
N(0,02). b) considering distance relationship among path
2,3,5. There must exist another c’; and ¢ such that df —

dj — dz = [2, hence
Py = fr(min | df — dj — di — 1> |); (7
J)k

where j € {1,...,6},j #4,k € {1,...,10}, f(-) ~ N(0,02).
We combine them to get P(c! : path 5) = Ps - Px.
Parameter Learning. The variances {o1,02,03,05,07}
in the above are needed to compute probabilities. We con-
duct experiments in the corridor and collect training data

“Depending on where the phone is positioned left/right, it
may or may not be the strongest.



samples where the traveled paths of echoes are labeled. Giv-
en a sample collection {x;} from a normal distribution, its
mean and variance can be estimated [14] as p = 77, e
and o = %Z;Zl(x, — )%, We also find these parameter-
s do not change much in different buildings, and learning
them once produce accurate results in corridors with width
1.5 ~ 4m.

Recursive Outlier Removal. After the above compu-
tation, we obtain the probabilities for each ¢} traveling path
2, and each c! traveling path 3 and 5. Initially, we selec-
t the candidate with the highest probability for each path.
However, outliers can happen due to signal noises, moving
objects/people during data collection. We propose a recur-
sive outlier removal (ROR) algorithm to detect and replace
outliers.

Assume a continuous sequence of n chirps emitted at time
{t;}. Without loss of generality, consider the top micro-
phone’s candidate set of the 6 strongest echoes at ¢;. The one
with the highest probability travelling path 3 has distance

d". We define a similarity score s = v/a(dlil — dUl)2 + B(t; — t;)2. .

For each d!, count the number of dV’s where s < e (a
threshold), j € {i — n/2,i + n/2},j # . If the count is
less than a threshold k, d” is considered an outlier. The
candidate with the next highest probability traveling path
3 replaces the outlier. The above repeats for the new can-
didate, until it is not detected as an outlier, or all the 6
candidates at t; are exhausted — the average of other non-
outlier dY! at neighboring times will be used. We find in
reality the process quickly terminates as outlier count de-
creases exponentially.

4.2 Door Detection and Space Classification

The intuition for door detection is quite simple: doors
are usually recessed from the frame and wall, thus creating
slight increase in distance 3. However, identifying such re-
cessed doors is challenging. There is an inevitable left-right
swaying of the hand during human walking, causing distance
variations comparable to the recessed depth (~ 10em). This
can increase/decrease the distance, thus generating false or
missed detections.

Sway Compensation based Door Detection. Ex-
isting techniques [37, 28] can construct user traces by step
counting, heading estimation and dead reckoning with ac-
celerometer and gyroscope, but not slight movements of
hand swaying. We use Figure 5 to illustrate the process.
Figure 5(a) is the aggregated accelerometer amplitude af-
ter a low pass filter. Peaks occur when either foot hits the
ground. Figure 5(b) is the distance to the right sidewall,
which shows highly correlated patterns: a high peak or a
low valley when the left/right foot hits the ground. Fig-
ure 5(c) is the distance to the left sidewall, which has larger
noise due to longer distance and more distance variations
caused by more doors. Figure 5(d) shows the measured cor-
ridor width where distance changes to left/right sidewalls
cancel out each other. Using an empirical threshold of %d,
where d is the recession depth, we detect sudden increase
and decrease to identify corridor segments having doors.

Due to disturbances and noises in measurements, the above
cannot reliably tell the boundaries of doors, or which side
of the wall the door exists, or distinguish adjacent/overlap

3We survey 30 buildings around a university campus. Al-
most all doors are recessed except a few for special purposes.
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Figure 5: Phone sway while walking and compensa-
tion.

doors on opposite sides (Figure 5(d)). We compensate the
sway to obtain accurate distance to each side. Segments
without doors on either side are detected in Figure 5(d).
The average of each segment is deducted from Figure 5(b)
to obtain Figure 5(e), the compensation signal. The loca-
tions of missing peaks and valleys in Figure 5(e) are those
of respective peaks in acceleration (Figure 5(a)), and their
amplitudes are estimated using nearest neighboring peak or
valley in Figure 5(e). The signal is fully interpolated using
sinusoid (Figure 5(f)), and deducted from Figure 5(b) to ob-
tain the compensated distance Figure 5(g). We repeat the
same process for Figure 5(c) and obtain Figure 5(h). Finally
we detect doors on each side in Figure 5(g,h) by detecting
distance inreases/decreases using threshold %d. For each in-
creasing point, a door is detected if a decreasing point exists
within the following (dw — €, dw + €) range, where d,, is the
door width, € a tolerance threshold. This further filters out
false detections.

Space Classification. Besides straight corridors, large
open space (e.g., lobby), stair entrances and corners also
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Figure 6: Different data patterns to illustrate rules
of space classification.

exist. We leverage inertial and acoustic data to classify the
space. By identifying large changes in heading direction,
we can detect straight trajectory segments (Figure 6(a)).
We further analyze the total width d and total energy of
received echoes from the bottom microphone, because it is
more sensitive to distance changes.

Intuitively, the total width equals the sum of distances to
two sidewalls in corridors, and the echo energy is strong in
narrow space while weak in large open space. We use Fig-
ure 6(b,c) to illustrate classification rules. The high peak
around 30s in Figure 6(c) indicates a narrow corner because
it has a high intensity and an orientation change. Width
disturbances at 40 ~ 50s in Figure 6(b) have normal cor-
responding power, which indicates the size of the space is
comparable to corridor, but it is more complex. This turns
out to be a cluttered area of storage boxes. The width dis-
turbance around 90s in Figure 6(b) indicates a wide corner,
since we have a large orientation change and normal power.
The drop in power (110 — 125s) in Figure 6(c) shows the
user is passing a large open space, and there are large width
disturbances in Figure 6(b) as well. The last width distur-
bance in Figure 6(b) has no orientation change and normal
power, corresponding to a stair entrance.

The above rules are largely distinct and exclusive to each
other, with occasional exception (e.g., cluttered area vs. s-
tair entrance) that may require further efforts. Their main
purpose is not to provide 100% classification accuracy, but
to detect and exclude non-corridor segments, so as to avoid
false door detections caused by disturbances and false walls
in large open spaces beyond measurement range.

S.  ROOM CONSTRUCTION

Different methods are used for rooms of two types: 1)
small, regular rooms and 2) irregular or large rooms. Rect-
angle or polygon rooms smaller than 8 x 8m? are type 1,
including bathrooms, bedrooms, personal offices and labo-
ratories 4. Type 2 are either irregular shapes or over 8 x 8m?,
such as large classrooms, lobbies, auditoriums.

4Experiments show that the maximum distance that can be
reliably measured is 4m to each side.

5.1 Regular Room Construction

We design a fast room construction method that obtains
the width/depth of a regular room using a simple measure-
ment gesture ®. Without loss of generality, we explain using
the top microphone. The user holds the phone in front of
his body, clicks a button to trigger the phone to emit many
chirps quickly (e.g., 50 in 5s), producing N distance mea-
surements as the original set D° = {d?,dS,...,dSJ}. Each
distance has an equal probability of coming from the left
wall.

The user stretches his arm and moves the phone to the
right side; it emits multiple chirps (e.g., 10 in 1s) and pro-
duces an update set DY = {d¥,dY,...,d5;}. We use the
following candidate weight update and resampling to obtain
distance from certain directions. Then the user moves the
phone to left, repeat the process. The user may need to
move the phone left/right a few times to produce reliable
results.

Candidate Resampling. Candidate Resampling recal-
culates the probabilities of distance candidates over multiple
measurements. The intuition is to “penalize” those that be-
have inconsistently given the phone’s movement. For exam-
ple, echoes coming from the front wall are assigned small-
er weights because their distances do not change much in
left /right movements. They will have much smaller weights
and thus less likely to be chosen during resampling.

We compute the weight w; for each djo € DY as:

w; = f(d —df —p), k=argmin(|d —dj —ul) (8)

where f(-) is the likelihood function which has the form as
PDF of Gaussian distribution A(0,0?) that describes the
similarity between actual distance change d,lc] — djo and ex-
pected move distance p, dY € DY is a distance measurement
in the update set, o is the variance tolerating estimation er-
rors in moving distance. Assuming the phone is held by the
right hand, we set u = 0.3m and p = 0.5m for left/right
movement, o at 0.2 empirically. A new set is formed by
sampling N distances from the original set, each with prob-
abilities proportional to their weights. The original set is
then replaced by the new set.

The user may need to move the phone left/right multi-
ple times. Each time the correct distance will be reinforced
and incorrect ones penalized. Thus the results quickly con-
verge (i.e., showing a distance with dominating probability)
after a couple left/right movements, which can be done in
tens of seconds. Although clutters along the movement di-
rections may create echoes, such echoes are unstable com-
pared to those from our targeted large surfaces (e.g., walls).
Hence they are assigned lower probabilities and eventual-
ly removed. For better robustness and quick convergence,
the user should avoid large objects, such as large furniture,
along the moving directions. The user can turn 90° and re-
peat the above process to measure the other two walls. The
total height between ceiling and floor can also be measured
by holding and moving the phone vertically.

5.2 Irregular/Large Room Construction

For irregular/large rooms, we combine user traces and a-
coustic measurements for construction. Due to the limited
sensing range, the fast construction method does not work

5Most rooms are cluttered and have larger size than corridor
width, thus PEA cannot work reliably in this case.
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Figure 7: Distance candidate accuracy and error for
both top and bottom microphones.

for irregular or large rooms. The user must walk a full loop
around the internal boundaries of the room, and measure
the distance to the wall continuously. We combine the user
trace and distance measurements to create the room bound-
aries. In this case, we walk close to the wall on right while
holding the phone, and leverage PEA to identify the dis-
tance from the wall to bottom microphone. P; - P> in PEA
does not rely on left sidewall, thus we can get reliable dis-
tance measurements. As long as objects do not fully block
line of sight to the wall, the acoustics can detect distance to
walls reliably. Compared to approaches [2, 8, 15] using only
user traces that can be distorted by objects, this method
can generate much more accurate room shapes.

6. EVALUATION

We use Huawei Honor 6 smartphone for data collection
and evaluate BatMapper from several aspects: acoustic mea-
surements, algorithm performance, mapping performance,
data amounts and user efforts. We conduct data collec-
tion in 3 large buildings, including a 40 x 60m? laborato-
ry, a 50 x 60m? teaching building, and a 45 x 45m? office
building. We use the composite sensor game rotation vec-
tor in Android that leverages accelerometer and gyroscope,
which proves more reliable than integrating gyroscope data
for orientation. The trajectory is further calibrated with a
constant orientation drift rate and walking loop closure [6]
when available.

6.1 Acoustic Measurements

Distance Accuracy. Accuracy of distance is the first
step and basis for accurate floor plans. To evaluate the signal
design and processing techniques, we select a plain wall in
an empty space, and measure the distance to the wall at dif-
ferent locations. We vary the location thus the ground truth
distance from 0.5 ~ 4m with steps of 0.5m, and repeat 20
times at each location. Figure 7(a) shows that the distance
measurements for both microphones have small errors up to
3.5m range, and grow larger at 4m. Figure 7(b) shows the
CDF for all measurement errors in ranges 0.5 ~ 3.5m and
0.5 ~ 4m for both microphones. For the range 0.5 ~ 3.5m,
the error is within 1 — 2cm at 80-percentile, and the maxi-
mum within 4cm. For ranges up to 4m, we still get reason-
able high accuracy of 5em at 80-percentile, and the maxi-
mum ~ 10cm. The effective range of ~ 3.5m is sufficient
to measure distances to both sidewalls simultaneously, at
accuracy better than door recession depth (~ 10cm).

Background Noise Tolerance. Background noises such
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Figure 8: CDF for measurement errors of both mi-
crophones in different scenarios: quiet room, human
talking, and pop music at a fixed distance of 3.5 me-
ters.
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Figure 9: Distance measurement accuracy to a wall
while the user is static or walking at a fixed distance
of 1 meter.

as human speech and music are common, especially in pub-
lic buildings. We evaluate their impact by comparing 3 s-
cenarios: quiet room, human talking and pop music from
another smartphone 1m away at maximum volume. We do
50 measurements at 3.5m from a wall. Figure 8(a), 8(b)
show the CDF of measurement errors for the top and bot-
tom microphones. The top microphone has most errors at
1.8cm and at most 2.2cm under all scenarios, which shows
high noise tolerance. The bottom microphone has ~ 1.4cm
error at 90-percentile in quiet room, and ~ 1.75¢m under
human talking or pop music, both with comparable perfor-
mance. Because the higher frequency band 8 ~ 16 K Hz for
the top microphone is far from human voice or music (up
to ~ 1K /4K Hz), it has better noise tolerance. The bottom
microphone uses a lower frequency band 8 ~ 10K Hz, and
it is designed to be more sensitive to human voice. Thus
the slight less tolerance to noises. However, both are quite
accurate, with 2.5cm error at most. We also tested other
closer distances, there’s only < 2¢m impact by noise.
Impact of User Movement. The user’s walking caus-
es inevitable movements to the phone, thus disturbances to
distance measurements. We compare 3 scenarios with the
user standing still, walking stably /carefully, and walking ca-
sually, along a straight line with 1m distance to the right
sidewall. Figure 9 shows the CDF for measurement errors.
The maximum error is ~ lem for both microphones when
the user stands still. For careful walking it increases to 4cm,
while casual walking further increases it to ~ 9cm. This be-
comes comparable to door recession depth (~ 10cm), and
shows the necessity of sway compensation for robust door
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Figure 10: Measurement candidates in a corridor
and PEA estimation results for candidates from left
and right under different conditions.

detection.

6.2 Mapping Algorithm Evaluation

Probabilistic Evidence Accumulation. We collect
data in a corridor segment and show the distance-wall as-
sociation results with PEA. Figure 10(a), 10(b) show that
each sound signal (emitted at ~ 3Hz) produces 6, 10 dis-
tance candidates to the left/right sidewalls, and all but one
of them corresponds to respective ~ 1.5m,~ 0.7m ground
truth. Figure 10(c) shows candidates with the maximum
probability by different combinations of evidences in PEA.
Using Ps has 10 outliers in 26 samples, and all of them are
distance to right wall (~ 0.7m). This is because the top
microphone is sensitive enough to produce high amplitudes
for echoes from both sidewalls. Using Ps - P, filters most of
them and leaves only 2 outliers. Using Ps only also has 10
outliers and combining Ps3 - Ps reduces to 5. In this exam-
ple, Ps - Py - Ps has 2 outliers. Later systematic evaluation
(Figure 11) shows it can further reduce outliers by 7 — 20%
compared to P3- Ps. Figure 10(d) shows similar results. Us-
ing P or P only has 1, 3 outliers while combining P; - P>
completely eliminate all outliers. Note this experiment is for
a “clean” environment without disturbances such as people
passing by. In reality more outliers will happen.

We systematically evaluate PEA performance by analyz-
ing data from corridor segments of three buildings, each has
a total number of 1015, 830, and 885 samples. Results show
that the number of outliers decreases as more evidences are
accumulated (Figure 11). For left wall distance candidates,
using Ps, Ps only has on average 35%, 64.7% outliers. By ac-
cumulating two evidences, Ps- Ps and Ps - Py reduce outliers
to 25.57% and 35.42% respectively. Accumulating all evi-
dences reduces this ratio to 22.6%. For right wall distance
candidates, P; and P» has an average of 12% and 45.35%
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Figure 12: After ROR, outliers are removed, and all
measured width and summation pairs match well.

outliers respectively, combining both evidences reduces out-
liers to 10.5%.

Recursive Qutlier Removal. The output of PEA is fed
to ROR to further remove outliers. We select a walk along
a corridor with a triangle area on one side, and illustrate re-
sults before and after ROR. Figure 12(a) shows the distances
to the left /right walls, their summations, and the measured
corridor width by identifying echoes bouncing both walls in
PEA. Without outliers, the summation and measured width
should be the same. Although most left/right distances are
correct, there are quite some obvious outliers to the left, and
a few to the right before ROR, which are caused by wrong
data association. Thus they produce many unmatched sum-
mation and width measurements pairs.

Figure 12(b) shows the results after ROR. There are no
outliers for either side, and all summation and width mea-
surement pair match quite well. Besides, the ~ 2m width
jump around 6s and gradual decrease till 22s are preserved,
showing clearly the triangle area. ROR can preserve such
sharp changes while replacing outliers with correct candi-
dates. Naive outlier removal methods such as moving aver-
age will lose such abrupt distance variations, blurring door
frame boundaries critical for door detection. Methods such
as Kalman filters [36] are not suitable: they assume the mea-
surements follow a Gaussian distribution around the true
value. While outliers by wrong data association are around
distances to incorrect objects, thus not the true values need-
ed (i.e., distances to walls). Figure 13 shows the number of
remaining outliers after each iteration of ROR. About half
of the outliers are removed at first iteration. For candidates
to both sidewalls, the remaining outlier counts are less than
25 (<~ 2.5%) after all available candidates are exhausted.
They are further removed and replaced by the average of
respective non-outlier neighbors.

Candidate Resampling. We illustrate the distance dis-
tribution upon more updates with the user standing in a
room, at ~ 2m to the left wall. Initially, the phone emit-
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s 50 signals which produces 300 distance candidate (top
microphone only, 6 per signal). Figure 14 shows the his-
togram of this original candidate set. Many candidates have
large counts (20 — 30), thus difficult to tell which is the
true distance. After the first update (moving the phone to
the right), the correct candidate (~ 2m) have the highest
count (~ 85). After 4 updates, it becomes dominant (200
counts) while all others reduce to < 10 counts. This shows
the robustness and effectiveness of candidate resampling to
quickly converge to the correct result.

6.3 Mapping Performance

Corridor construction consists of door detection/location
and corridor shape. Corridor shape is the skeleton of the
whole map, and door locations indicate positions of each
room. They are the most critical components in the floor
plan.

Door Detection. We summarize door detection results
for 3 buildings in Table 1. Except main entrances, there are
38, 47, and 30 doors in each building. True positive (TP) de-
notes the number of correctly detected doors, false positive
(FP) the number of falsely detected (non-existent) doors,
false negative (FN) denotes the number of missed doors.
Precision is defined as precision = TP/(TP + FP) and re-
call is recall = TP/(TP + FN). Both precision and recall
are ~ 90%, and office has slightly lower precision because of
the recessed poster windows along corridors.

Table 1: Door detection performance.

Bldg Total | TP | FP | FN | Precision | Recall
Lab 38 34 2 4 94.44% 89.47%
Teaching | 47 41 | 2 6 95.35% | 87.23%
Office 30 26 | 5 4 83.87% | 86.67%

Door Location. Figure 15 shows the CDF for door lo-
cation errors in 3 buildings, and Figure 17 shows the con-
structed map and respective ground truth. For teaching and
office building, the error is < 2m at maximum, and < 1m
at 80-percentile. The error is slightly larger and a few large
ones 3 ~ 4m for the lab building. This is due to longer user
trajectory, and lack of loop closure for calibration. A slight
orientation deviation in the long horizontal corridor segment
can cause larger location errors for doors at the end.

Corridor Shape Accuracy. Figure 17 shows construct-
ed corridor shapes are highly accurate. The corridor width
error is within 1 ~ 3cm centimeters, almost negligible. The
maps also show fine details. Recessed areas such as stairs,
water fountains, or triangle areas are detected, which are

difficult to identify using only trajectories.

Regular Rooms. We measure 18 regular rooms which
we can access, with size from 2.32 x 2.49m? up to 7.86 x
7.28m?. Figure 16 show the CDF of 36 length/depth mea-
surements. The 80-percentile error is around 0.3m, which
shows that the CR algorithm can obtain reasonable accu-
racy for rooms. The error mainly comes from large objects
(e.g., furniture) next to walls or recessions of windows. Large
errors 0.5 ~ 1.5m are caused by false candidate association
(e.g., large furniture in the middle).

Acoustic-aided Irregular/Large Rooms. Figure 18
show 4 examples of constructed irregular rooms using pure
trace and acoustic-aided approach. Due to inaccessible areas
(e.g., blocked by furniture), users cannot always walk close
to the wall. Hence the trajectory cannot accurately recover
the actual shape. Acoustic measurements can avoid many
such issues and produce shapes much closer to ground truth.
Figure 19 shows the recall of 15 large rooms with sizes from
~ 5 x 5m? irregular shape rooms to 18 x 22m? large lobbies.
The median recall is improved from 78% to 88%.

Final Map. Overlaying room shapes to respective door
locations produces the final map. We are able to access only
some of the rooms in these three buildings. Due to space
limit, we omit such final maps.

6.4 Data Amount and User Effort

Table 2 shows the data amount and time for construct-
ing corridor areas in the three buildings. BatMapper only
takes 1 ~ 2.5min to gather 1.5 ~ 3.5M B data for corridor
area construction, which incurs very little human effort and
overhead in data collection.

Table 2: Data amount and data collection time for
corridor construction by BatMapper.
Bldg Audio Inertial Total Time
Lab 2861 KB | 6567 KB | 3518 KB | 145s
Teaching (A) | 2102 KB | 470 KB | 2572 KB | 106s
Teaching (B) | 1186 KB | 276 KB | 1462 KB | 60s
Office 2427 KB | 716 KB | 3143 KB | 122s

We also compare the data amount and time needed of cor-
ridor area construction to five previous designs: CrowdIn-
side [2], Jigsaw [8], iMoon [5], CrowdMap [4] and Walkie-
Markie [30]. CrowdInside collects a number of mobile traces
(~ 100) covering all corridor areas, and uses unique anchor
points (e.g., locations with GPS reception or special inertial
data signature such as stairs) to enhance dead-reckoning ac-
curacy. Jigsaw and iMoon combine vision and mobile tech-
niques and generate complete floor plans or indoor 3D mod-
els. They both utilize Structure from Motion [31], which is
a compute-intensive technique that requires many images.
CrowdMap generates indoor panorama via video. For three
buildings, more than 60K key frames are collected over six
months. Walkie-Markie requires dense Wi-Fi AP deploy-
ment and many user walk rounds (e.g., 30), and it provides
a rough corridor map but not rooms. For a typical indoor
scenario with 30 landmarks/doors, assuming each photo at
816 x 612 resolution, the image storage of Jigsaw, iMoon and
CrowdMap is around 360M B, 180M B and 1.6GB, respec-
tively.

Table 3 shows the comparison in data amount, time need-
ed and 80-percentile mapping accuracy. BatMapper cuts
down the data amount and data collection time by orders
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Table 3: Data amount, data collection time and door
location accuracy comparison.

Data Time Accuracy
CrowdInside [2] ~ 100 MB | ~ 300 mins ~ 5m
Jigsaw (8] ~ 360 MB | ~ 20 hours ~2m
iMoon [5] ~ 180 MB | ~ 3 weeks ~2m
CrowdMap [4] ~ 1.6 GB | ~2months | ~ 1.5m
Walkie-Markie [30] | ~30 MB | ~ 90 mins ~ 1.5m
BatMapper ~4 MB ~ 3 mins ~ 1lm

of magnitude (4M B vs. 30M B ~ 1.6GB, 3min vs. hours,
days), and provides accurate and complete floor plans com-
parable to the state-of-the-art.

6.5 Miscellaneous

Energy. We test the power consumption of data collec-
tion using a power monitor. The standby current consump-
tion with screen on is ~ 150mA with Wi-Fi, cellular off
and no applications running in the background. Data col-
lection for BatMapper requires accelerometer (~ 0.25mA),
gyroscope (~ 6.1mA), and sound emitting/recording (~
20mA). Considering the battery capacity of 3100mAh, da-
ta collection for one building (assuming 3 minutes for corri-
dor, 30 minutes for 20 rooms) only consumes an additional
14.5mAh, which is less than 0.47%. Considering the stand-
by current, total energy cost is ~ 97mAh, which is 3.1%,
negligible for daily use. DSP.Ear [9] can further reduce the
power consumption for acoustic sensing.

Different Phones. Smartphones have different physi-
cal layouts, e.g., the speaker at the bottom instead of the
back. Such a phone can be held perpendicular to sidewalls,
with the speaker facing the right sidewall. A different set
of distance relationships can be derived to reconfigure the
PEA framework (mainly changes of phone length and co-

variance parameters.). We test our design on a more recent
smart phone, Huawei P9, with the speaker at the bottom.
Figure 20 shows the distance measurements of both micro-
phones and the resulting distances after PEA and ROR. Raw
measurements with such configuration turns to be much
“cleaner” since the speaker faces side walls, hence echoes
from floor/ceiling are suppressed. We also select Samsung
Note 3 as another test phone, and obtain comparable re-
sults. A sample corridor segment with doors is shown in
Figure 21.

7. DISCUSSION

Crowdsourcing. Crowdsourcing can collect large amounts
of data from many users. To ensure scalability and data
quality, effective incentive mechanisms are usually necessary.
The cognitive, time overheads and operational complexity
to users must be minimized. Compared to existing work,
BatMapper does not need effort intensive image-taking; it
cuts the data amount and collection time dramatically. It
can be used by a dedicated user, or used in crowdsourcing
for greatly reduced user efforts and incentive. Current de-
sign still requires a human to walk around the building and
every room for data collection. A system that uses a drone
to automatically survey the floor systematically and collect
all data would avoid such human efforts.

Map Refinement. Accurate user trajectories are im-
portant to the overall shape and size of corridors. We plan
to further leverage building internal layout rules (e.g., 90°
turns, straight walls) to calibrate and refine the constructed
map, especially where corridors all have a fixed width. Al-
though BatMapper can detect fine granularity geometry, it
does not yet reliably classify and label different functional
areas (e.g., water fountains, stairs). Classification using ad-
ditional data (e.g., TransitLabel[7], DeepEar [18]) would be
needed.

Automatic Stitching. We adopt several simple rules
(e.g., dividing long walks into a few short segments/loops,
and loop closure) to help ensure accurate trajectories. A
building with a typical size of 2000 ~ 3000m?> may be di-
vided into 2-3 segments/loops, which need to be manually
stitched together. One may leverage multiple sensing modal-
ities, such as Wi-Fi signals and a few images at joining areas
of loops to stitch them together automatically.

Complex Environments. For buildings with large open
spaces (e.g., shopping malls) instead of narrow corridors,
users need to walk extensively along the walls due to the
limited acoustic ranging distance; this may add to the user
effort. As long as the trajectories are accurate, the layout
of walls will be precise and reliable. Some learning meth-
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ods [34] may be applied to recognize different features (e.g.,
wide openings as entrances to stores). Additionally, vision
based techniques (e.g., Jigsaw [8]) may be used to enhance
the map construction wherever limiting factors (e.g., glass
walls, dark lighting) do not exist.

Microphone/Speaker Layout. We plan to extend the
current design to a broader category of mobile devices with
different layouts of microphones and speakers. Customized
configurations of constraints and parameters need to be de-
rived according to the layout of microphones and speakers.
This would allow various makes/models of mobile devices to
be used for floor plan construction.

8. RELATED WORK

Acoustic Sensing. Acoustics has been used for ranging,
localization, tracking, stress and encounter detection. Beep-

Beep [27], SwordFight [43] estimate the distance between
two mobile devices instead of to objects. Graham et al. [10]
use smartphones to show echo peaks and require the user to
manually determine their association to objects, which can
be cumbersome for practical use. Liu et al. [20] use cross-
correlation to estimate arrival time difference for keystrokes
snooping. Yang et al. [40] leverage mobile acoustic sensing to
detect driver phone usage in a vehicle. Liu et al. [19] use a-
coustic ranging estimates among peer phones as constraints
to improve their localization accuracy. GuoGuo [21] uses
an anchor network that transmits spatial beacon signals to
achieve centimeter-level localization accuracy. For tracking,
UbiK [38], AAMouse [41], LLAP [39], FingerIO [25] leverage
phase shift in received signals and achieve ~ lem or high-
er accuracy for near field finger gesture tracking. CAT [23]
leverages external speakers and uses FMCW [32] for phone
movement tracking at mm-level accuracy. ApenaApp [24]
monitors the minute chest and abdomen breathing move-
ments using FMCW on smartphones. StressSense [22] de-
tects stress of users unobtrusively in unconstrained acous-
tic environments using smartphones. DopEnc [42] uses an
acoustic-based approach for identifying persons the user en-
counters during interaction.

Compared to them, BatMapper shares cross-correlation
based echo detection similar to some work [10, 20, 19]. How-
ever its focus is on automatic echo-object association, which
has not been addressed in previous work. We also propose
techniques specifically designed for acoustic based floor plan
construction, including sway compensation for automatic
door detection, and candidate resampling for room construc-
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tion.

Indoor Floor Plans. Indoor floor plan construction has
become an urgent problem for LBS. Robotic approaches can
produce accurate maps, but they usually require expensive
special hardware (e.g., laser rangers [33], depth cameras [16],
sonars [35]) and deploying robots in massive numbers is 1-
ogistically impractical. Vision based techniques [31, 29, 1]
can generate 3D models of building interior, but they in-
cur high computing overhead, and face privacy and tech-
nical limitations (e.g., glass walls, blurry images). Recent
mobile device based approaches largely rely on crowdsourc-
ing to achieve scalability. CrowdInside [2] uses inertial data
with anchor points to approximate shapes of accessible ar-
eas. Jiang et al. [15] leverage Wi-Fi signatures to detect
room and hallway adjacency, and combine with user trajec-
tories to construct hallways. Walkie-Markie [30] recognizes
points of reversing Wi-Fi signal strength to calibrate trajec-
tories for corridors. Some recent work combines vision and
mobile techniques to produce fine-grained floor plans. Jig-
saw [8] leverages images to generate geometry attributes and

spatial constraints of indoor landmarks. iMoon [5] builds 3D
models of indoor environment from crowdsourced 2D photos,
and compiles a navigation mesh from the generated 3D mod-
els. Indoor Crowd [3] produces panoramic maps of indoor
environments by stitching images together. CrowdMap [4]
detects line segments in such panoramic views and identifies
room corners for room reconstruction. Such work usually re-
quires significant amounts of data and crowdsourcing efforts;
those using images/videos also face privacy restrictions.

Compared to them, BatMapper cuts down data amount
and user efforts by orders of magnitude using acoustics, thus
avoiding privacy constraints while achieving comparable ac-
curacy to the state-of-the-art. TransitLabel[7] uses multi-
modality data (e.g, acoustic, inertial, magnetic) to infer the
types of functional areas and assign them human readable
semantic labels. BatMapper focuses on floor plan geometry
and does not address semantic labeling yet.

9. CONCLUSION

In this paper, we propose BatMapper, which leverages a-
coustics on commodity smartphones for fast, fine grained
and low cost floor plan construction. A 2 ~ 3 minute walk
can produce fine grained corridor shapes, detect doors at
1 ~ 2m 90-percentile location error and ~ 90% precision.
Accurate room geometries are derived using a measuremen-
t gesture in tens of seconds. Compared to latest work,
BatMapper builds fine grained maps of comparable accu-
racy at 1-2 orders of magnitude less data amounts and user
efforts.
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