

北京大学高能效计算与应用中心

Center for Energy-efficient Computing and Applications

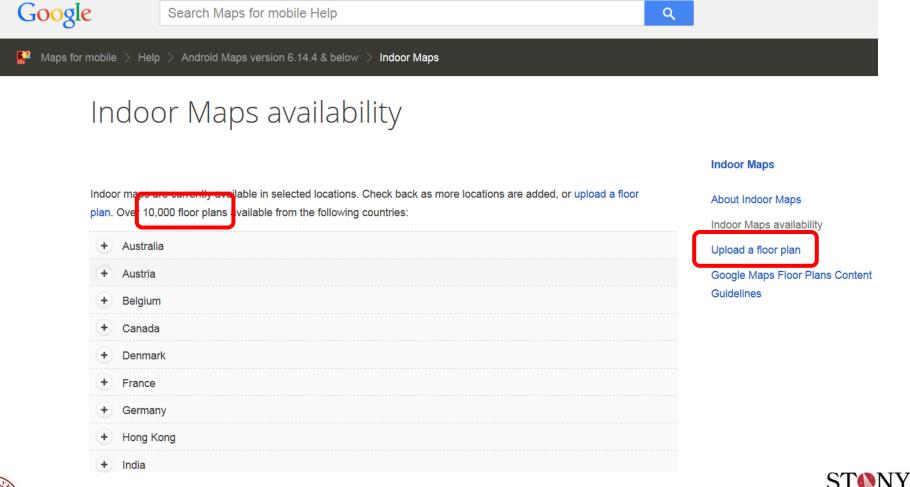
Jigsaw: Indoor Floor Plan Reconstruction via Mobile Crowdsensing

Ruipeng Gao¹, Mingmin Zhao¹, Tao Ye¹, **Fan Ye²**, Yizhou Wang¹, Kaigui Bian¹, Tao Wang¹, Xiaoming Li¹ EECS School, Peking University, China¹ ECE Dept., Stony Brook University²

> ACM MobiCom 2014 Maui, HI, USA

Jigsaw: Floor plan reconstruction

Motivation



Jigsaw: Floor plan reconstruction

Motivation

UNIVERSITY

Jigsaw: Floor plan reconstruction

Motivation

Crowdsensing based construction

- Gather piecewise data from individual mobile users
 - e.g., images, inertial sensor data
- Extract floor plan information
- Put pieces together into a complete floor plan

Benefits

- Service providers (e.g., Google) don't need to negotiate with building owners one by one
- No need to hire dedicated personnel for inch-by-inch measurements either

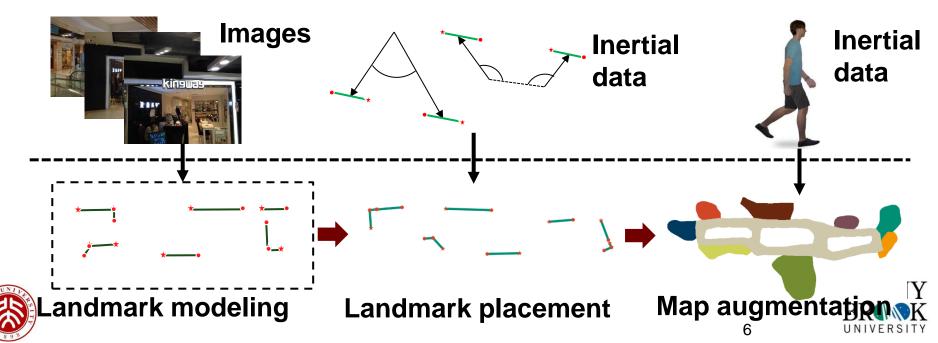
Crowsensing to construct floor plan

Challenges

- Accurate coordinates and orientations of indoor landmarks (i.e., POIs such as store entrances)
 - Inertial data couldn't provide
- Insufficient "anchor points"
 - Error accumulation in dead reckoning
 - Over- and under- estimation of accessible areas

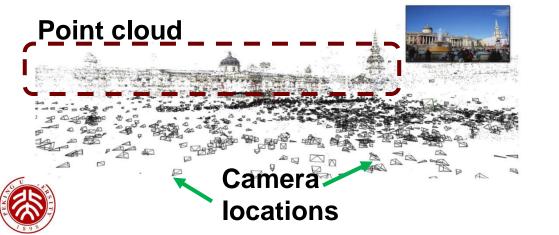
Inspiration

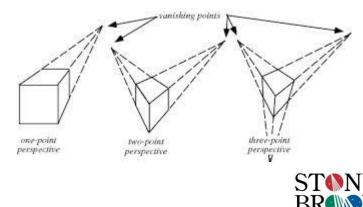
- Complementary strengths of vision and mobile techniques
 - Vision ones to produce accurate geometric information for landmarks
 - Inertial data to obtain placement of landmarks, and less critical hallway and room shapes
- Use optimization and probabilistic formulations
 - Robustness against errors/noises from data



Jigsaw overview

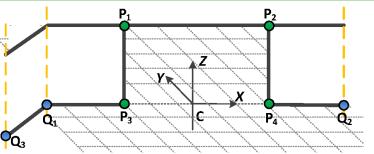
Three stages


- Landmark modeling: extract landmark geometry from images
- Landmark placement: obtain pairwise landmark spatial relation (e.g., distance, orientation) from inertial data
- Map augmentation: construct hallway and room shapes from mobile traces



Landmark modeling

Goal


- Extract sizes and coordinates of major geometry features (e.g., widths of entrances, lengths/orientations of walls) of landmarks
- Method: extend two computer vision techniques
 - Structure from Motion(SfM): given a set of images of the same object from different viewpoints, generate (in the LOCAL coordinate system)
 - 1) a "cloud" of 3d points representing the exterior shape of the object;
 - 2) the location where each image is taken
 - Vanishing line detection: given an image, detect orthogonal line segments of the object

Landmark modeling process(1/2)

- Geometric vertices
 - P: four corners of a store entrance
 - Q: connecting points of wall segments

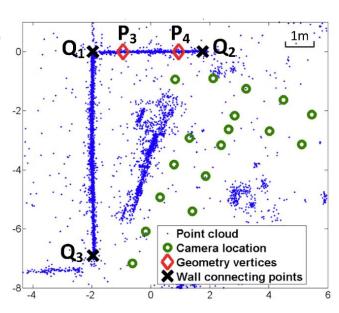
- Extract the coordinates of geometric vertices
 - Step 1. Extract landmark's major contour lines on each image

(a) Original image (b) Vanishing line detection (c) Merge co-linear and parallel segments (d) Contour

- Step 2. Project 2D lines into 3D
 - Project 2D lines using transformation matrices by SfM
 - Use adapted k-means to cluster major geometry lines

Camera 1

 \mathbf{P}_2

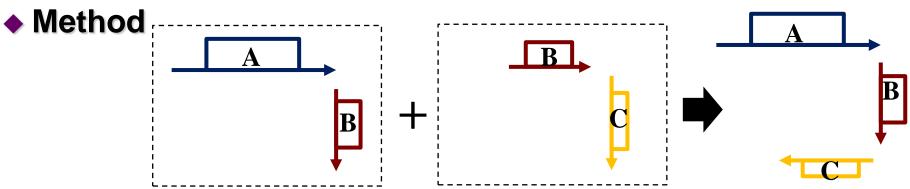

 P_4

 P_1/c

P₃

Landmark modeling process(2/2)

- Detect connecting points of wall segments
 - Project the 3d point cloud onto XY plane
 - Detect wall segments and their connecting points
 - Use entrance line (P₃P₄) from the previous step as the start
 - Find the two ends(Q₁Q₂)
 - Continue to search for more connecting point (Q₃)



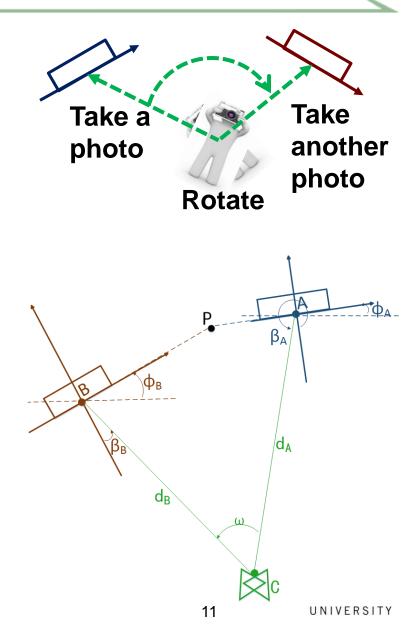
Landmark placement

- Input: landmark models in their local coordinate systems
 - Major geometry features, positions of cameras
- Output: landmarks placed on a global coordinate system
 - Absolute coordinates and orientations

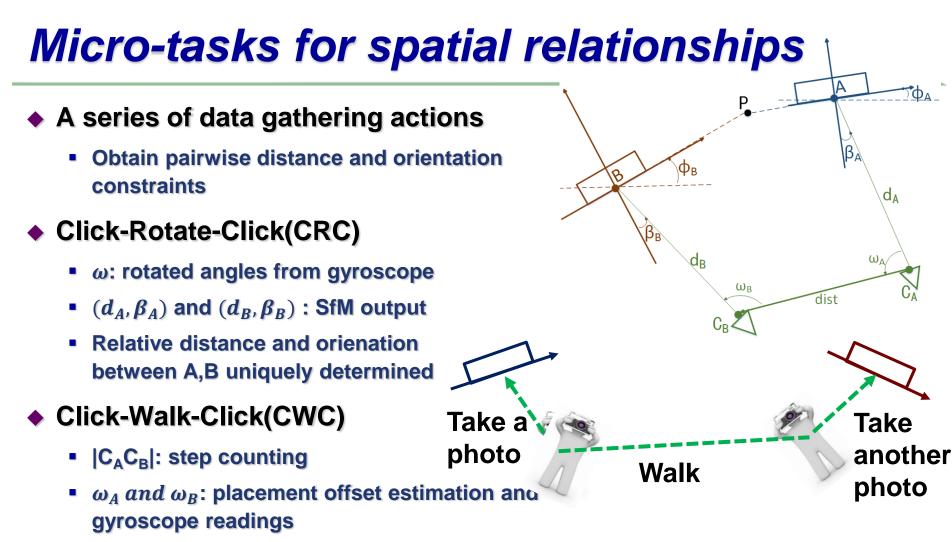
- Step 1. Obtain pairwise spatial relationship between adjacent landmarks
- Step 2. place adjacent landmarks on the common ground

Micro-tasks for spatial relationships

A series of data gathering actions

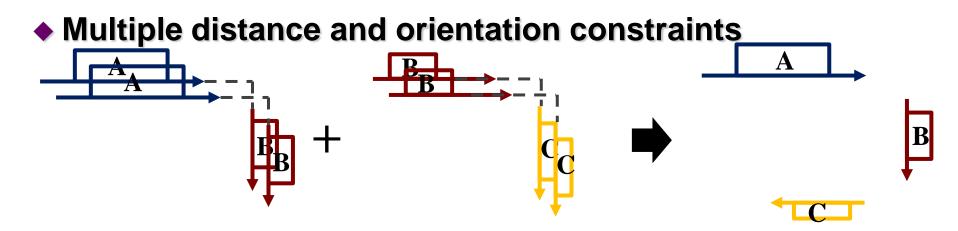

 Obtain pairwise distance and orientation constraints

Click-Rotate-Click(CRC)


- ω: rotated angles from gyroscope
- (d_A, β_A) and (d_B, β_B) : SfM output
- Relative distance and orienation between A,B uniquely determined

Click-Walk-Click(CWC)

- IC_AC_B: step counting
- *ω_A and ω_B*: placement offset estimation and gyroscope readings
- (d_A, β_A) and (d_B, β_B) : SfM output
- Similar measurements calculation



- (d_A, β_A) and (d_B, β_B) : SfM output
- Similar measurements calculation

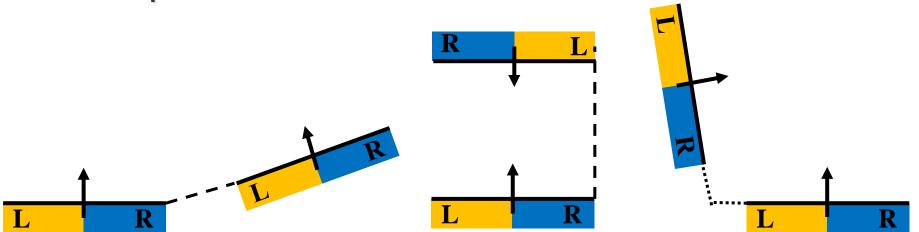
Landmark placement formulation

Maximum Likelihood Estimation (MLE)

- Θ^* : the most likely coordinates and orientations
 - $\Theta = \{X, \varphi\}$: coordinates and orientations of landmarks
 - Z, O: observations of X, φ

$$\theta^* = \arg \max_{\phi} P(Z, O|X, \phi)$$

Landmark placement results

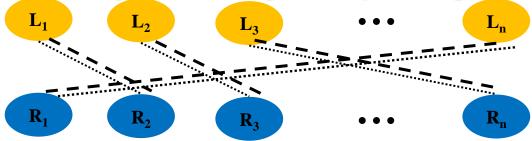


Hallway boundary construction

Two connection options

- Direct line between two segments
 - collinear or facing each other
- Extend two segments to an intersection point
 - Perpendicular walls

[*] H. W. Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly, 2(1-2):83–97, 1955.


Hallway boundary construction

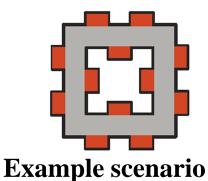
Two connection options

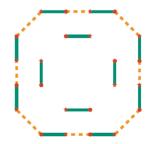
- Direct line between two segments
 - collinear or facing each other
- Extend two segments to an intersection point
 - Perpendicular walls

Problem formulation

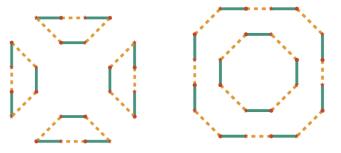
Minimum weight matching in a bipartite graph.

- Solution: Kuhn-Munkres algorithm*
 - O(n³), n: number of landmarks

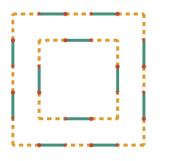

[*] H. W. Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly, 2(1-2):83–97, 1955.

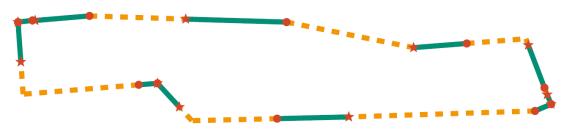


Compare with alternative methods



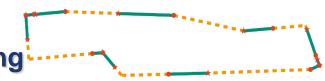
- Miss segments inside
- Greedy algorithms
 - Depend on order of connecting
 - Miss 90° corners

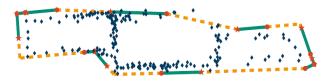



convex hull

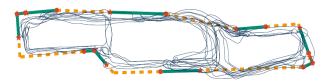
Greedy method results

Our results





Details reconstruction: hallway shape


- Step 1. build occupancy grid map
 - Grid cells each with a variable representing the probability it is accessible
 - a) External boundary of hallway
 - b) Camera positions
 - c) Trajectories

External boundary

+ Camera positions

+ User trajectories

Details reconstruction: hallway shape

Step 1. build occupancy grid map

- Grid cells each with a variable representing the probability it is accessible
- a) External boundary of hallway
- b) Camera positions
- c) Trajectories

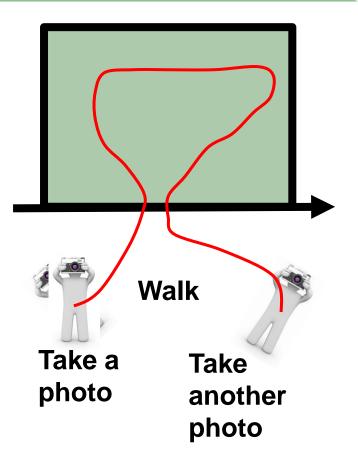
Step 2. Binaryzation with a threshold


Step 3. Smoothing

Alpha-shape*

Thresholding

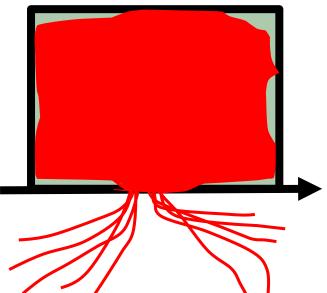
[*] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the shape of a set of points in the plane. IEEE Transactions on Information Theory, 29(4):551–558, 1983.



Smoothing

Details reconstruction: room shape

- Room reconstruction
 - Data-gathering micro-task
 - CWC inside one room
 - Step 1. determine initial/final locations
 - Two camera locations as anchor points



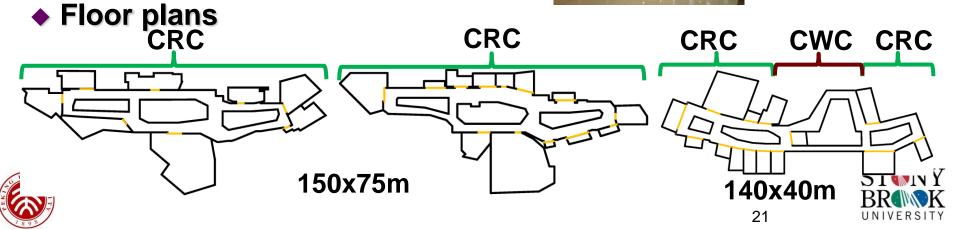
Details reconstruction: room shape

Room reconstruction

- Data-gathering micro-task
 - CWC inside one room
- Step 1. determine initial/final locations
 - Two camera locations as anchor points
- Step 2. use trajectories to build an occupancy grid map
- Step 3. similar thresholding and smoothing

Results Combined hallway, stores Stores

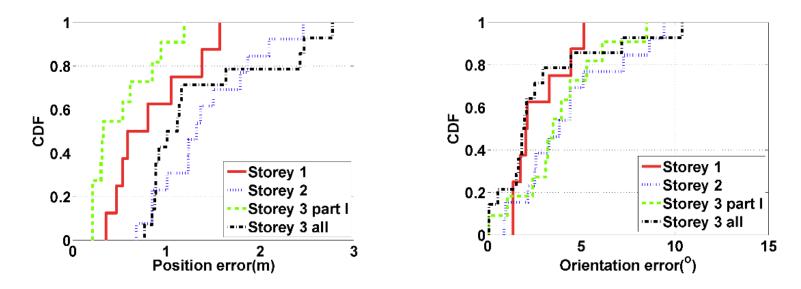
20



Evaluation

Methodology

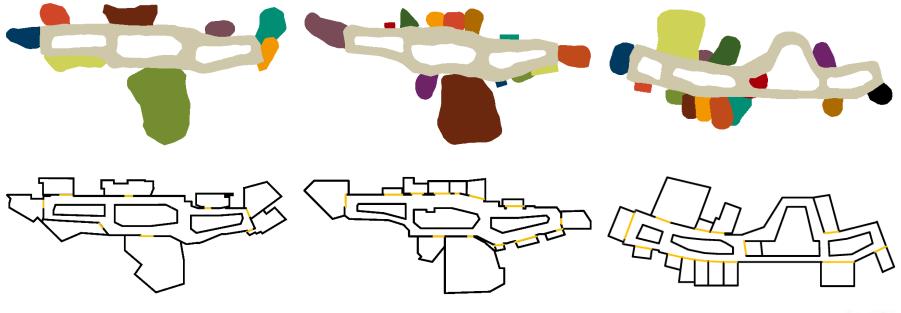
- 3 stories of malls: 150x75m and 140x40m
- 8,13,14 store entrances as landmarks
- 150 photos for each landmark
- 182,184,151 CRC measurements
- 24 CWC measurements in story 3
 - Comprised of two parts
- 96,106,73 user traces along hallway
- ~7 traces inside each store



Reconstructed floor plans

Landmark placement performance

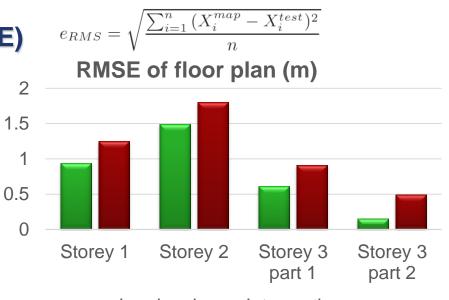
- Store position error 1-2m
- Store orientation error 5-9 degrees



Reconstructed floor plans

Landmark placement performance

- Store position error 1-2m
- Store orientation error 5-9 degrees
- Constructed floor plans



Detailed results

Accuracy of floor plans

- Root mean square error (RMSE)
 - X_i=(x_i,y_i): 2D coordinates
- Features
 - Landmarks
 - Hallway intersections

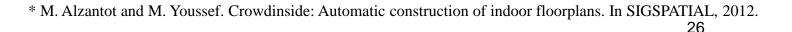
Hallway shape

Landmarks Intersections

- Overlay the reconstructed hallway onto its groundtruth to achieve maximum overlap
- Hallway shape
 - Presicion~80%, Recall~90%, F-score~84%

Comparison with CrowdInside++

- Several assumptions of CrowdInside*
 - Sufficient numbers of anchor points (GPS, inertial, ..)
 - Sufficient amount of traces passing through anchor points
 - Distinctive WiFi signatures in different rooms
- Artificial improvements in CrowdInside++
 - Double the number of anchor points; assume they are GPS-based
 - All traces pass through adjacent anchor points
 - Manually classify room traces
- Results of CrowdInside++
 - Miss a few small-sized stores
 - RMSE and maximum error: 4x of Jigsaw
 - Hallway shape: ~30% less than Jigsaw


Comparison with CrowdInside++

- Several assumptions of CrowdInside*
 - Sufficient numbers of anchor points (GPS, inertial, ..)
 - Sufficient amount of traces passing through anchor points
 - Distinctive WiFi signatures in different rooms
- Artificial improvements in CrowdInside++
 - Double the number of anchor points; assume they are GPS-based
 - All traces pass through adjacent anchor points
 - Manually classify room traces
- Results of CrowdInside++

Causes

- Error accumulation of inertial-only approach
- Deterministic alpha-shape instead of probabilistic occupancy map

Related work

Floor plan construction: relatively new problem

- CrowdInside, Jiang et. al., Walkie-Markie, MapGenie
 - We combine vision and mobile techniques
 - We use optimization and probabilistic techniques

SLAM

- Noisy and piece-wise crowdsensed data
 - No high precision special sensor: laser ranges, stereo/depth cameras
- Estimate landmark orientations
- 3D construction in vision
 - Floor plans require only 2d
- Localization with vision techniques

Summary

 Combine complementary strengths of vision and mobile techniques

- Vision: accurate geometric information, landmark only
- Mobile: relative positions of landmarks, sketches of hallway/room shapes
- Camera locations as anchor points

 Optimization and probabilistic formulations for solid foundations and better robustness

- MLE: landmark placement
- Minimum weight matching: hallway boundary construction
- Occupancy grid map: hallway/room shapes

Thank you!

Questions?

