
A Novel Proof-of-Reputation Consensus for Storage
Allocation in Edge Blockchain Systems

Jiarui Zhang, Yaodong Huang, Fan Ye, Yuanyuan Yang
Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA

{jiarui.zhang.2, yaodong.huang, fan.ye, yuanyuan.yang}@stonybook.edu

Abstract—Edge computing guides the collaborative work of
widely distributed nodes with different sensing, storage, and
computing resources. For example, sensor nodes collect data and
then store it in storage nodes so that computing nodes can access
the data when needed. In this paper, we focus on the quality of
service (QoS) in storage allocation in edge networks. We design a
reputation mechanism for nodes in edge networks, which enables
interactive nodes to evaluate the quality of service for reference.
Each node publicly broadcasts a personal reputation list to
evaluate all other nodes, and each node can calculate the global
reputation of all nodes by aggregating personal reputations.
We then propose a storage allocation algorithm that stores
data to appropriate locations. The algorithm considers fairness,
efficiency, and reliability which is derived from reputations. We
build a novel Proof-of-Reputation (PoR) blockchain to support
consensus on the reputation mechanism and storage allocation.
The PoR blockchain ensures safety performance, saves computing
resources, and avoids centralization. Extensive simulation results
show our proposed algorithm is fair, efficient, and reliable. The
results also show that in the presence of attackers, the success
rate of honest nodes accessing data can reach 99.9%.

I. INTRODUCTION

The exponentially growing edge nodes, such as Internet-
of-Things (IoT) sensors, smartphones, even vehicles, generate
data and create value anytime and anywhere. Under the con-
dition that a single device cannot complete the ever-increasing
large-scale tasks, emerging edge computing has promoted the
cooperation of edge devices with different capabilities all over
the world.

The storage allocation is an important consideration in the
research and application of edge computing [1]. Consider
the following scenarios that edge devices storage and access
data. Many advanced sensors can produce extremely large and
continuous data streams [2]. Short video applications such as
TikTok allow users to share their daily lives by recording and
downloading video clips [3]. Vehicles can access maps and
real-time traffic flow through cellular networks to plan driving
routes [4]. These scenarios require servers to store large
amounts of data generated in the network and quickly access
these data when needed by terminals. To resist disagreements
and adversaries, some traditional centralized solutions need
basic trust like trusted third-party (e.g. certificate authority) or
transitive trust assumption. The limitations of these centralized
solutions that rely on trust parties are significant and inevitable,

such as efficiency problems caused by disconnection and pri-
vacy problems caused by the trust. To avoid the issues caused
by centralization, decentralized solutions are introduced to
edge computing environments.

As a distributed ledger, blockchain is the most prevalent
decentralized system in Peer-to-Peer (P2P) networks. Recently,
the blockchain is introduced as a safe and effective technology
for storage allocation in edge networks. During the storing
process, the edge device obtains a piece of new data and
stores it in other edge devices or servers in the edge network,
and stores the storage location on the blockchain. During the
accessing process, the edge device queries the blockchain to
obtain storage locations of the data and directly selects the
appropriate location to request. Compare to centralized solu-
tions, the blockchain solution guarantees that all the content
can be accessed even when some nodes are offline, and the
query will only send to the selected location without revealing
privacy.

Based on current solutions to resource allocation in edge
network environments, we find that two points are often
ignored. First, current blockchain consensus mechanisms have
limitations. The classic consensus mechanism of blockchain
is Proof-of-Work (PoW), which consumes a large number of
computing resources. Since most edge devices have limited
computing power, it is impossible for them to consume a lot of
computing power to generate blocks. Some work [5], [6] apply
Proof-of-Stake (PoS) instead. The basic idea of the PoS is that
nodes with more tokens generate blocks with higher priority.
A problem with the PoS is that it often leads to unavoidable
centralization. The reason is that block generators usually
have more tokens, and they receive reward tokens as block
generators, which makes them more likely to become block
generators in the future, leading to centralization. Therefore,
we need to design a consensus mechanism to avoid the
limitations of PoW and PoS. Second, network participants
have different reliability, and they may not provide the services
as expected. Generally speaking, if a node provides more
incomplete data, the peer interacting with the node considers
the node to be less reliable. A reputation mechanism is an
appropriate solution to the reliability of network participants
[7]. We customize a reputation mechanism according to our
environment. We are facing the following challenges to over-
come the storage allocation in edge networks, 1) how to
reach a decentralized consensus on the blockchain through
limited resources, 2) how to build an appropriate reputation978-0-7381-3207-5/21/$31.00 ©2021 IEEE

mechanism for nodes to evaluate the trust of others, and 3)
how to consider fairness, efficiency, and reliability for storage
allocation in edge networks.

In this paper, we first design a reputation mechanism in
edge networks. Every node in the network shares the personal
reputation of others. To reach a consensus, every node obtains
the same global reputation from the same personal reputation.
We then propose a storage allocation algorithm that considers
fairness, efficiency, and reputation. Once a user generates a
piece of data, the user stores the data to locations derived by
the algorithm. With the help of our reputation mechanism,
we build a novel Proof-of-Reputation (PoR) blockchain to
maintain the reputation and storage allocation information.
The basic idea of PoR is to let the node with the most
increase of the global reputation value in each block be the
generator. The PoR blockchain avoids limitations of PoW
and PoS mechanisms. Extensive simulations show that our
proposed system ensures a high success rate of accessing data
when keeping fair and efficient storage allocation.

Our main contributions are summarized as follows.
• We design a reputation mechanism for nodes in edge

networks to evaluate each other. The personal reputations
are generated by each node, and the global reputations are
obtained by aggregating personal reputations.

• Considering fairness, efficiency, and reliability, we pro-
pose a storage allocation algorithm. Nodes select storage
locations through the algorithm to store newly generated
data.

• Based on the reputation mechanism, we build a PoR
blockchain to maintain the related information of storage
allocation. The node with the most increase of global
reputation value in each block is selected as the generator.
The PoR blockchain satisfies low cost and decentraliza-
tion.

• We conduct simulations in edge networks to evaluate
the performance. The simulation results show that our
PoR blockchain ensures decentralization, and most block
generators are honest. Compared with previous work,
our algorithm improves the success rate of accessing
data, reaching close to 99.9% in our simulations. The
simulation results also show that our storage allocation
algorithm satisfies fairness, efficiency, and reliability re-
quirements.

The rest of this paper is organized as follows. Section II
briefly reviews the related work. In Section III, we formulate
the problem and propose threat models. In Section IV, we
introduce the reputation mechanism. In Section V, we propose
the storage allocation algorithm. In Section VI, we propose the
PoR blockchain structure. Simulation results are presented in
Section VII. The last section concludes this paper.

II. RELATED WORK

Bitcoin was invented in 2008 by Satoshi Nakamoto [8]
and has been one of the most popular P2P applications. The
related technology blockchain is composed of a chain of
blocks, and the blockchain records transactions generated by

P2P network participants as a distributed consensus ledger.
According to whether a node can join the blockchain freely,
blockchains can be in two forms, permissionless blockchain
and permissioned blockchain. Swanson et al. [9] discussed
the main differences between permissioned and permissionless
blockchains. Briefly speaking, blockchain was first designed
for anonymous cryptocurrency transactions in untrusted envi-
ronments, and nodes can join a permissionless network freely.
There are various permissionless blockchain systems, such as
Bitcoin and Ethereum [10]. Permissioned blockchains have
authorized identities, and different participants have different
access-control authorizations [11], thus a node cannot join a
permissioned blockchains freely since a new node is unautho-
rized. Hyperledger Fabric [12] and Corda [13] are examples
of permissioned blockchain applications.

The advantages of PoR, including low energy consumption
and safety performance, make it an emerging blockchain
consensus mechanism. PoR blockchain applications covering
a variety of scenarios are rising. Gai et al. [14] presented
PoR, the reputation serves as the incentive for both good
behavior and block publication. Based on PoR, Yu et al.
invented RepuCoin [15] with better attack resistance and
higher throughput compared to PoW blockchains. Oliveira et
al. [16] developed PoR and proposed an advanced consensus
for private blockchain systems. Wang et al. [17] implemented
a reputation incentive scheme for blockchain consensus of
Industrial Internet of Things (IIoT).

Blockchain techniques provide secure and decentralized
applications in edge computing environments. To empower
resource trading in mobile edge computing networks, Qiao
et al. [18] applied blockchain to manage resource trading and
task assignment. It combines a third-party trust center server
and blockchain ledger to manage activities reliably. Huang
et al. [19] proposed a consensus resource allocation system
in pervasive edge computing environments. This work fairly
and efficiently allocates storage resources and applies PoS
to save energy consumption. As practical applications, edge
computing and blockchain have become common tools for
Internet-of-Vehicles (IoV) [20], [21].

Reputation management in different edge computing sce-
narios draws attention from researchers in recent years. Some
work that applies reputation mechanisms to blockchain is stud-
ied based on various application scenarios. Huang et al. [22]
discussed reputation management in vehicular edge computing
and networks. Liu et al. [23] optimized resource allocation in
blockchain-based video streaming systems with mobile edge
computing. With the help of reinforcement learning, Xiao et
al. [24] utilized a blockchain-based trust mechanism to resist
attacks in edge networks. In edge computing and networks, the
trust environment, conditional restrictions, and environmental
requirements are highly customized, thus we can see a variety
of different reputation mechanisms and blockchain designs.

III. PROBLEM STATEMENT AND THREAT MODEL

A. Problem Statement

In order to characterize the storage allocation model, we de-
scribe the following two operations that nodes in the network
can perform. First, a node generates a new piece of data, then
stores it in other nodes. Second, a node requests a specific
piece of data from another node that owns the data.

Our purpose is to allocate storage resources reasonably to
fulfill fairness, efficiency, and reliability requirements. The
fairness requirement is to balance the proportion of space
consumed by each node. The efficiency requirement is to
store each piece of data in the network so that all nodes
can efficiently request the data. The reliability requirement
is to store data in reliable nodes. The fairness and efficiency
requirements are straightforward, and we explain the relia-
bility requirement here. Generally speaking, complete data
is considered reliable, and partially or completely missing
data is considered unreliable. Multiple reasons may lower the
reliability of data, such as network fluctuation or malicious
behavior. When accessing data, nodes that provide complete
data are more reliable with a higher probability.

To help nodes quantify the reliability of others, we design
a reputation mechanism that enables nodes to evaluate the
reputations of others. We design a structure to maintain
the storage allocation and the reputation mechanism so that
nodes in edge networks can query data storage and historical
reputation records. We mainly focus on the following three
issues.

1) We design a reputation mechanism for the nodes in the
edge network, which enables the interacting nodes to
evaluate each other for reference.

2) We propose a storage allocation system that considers
fairness, efficiency, and reliability.

3) We build a structure to maintain and support consensus
on the storage allocation and reputation mechanism.

B. Network Assumptions

The network consists of nodes with different storage re-
sources. A node can generate data, select some nodes to
store data, and request data from other nodes. We assume
that all nodes have the basic computing power to generate
blocks of the blockchain. We assume that nodes pay providers
revenue for requested data. This not only prevents nodes from
sending a large number of malicious data requests but also
incentivizes nodes to provide storage resource services. The
specific payment method is beyond the scope of this paper.

C. Threat Model

We list several possible attacks on the mechanism by
malicious attackers to discuss the security performance of our
system. We assume that attackers are all rational, which means
they only focus on maximizing their profits, and do not attack
without profit.

1) Bad-mouthing attack: Attackers use false reputation
feedback to cause deviations in the reputation evaluation
mechanism. Generally speaking, attackers will give high rep-
utation ratings to their own nodes, while giving other nodes
low reputation ratings.

2) Denial-of-service attack: In a general Denial-of-Service
(DoS) attack, attackers dilute regular data by sending a large
amount of false and interfering data. In our environment,
attackers may send a large amount of feedback to interfere
with reputations.

3) Sybil attack: Sybil attackers register multiple different
identities and use expanded capabilities of multiple different
identities to attack. In our environment, attackers may create
multiple identities to participate in the reputation system to
obtain profits.

For the sake of simplicity, in our following discussion,
nodes are divided into honest nodes and malicious nodes.
Honest nodes reply to all requested data and make true
evaluations. Malicious nodes may not reply to requested data
and make false evaluations. /bf In order to study the worst-case
performance of our system, we assume that all malicious nodes
belong to the same attacker, which means that the attacker can
control all malicious nodes to maximize their total profits.

IV. REPUTATION MECHANISM

We introduce our reputation mechanism in this section. In
edge networks, the reputation of a node is the evaluation of
the node by other nodes based on its behavior. Generally
speaking, the behavior of nodes with high reputations is more
compliant with the rules of the network than nodes with
low reputations. According to different sources of evaluators,
our reputation mechanism includes the personal reputation
and global reputation. We also explain these two types of
reputations in detail.

A. Reputation Mechanism Model

In an edge network, the reputation of a node is an evaluation
of the node by other nodes based on its behavior. As Fig. 1
shows, our reputation mechanism establishes the reputation
of each node in two ways, including personal reputation and
global reputation. Personal reputations refer to the evaluations
of a single node to another node. Global reputations are overall
evaluations obtained by aggregating all personal reputations.
Each node maintains a list of personal reputations of other
nodes based on its interaction records in edge networks. Nodes
share personal reputations in the network as public knowledge.
By aggregating the shared personal reputations, all nodes in
the network can obtain a list of recognized global reputations.
As a result, our reputation mechanism not only gives each
node the right to freely evaluate other nodes but also enables
nodes to reach a consensus on global evaluations based on
public knowledge.

B. Personal Reputation

Each node can make its own personal reputations of other
nodes. For the nodes evaluated by node i, we consider that i

Node 𝑖
Node Reputation

𝑗 𝑝𝑖𝑗

𝑘 𝑝𝑖𝑘

𝑙 𝑝𝑖𝑙

……

Node 𝑗 Node 𝑘 Node 𝑙
Node Reputation

𝑖 𝑝𝑘𝑖

𝑗 𝑝𝑘𝑗

𝑙 𝑝𝑘𝑙

……

Node Reputation

𝑖 𝑝𝑙𝑖

𝑗 𝑝𝑙𝑗

𝑘 𝑝𝑙𝑘

……

……

Node Reputation

𝑖 𝑝𝑗𝑖

𝑘 𝑝𝑗𝑘

𝑙 𝑝𝑗𝑙

……

Global Reputation

Node Reputation

𝑖 𝑔𝑖

𝑗 𝑔𝑗

𝑘 𝑔𝑘

𝑙 𝑔𝑙

……

Data
Exchange

Data
Exchange

Update Update Update Update

Aggregation Algorithm

Input:
Personal

Reputation

Output:
Global

Reputation

(a)

Fig. 1. A simple graph of relationships of global reputation, personal reputation, and data exchange. Each node maintains and shares its personal reputation
list. After two nodes exchange data, they will update the reputations each other. Based on the shared reputation list, each node can calculate the same global
reputation list using the same aggregation algorithm.

evaluates a personal reputation pij for node j. This personal
reputation is derived from the perspective of i based on the
historical behaviors of j. Different nodes may observe different
historical behaviors due to different perspectives, and they
may have different personal reputation evaluations of the same
object. For example, the personal reputation pkj of node j
by node k may be different from pij . Among these different
personal reputations, each node maintains its own personal
reputation, and each node cannot directly modify the personal
reputations of other nodes. In other words, node i maintains
its personal reputation pij for node j, and only i can update
the value of pij .

C. Global Reputation

In practical applications, we often need all nodes to reach a
consensus on the reputation of nodes in the network. However,
since the personal reputation of the same object is often
different, applying the personal reputations of any node cannot
make most nodes in the network reach a consensus. In order to
obtain a reputation list that most nodes can reach a consensus,
we need a method to aggregate a global reputation to evaluate
a node based on the personal reputations of all nodes. The
global reputation gi of node i is derived from the personal
reputations of all nodes. We aggregate personal reputations
by EigenTrust algorithm [25], which is a highly adaptable
algorithm for calculating global reputation based on personal

reputations in P2P networks. Here, we briefly describe the
EigenTrust algorithm.

Since the evaluation criteria and dimensions of each node
are different, the EigenTrust algorithm standardizes all per-
sonal reputations as shown below,

cij =
max(pij , 0)∑
j max(pij , 0)

. (1)

The personal reputation pij is standardized to cij for each
i, j ∈ V , where V is a node set including all nodes in the
network. After the standardization, node i adjusts its views
on node j according to the personal reputation provided by
other nodes. Using matrix notation to describe, the original
standardized personal reputations of node i on all nodes is
the vector ci, the standardized personal reputation matrix of
all nodes [cij] is C, and node i can update the personal
reputation vector c′i = CT ci. Node i can iterate the update
process continuously, and the result of iterating n times is
ti = (CT)nci. For all nodes i, ti often converges to the
same vector after less than 10 iterations [25], [26]. To simply
compute the converged vector, nodes apply e instead of any
ci as the initial reputation vector, ei = 1/|V|. Assume gi is
used to evaluate the global reputation of node i, nodes can
compute the global reputation vector g,

g = (CT)ne. (2)

While personal reputations are public knowledge, nodes
in the network can independently obtain the same global
reputation vector g and reach a consensus on the vector.

V. STORAGE ALLOCATION

In edge networks, nodes have different kinds and amounts
of resources. For example, edge computing networks take
advantage of the widespread of sensor nodes to collect data
from many channels. Due to cost issues, these sensor nodes
that can be widely distributed often have limited storage and
computing resources, and they need to transmit the collected
data to other nodes with more resources. Since the cost
increases with the growth of storage and computing resources,
nodes with a large amount of storage and computing resources
cannot be widely distributed. In such edge networks, the
storage allocation needs to consider different storage, location,
computing power, network bandwidth, and other resources of
each node.

Reliability is another concern when considering resource
allocation issues. Honest nodes and malicious nodes may
not provide complete data, thereby affecting their reliability.
Honest nodes may not provide complete data due to reasons
such as network disconnection and power outage. Malicious
nodes can perform a variety of malicious behaviors, such as
providing incomplete or empty data, and not storing data that
should be stored. Nodes can use the reputation mechanism
to record the completeness of data sent by each node, then
determine whether a node is reliable. Therefore, the reputation
mechanism helps nodes maintain the reliability of others,
thereby helping to adjust resource allocation and improve
security.

A. Fairness and Efficiency of Storage Allocation

Previous work [19] has introduced the requirements of
fair and efficient storage allocation. Based on this work, we
briefly introduce the fairness and efficiency requirements in
our environments.

We first consider the fairness requirement. Since the total
storage resource of nodes is different, in order to keep the
storage allocation fair, we consider balancing the proportion of
consumed storage resource instead of the absolute amounts of
consumed storage resource. Nodes with a smaller proportion of
consumed storage resources have a higher priority to store new
data. Fairness Degree Cost (FDC) is the resource consumption
measurement. The FDC of node i is fi =

W (i)
Wtol(i)−W (i) , where

W (i) is the consumed storage resource of i, and Wtol(i) is
the total storage resource of i. In particular, when W (i) =
Wtol(i), node i has no remaining storage resource, fi =∞.

Then we introduce the efficiency requirement. Generally
speaking, the longer the distance between the data sending
node and the receiving node, the higher their transmission
delay cost. We use hop-count distance in this paper for
simplicity. The transmission delay cost of node i transmitting
data to the node j is denoted as rij , which is also called
Range-Distance Cost (RDC) in our setting.

Now we discuss the case of storing a piece of data. The
following Uncapacitated Facility Location (UFL) problem [27]
formula describes the storage allocation based on FDC and
RDC measurements [19]:

min A
∑
i∈V

fiyi +
∑
i∈V

∑
j∈V

rijxij (3)

s.t.
∑
i∈V

xij > 1, ∀j ∈ V (4)

yi − xij > 0, ∀i, j ∈ V (5)
xij , yi ∈ {0, 1}. ∀i, j ∈ V (6)

xij and yi indicate the allocation result. Node i stores the
piece of data if yi = 1, and node i would access the piece of
data from j if xij = 1. A = 1000 in objective function (3)
is a parameter to match the value range of FDC and RDC.
Constraint (4) ensures each node access data from at least one
node, and constraint (5) guarantees a node that receives access
requests owns the piece of data.

B. Reliability of Storage Allocation

When allocating storage space fairly and effectively, we also
need to consider the reliability to ensure the completeness
of the requested data. For example, when a node queries a
malicious node for a piece of data, the malicious node may not
save or provide data to reduce resource consumption. In this
case, the node cannot receive the complete data. Therefore,
we import the reliability of data provided by nodes when
determining the storage allocation to increase the probability
of successfully requesting complete data. According to the
impact of reliability on fairness and efficiency, we adjust the
FDC term and RDC term of the function separately.

1) Reputation coefficient: Since the reputation mechanism
in Section IV can maintain the completeness of data provided
by nodes, we add a reputation coefficient to the objective func-
tion (3) to adjust the storage allocation based on the reputation
of nodes. We define a reliability coefficient hi = gi/gmax

represents the ratio of the global reputation of node i to
the highest global reputation. gmax is the maximum global
reputation, i.e., gmax = max{gi},∀i ∈ V . Since hi shows the
relative reliability in standardized global reputation, we adjust
FDC and RDC according to this coefficient.

2) Fairness degree cost: Node i may not store the data
allocated to it, because it does not want to share storage
resources as it claims. Based on storage resources declared by
nodes and global reputations, nodes can estimate the storage
resources that each node supposes to consume. For node
i, it claims total storage resource Wtol(i), and its global
reputation is gi, other nodes estimate that it supposes to
consume W ′tol(i) = h(i)Wtol(i). A straightforward method
is to replace Wtol(i) in fi with W ′tol(i). However, nodes may
exaggerate storage resources to reduce FDC, directly replacing
FDC that cannot effectively increase FDC in this case. To
avoid this case, we regard Wtol(i)−W ′tol(i) = (1−hi)Wtol(i)
as additional consumed storage resources. It can effectively

increase the FDC of nodes with exaggerated resources and
reduce their priority. Therefore, we use (1−hi)Wtol(i)+W (i)
to replace W (i) in fi. We modify the FDC term as follows,

f ′i =
(1− hi)Wtol(i) +W (i)

Wtol(i)− ((1− hi)Wtol(i) +W (i))
. (7)

Note that it is possible that Wtol(i) − ((1 − hi)Wtol(i) +
W (i)) 6 0. In this case, we make f ′i =∞, which means the
algorithm will not let node i store new data.

3) Range-distance cost: Each node has reputation evalua-
tion for other nodes based on historical data requests. Since a
node with a high success rate of requesting data often have a
high reputation, when a node selects targets to request data,
it should consider not only the transmission cost but also the
reputation. rij represents the RDC of j accesses data from i.
We can adjust it through the related personal reputation pji or
the related global reputation gi. We choose to adjust RDC with
the global reputation for two reasons. First, the standardized
global reputation is more appropriate to use in the equation.
Second, the global reputation is more difficult to manipulate
compared to the personal reputation. Therefore, using the
global reputation makes it more difficult for the attacker to
manipulate resource allocation. Since hi ∈ [0, 1], using the
reliability coefficient hi instead of the global reputation gi
keeps the RDC term in scale. We modify the RDC rij by hi

as follows,
r′ij =

rij
hi

. (8)

As a result, based on the traditional uncapacitated facility
location problem, we additionally considered the role of relia-
bility in both FDC and RDC terms. Our modified UFL model
is as follows,

min A
∑
i∈V

f ′iyi +
∑
i∈V

∑
j∈V

r′ijxij (9)

s.t.
∑
i∈V

xij > 1, ∀j ∈ V (10)

yi − xij > 0, ∀i, j ∈ V (11)
xij , yi ∈ {0, 1}. ∀i, j ∈ V (12)

The current best solution to the UFL problem is proposed
by Li et al. [28]. Since it is a 1.488 approximation algorithm
with randomization, nodes may compute different results for
the same UFL conditions.

Note that the algorithm is conducted by block generators.
The latest block generator uses the results to determine the
storing nodes of data pieces generated after the previous block.

VI. POR BLOCKCHAIN

In this section, we propose a PoR blockchain to maintain the
above reputation mechanism and storage allocation records.
The blockchain provides a consensus ledger for a series of
transactions made by nodes in the network, and it also adapts
to the consensus of reputation and storage allocation. Based
on the reputation mechanism, we use PoR as the consensus
mechanism in our design instead of classic PoW or PoS
mechanisms.

A. Recording Information by Blockchain

We have introduced the reputation mechanism and the
storage allocation in previous sections, and we need a structure
for nodes in edge networks to apply them. The structure should
provide a reliable information recording function so that each
node can reach a consensus on information recording. The
blockchain is widely used in edge networks for nodes to
reach a consensus, and it can provide an immutable ledger
for recording information. We then discuss how blockchain
records the required information.

1) Reputation mechanism: Global reputations are computed
by aggregating personal reputations. All nodes need to reach a
consensus on global reputations so that nodes can calculate the
algorithm in Section V based on the same global reputations. It
faces two challenges. First, personal reputations are constantly
changing, it is hard for nodes to keep updating the newest
global reputations. Second, the network latency makes the
personal reputation records of nodes inevitably different, and
the different global reputations calculated by nodes cannot
reach a consensus. To solve the challenges, we let block gener-
ators record current global reputations when generating blocks.
More specifically, based on global reputations recorded in
the previous block and personal reputation transactions in the
current block, the generator of the current block calculates new
global reputations and records them in the current block. Once
a node receives a new block, it validates the content in the
new block and computes the global reputation by aggregating
personal reputations recorded in the new block and previous
blocks. The node applies the global reputations recorded in
this block when needed and refreshes the reputation records
until it accepts the next block. Therefore, all nodes follow the
global reputations recorded in the latest block.

2) Storage allocation: Recording storage allocation is for
the convenience of nodes to know where it is stored when
querying data. When a node is ready to store a piece of new
data, it obtains locations to be stored according to the storage
allocation algorithm. Then it broadcasts the data summary and
storage location in the form of transactions. The blockchain
records those transactions, and other nodes can query the
storage location of any data.

B. Consensus Mechanisms Overview

The blockchain needs a consensus mechanism so that all
nodes can reach a consensus on the content of the block.
PoW and PoS are common consensus mechanisms in previous
blockchain applications. These consensus mechanisms are
mainly used to confirm the generators for new blocks. PoW se-
lects new block generators through the consumption of proven
computing power, and PoS selects new block generators based
on the assets owned by participants.

PoR is an emerging consensus mechanism. The basic idea
of PoR is to let the node with the most increase of global
reputation value in each block be the generator. Intuitively
speaking, the node with the most increase of global reputation
is the node that makes the most profit at the reputation aspect.
It needs to be honest to obtain the support of other nodes and

obtain the corresponding increase in reputation. As evidence
of personal and global reputations, the block generator needs
to record changes in both reputations.

Commonly used consensus mechanisms, such as PoW and
PoS, have limitations in our environment. The PoW mech-
anism needs to consume a lot of computing resources. In
edge computing environments, the computing resources owned
by different devices are unbalanced and predictable. Using
the PoW mechanism not only consumes a lot of computing
power but also makes it difficult for most edge nodes to
compete for generating blocks. The PoS mechanism leads
to inevitable centralization, that is, the block generators are
always the same group of nodes, which makes it possible for
them to manipulate the reputation mechanism. Therefore, in
our environment, PoW and PoS mechanisms are inappropriate.

C. PoR Blockchain Design

We describe the specific PoR blockchain in detail. PoR
needs a reputation mechanism as a foundation, and we have
already proposed a reputation mechanism in Section IV. The
reputation mechanism allows nodes to evaluate the personal
reputation of others and generates the global reputation of
each node. We next describe in detail how to use the existing
reputation mechanism to design a PoR blockchain.

1) Restricting reputation updates: The reputation mech-
anism has no restriction for the frequency and timing of
reputation updates. If a large number of nodes send reputation
update information at a high frequency, a large amount of
reputation update information will flood the network.

To solve the above problem, we limit the frequency and
timing of reputation updates. We stipulate that nodes can
update the reputation only if they have finished an interaction.
In our storage allocation environment, the interaction means
that node i requests data from node j, and they can update
the reputation of each other once. In order to prove that a
reputation update is related to an interaction, the reputation
update information points to the corresponding data interac-
tion. Thus, the frequency and timing of reputation updates
are related to the frequency of data requests, and we need
to restrict the frequency of data requests. The attacker can
achieve the purpose of frequent malicious evaluations through
frequent data requests. To avoid this situation, we allow one
node to ask another node for the same piece of data once in
one block. The reason is that for the same piece of data, the
node has a cache for its recent access. For different pieces of
data, they are generally stored in different nodes. The extra
interaction messages will be ignored by other nodes.

2) Selecting block generators: The node with the most
increase of global reputation in the current block is selected as
the new block generator. The selection is as fair as possible to
obtain confirmation from other nodes. However, a malicious
node can behave maliciously in the beginning, then behave
honestly to make a fluctuation of its global reputation between
two different blocks. To avoid this case, we further add
a constraint that the block generator must have a global
reputation in the top 50%. This constraint prevents a node

from becoming a block generator by reputation boost in a
short period.

Assume the current block is the t-th block in the blockchain,
and the global reputation of node i is gi(t) after applying all
personal reputation changes recorded in the t-th block. Assume
V ′(t) contains the top 50% of the nodes in global reputation
in the t-th block. If the block generator of the t-th block is
node i, it satisfies

gi(t)− gi(t− 1) > gj(t)− gj(t− 1),∀j ∈ V ′(t). (13)

3) Generating new blocks: We describe the block gener-
ation process from the perspective of one node. The node
continuously exchanges data in the network to generate corre-
sponding transactions and reputation updates. The node broad-
casts this information to the entire network after signing and
receives such information from other nodes. When the number
of data exchange transactions and reputation updates reaches a
certain number, a new block is required to package and record
these transactions and reputation updates on the blockchain.
The node calculates new personal reputations through local
personal reputation records and reputation updates that will
be recorded in the new block. The node then computes the
global reputation and checks whether it is the node with the
highest reputation in the new block. If it is, it will broadcast
the new block to the entire network. Otherwise, other nodes
will generate new blocks, the node will check received blocks,
and select a block generated by the correct block generator to
continue working on it. To verify the validity of the block and
the generator, the node verifies the transactions in the block
and calculates the corresponding global reputation based on
the content of the block.

4) Permissioned blockchain: Traditional blockchain is per-
missionless blockchain, which means nodes spread out the
Internet can join or leave a permissionless blockchain with-
out permission from any party. On contrary, a permissioned
blockchain has restrictions in its memberships, users cannot
join a permissioned blockchain freely.

We use permissioned blockchain instead of permissionless
blockchain in our design. The reason is that permissioned
blockchain improves the security performance of the reputa-
tion mechanism. The cost of attacks against reputation mech-
anisms in a permissionless environment is low, such as white-
washing attacks and Sybil attacks. A permitted blockchain has
thresholds for joining nodes, or they have to pass the audit of
existing nodes. The attacker needs to spend high costs to obtain
identities in the blockchain. With the help of the reputation
system, malicious nodes will be exposed, greatly increasing
the cost of attack and improving the security performance.

Note that nodes need approval to enter and leave the
permissioned blockchain. We give block generators the right
to approve nodes to enter the network or remove nodes from
the network. As long as several consecutive block generators
approve, a node enters or moves out of the permissioned
blockchain. The more specific design is beyond the scope of
this paper.

D. Security Analysis

We discuss the security performance of PoR.
1) Bad-mouthing attack: In our PoR blockchain, the form

of bad-mouthing attack is that the attacker conducts malicious
evaluations after data interactions, which improves its own
reputation and reduces the reputation of other nodes to gain the
advantage of becoming a block generator in the competition.
Since it is difficult for a third-party node that is not an interac-
tive participant to obtain the actual interaction process between
two nodes, it is difficult to detect malicious evaluations by the
attacker. However, this attack is difficult to affect PoR. First,
evaluations from a single node have a limited impact on the
global reputation. Second, a node that keeps evaluating the
personal reputation of others maliciously will be detected by
honest nodes, and it will receive negative feedback from honest
nodes. This leads to a decline in the global reputation of the
node, and the node is at a disadvantage in the competition of
block generators. Therefore, an attacker who performs a bad-
mouthing attack cannot give an advantage to competing block
generators.

2) Denial of Service attack: In our environment, the at-
tacker performs a DoS attack by sending a large amount of
spam feedback information to flood the network to block the
transmission of normal reputation feedback. Since one node
can only ask another node for the same piece of data once
in one block, the number of times that any pair of nodes can
evaluate each other is limited. Therefore, the attacker cannot
send a large amount of spam reputation updates, and our PoR
mechanism can effectively prevent DoS attacks.

3) Sybil attack: The attacker has two ways to perform Sybil
attacks on our PoR blockchain. The first way is to create a
large number of puppet nodes and use these nodes to perform
malicious operations. The creation of a large number of puppet
nodes is hard in permissioned environment since it is generally
easy to find and consumes a lot of costs. Thus, this form of
attack is hard to implement in our permissioned environment.
The second way is that the attacker lets a node exit after its
reputation is low, then the attacker joins the network with a
new identity, which is also known as a whitewashing attack.
However, re-entering the network requires costs, such as the
time cost of waiting to join the permissioned blockchain
and the monetary cost of identity mortgages. Moreover, the
reputation of the new identity will be lowered if it keeps
behaving maliciously. Therefore, it is difficult for Sybil Attack
to play a role in the permissioned PoR blockchain.

VII. PERFORMANCE EVALUATION

A. Simulation Process and Settings

Since global reputation is standardized, nodes can use a
variety of reputation mechanisms. In our simulations, all nodes
use a simple personal reputation mechanism. We describe the
mechanism in the perspective of an honest node i evaluates
personal reputation pij of a node j.
• Node i records the number of good evaluations goodij

and total evaluations of node totij . If node i receives a

piece of data from node j, then totij = totij + 1. If the
data is complete, goodij = goodij + 1.

• If node i gives a piece of data to j, totij = totij + 1. If
node j increases pij after receives the data from i, then
goodij = goodij + 1.

• pij = goodij/totij .

We generate an operation list, representing the operations
of the nodes in the network arranged in chronological order.
From the perspective of node i, we introduce the following
two operations.

• Node i generates a new piece of data. Node i provides
the data size, queries the latest block generator for
storage locations, and stores the data in the corresponding
locations.

• Node i accesses a piece of existing data. Node i accesses
the data from node j that owns the data to minimize
rij/pij .

After each access, nodes related to the access update the per-
sonal reputation of each other. When the number of operations
reaches a threshold, the node with the highest global reputation
becomes a new block generator. It generates a new block and
updates the global reputation.

We generate the total storage resource Wtol(i) for each
node i by a normal distribution, N (1000000, 100000) KB.
We generate the size of each piece of data by N (100, 30) KB.
Each piece of data will be accessed by a uniformly random
node multiple times, which are generated by N (10, 2). We
generate an operation list, and the simulation runs according
to that list. The number of generating operations divided by
the number of access operations is approximately 0.1, and they
appear evenly in the list. When the number of operations not
on the blockchain reaches 110, the node that satisfies condition
(13) generates a new block that records these operations. We
terminate simulations when the number of blocks reaches
1000. We generate the test network G = (V, E) by the Watts-
Strogatz model [29]. This model generates networks that reveal
properties of some real communication networks.

We let honest nodes constantly give factual evaluations and
provide complete data. To test the security of our design, we
make some nodes malicious. Malicious nodes perform bad-
mouthing attacks by conducting malicious evaluations after
operations. In addition, malicious nodes may refuse to provide
data. The attack probability is 0.5, that is, there is a probability
of 50% that malicious nodes make wrong evaluations, and
malicious nodes refuse to provide data with a probability of
50%. Considering the worst case, we assume that all malicious
nodes always make good evaluations with each other. We
run simulations under environments that include the different
proportions of malicious nodes. We only show measurements
of honest nodes, since our system is designed for honest nodes.

We use the algorithm in [19] as the benchmark. In the
following simulation, we compare the results of the algorithm
and the benchmark.

 0

 2

 4

 6

 8

 10

0-19 20-39 40-59 60-79 80-99 100-119120-139

N
u
m

b
e
r

o
f

N
o
d
e
s

Number of Blocks

30% Malicious Nodes

20% Malicious Nodes

10% Malicious Nodes

Fig. 2. A histogram representing the
distribution of the number of blocks
generated by the node.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

G
in

i
C
o
e
ff

ic
ie

n
t

Number of Blocks

30% Malicious Nodes

20% Malicious Nodes

10% Malicious Nodes

Fig. 3. The Gini coefficients of the
used storage ratio for all nodes.

B. Decentralization Test

We count the number of blocks generated by each node, and
use a histogram in Fig. 2 to show the distribution of the number
under different proportions of malicious nodes. The reason for
the distribution of a certain number of nodes in the range of 0
to 19 is that all malicious nodes are distributed in this range.
It is worth mentioning that in all simulations, malicious nodes
can generate up to 2 blocks out of 1000. Very few honest nodes
generate more than 100 blocks or less than 20 blocks, and no
node generates more than 120 blocks. Most honest nodes can
generate 40 to 100 blocks. These phenomena show that in
the PoR blockchain, most honest nodes can generate close to
the average number of blocks, and very few nodes generate a
small or large number of blocks. Thus, we can conclude that
our PoR blockchain is decentralized, and it can ensure that the
block generators are honest with a high probability.

C. Fairness Test

We use the Gini coefficient1 of the used storage ratio
to show the fairness of our system. Once a new block is
generated, we compute the Gini coefficient of the used storage
ratio for all honest nodes. In Fig. 3(b), in different proportions
of malicious nodes, the Gini coefficients of all tests decrease
with blocks increase. Although the Gini coefficients are un-
stable at the beginning, it decreases as the block is generated,
and finally converges to less than 0.2. The reason for this
phenomenon is similar to the reason for the phenomenon Fig.
3(a), reputation gaps in the initial stages also affect the balance
of storage allocation results. As blocks increase, the used
storage ratio balances. Therefore, we can conclude that our
algorithm is fair in the long term.

D. Efficiency Test

To show the efficiency of our algorithm, we count the av-
erage hop-count distance to access data. Since the benchmark
is an efficient algorithm, we can conclude that our algorithm
is efficient if the average hop-count distance of data request
computed by these two algorithms is close. In Fig. 4(a), the
average hop-count distance computed by our algorithm rapidly

1The Gini coefficient is widely used to measure the statistical disparities,
and previous work [30], [31] used it to measure the fairness properties in edge
environments. Gini =

∑
i

∑
j |qi−qj |

2
∑

i

∑
j qj

.

reaches 2, then increases slowly and stabilizes at 2.2. Fig.
4(b) shows that the growth rate of the average hop-count
distance computed by the benchmark algorithm is relatively
slow, and the average eventually tended to around 2.2. The
average access distance of our algorithm is unstable at the
beginning, and after rapid stabilization, it is close to the result
obtained by the benchmark.

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000

H
o
p
-C

o
u
n
t

D
is

ta
n
ce

Number of Blocks

30% Malicious Nodes

20% Malicious Nodes

10% Malicious Nodes

(a)

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000

H
o
p
-C

o
u
n
t

D
is

ta
n
ce

Number of Blocks

30% Malicious Nodes

20% Malicious Nodes

10% Malicious Nodes

(b)

Fig. 4. The average hop-count distance of accessing data. (a) shows the results
computed by our algorithm. (b) shows the results computed by the benchmark
algorithm.

E. Successful Access Rate Test

The successful access rate test reveals the reliability of
our algorithm. The reliability requires the algorithm to store
data to honest nodes, and it is supposed to improve the
successful access rate. Once a new block is generated, we
compute the successful rate of accessing data. In Fig. 5(a),
the successful access rate is above 99.9% in all simulations.
In Fig. 5(b), the successful access rate decreases significantly
with the increase in the proportion of malicious nodes. When
the network includes 40% malicious nodes, compared with
the benchmark, our algorithm improves the successful access
rate by 14.6%. Therefore, our algorithm greatly improves the
successful access rate compared with the benchmark and meets
the reliability requirements.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000

S
u
c
c
e
s
s
fu

l
A
c
c
e
s
s
 R

a
te

Number of Blocks

30% Malicious Nodes

20% Malicious Nodes

10% Malicious Nodes

(a)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000

S
u
c
c
e
s
s
fu

l
A
c
c
e
s
s
 R

a
te

Number of Blocks

30% Malicious Nodes

20% Malicious Nodes

10% Malicious Nodes

(b)

Fig. 5. The average successful access rate. (a) shows the results computed by
our algorithm. (b) shows the results computed by the benchmark algorithm.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a reputation mechanism
that consists of personal reputation and global reputation.
All nodes evaluate others by personal reputations, and they
obtain global reputations by aggregating the same personal

reputations of all nodes. We have designed a storage allocation
mechanism that satisfies fairness, efficiency, and reliability. We
have constructed a PoS blockchain based on our reputation
mechanism, which costs low computing power and avoids
centralization. Our simulations show that our system meets
our expectations from multiple measurements. The storage
allocation algorithm improves the access success rate while
maintaining fairness and efficiency. In the case of malicious
nodes that may not provide data, our system can achieve a
99.9% success rate of accessing data. The simulations also
show that the PoR blockchain prevents centralization and
ensures that the block generators are honest with a high
probability.

In edge networks, new devices and servers will replace
old devices and servers. It requires us to manage the joining
and leaving of nodes. In addition, we use a permissioned
blockchain to manage access to the blockchain to prevent
attacks. Based on the above two concerns, we will further
improve the permissioned blockchain network protocol to
manage nodes joining and leaving the network, and eliminate
nodes with lower reputations.

ACKNOWLEDGMENT

The work in this paper was supported in part by the grant
from US National Science Foundation under grant numbers
1513719 and 1730291.

REFERENCES

[1] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A
survey on the edge computing for the internet of things,” IEEE access,
vol. 6, pp. 6900–6919, 2017.

[2] P. Beckman, R. Sankaran, C. Catlett, N. Ferrier, R. Jacob, and M. Papka,
“Waggle: An open sensor platform for edge computing,” in 2016 IEEE
SENSORS. IEEE, 2016, pp. 1–3.

[3] X. Cheng, J. Liu, and C. Dale, “Understanding the characteristics of
internet short video sharing: A youtube-based measurement study,” IEEE
transactions on multimedia, vol. 15, no. 5, pp. 1184–1194, 2013.

[4] L. Mendiboure, M. A. Chalouf, and F. Krief, “Survey on blockchain-
based applications in internet of vehicles,” Computers & Electrical
Engineering, vol. 84, p. 106646, 2020.

[5] W. Sun, J. Liu, Y. Yue, and P. Wang, “Joint resource allocation and
incentive design for blockchain-based mobile edge computing,” IEEE
Transactions on Wireless Communications, vol. 19, no. 9, pp. 6050–
6064, 2020.

[6] Y. Yuan and F.-Y. Wang, “Towards blockchain-based intelligent trans-
portation systems,” in 2016 IEEE 19th International Conference on
Intelligent Transportation Systems (ITSC). IEEE, 2016, pp. 2663–2668.

[7] P. Kochovski, S. Gec, V. Stankovski, M. Bajec, and P. D. Drobintsev,
“Trust management in a blockchain based fog computing platform with
trustless smart oracles,” Future Generation Computer Systems, vol. 101,
pp. 747–759, 2019.

[8] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[9] T. Swanson, “Consensus-as-a-service: a brief report on the emergence
of permissioned, distributed ledger systems,” Report, available online,
2015.

[10] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[11] M. Liu, K. Wu, and J. J. Xu, “How will blockchain technology
impact auditing and accounting: Permissionless versus permissioned
blockchain,” Current Issues in Auditing, vol. 13, no. 2, pp. A19–A29,
2019.

[12] C. Cachin et al., “Architecture of the hyperledger blockchain fabric,” in
Workshop on distributed cryptocurrencies and consensus ledgers, vol.
310, no. 4. Chicago, IL, 2016.

[13] M. Hearn, “Corda: A distributed ledger,” Corda Technical White Paper,
vol. 2016, 2016.

[14] F. Gai, B. Wang, W. Deng, and W. Peng, “Proof of reputation: A
reputation-based consensus protocol for peer-to-peer network,” in Inter-
national Conference on Database Systems for Advanced Applications.
Springer, 2018, pp. 666–681.

[15] J. Yu, D. Kozhaya, J. Decouchant, and P. Esteves-Verissimo, “Repucoin:
Your reputation is your power,” IEEE Transactions on Computers,
vol. 68, no. 8, pp. 1225–1237, 2019.

[16] M. T. de Oliveira, L. H. Reis, D. S. Medeiros, R. C. Carrano, S. D.
Olabarriaga, and D. M. Mattos, “Blockchain reputation-based consensus:
A scalable and resilient mechanism for distributed mistrusting applica-
tions,” Computer Networks, vol. 179, p. 107367, 2020.

[17] E. K. Wang, Z. Liang, C.-M. Chen, S. Kumari, and M. K. Khan, “Porx:
A reputation incentive scheme for blockchain consensus of iiot,” Future
Generation Computer Systems, vol. 102, pp. 140–151, 2020.

[18] G. Qiao, S. Leng, H. Chai, A. Asadi, and Y. Zhang, “Blockchain
empowered resource trading in mobile edge computing and networks,”
in ICC 2019-2019 IEEE International Conference on Communications
(ICC). IEEE, 2019, pp. 1–6.

[19] Y. Huang, J. Zhang, J. Duan, B. Xiao, F. Ye, and Y. Yang, “Resource
allocation and consensus on edge blockchain in pervasive edge com-
puting environments,” in 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2019, pp. 1476–1486.

[20] X. Lin, J. Wu, S. Mumtaz, S. Garg, J. Li, and M. Guizani, “Blockchain-
based on-demand computing resource trading in iov-assisted smart city,”
IEEE Transactions on Emerging Topics in Computing, 2020.

[21] F. Ayaz, Z. Sheng, D. Tian, and Y. L. Guan, “A proof-of-quality-factor
(poqf) based blockchain and edge computing for vehicular message
dissemination,” IEEE Internet of Things Journal, 2020.

[22] X. Huang, R. Yu, J. Kang, and Y. Zhang, “Distributed reputation
management for secure and efficient vehicular edge computing and
networks,” IEEE Access, vol. 5, pp. 25 408–25 420, 2017.

[23] M. Liu, F. R. Yu, Y. Teng, V. C. Leung, and M. Song, “Distributed
resource allocation in blockchain-based video streaming systems with
mobile edge computing,” IEEE Transactions on Wireless Communica-
tions, vol. 18, no. 1, pp. 695–708, 2018.

[24] L. Xiao, Y. Ding, D. Jiang, J. Huang, D. Wang, J. Li, and H. V. Poor, “A
reinforcement learning and blockchain-based trust mechanism for edge
networks,” IEEE Transactions on Communications, 2020.

[25] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust
algorithm for reputation management in p2p networks,” in Proceedings
of the 12th international conference on World Wide Web, 2003, pp. 640–
651.

[26] T. Haveliwala and S. Kamvar, “The second eigenvalue of the google
matrix,” Stanford, Tech. Rep., 2003.

[27] G. Cornuéjols, G. Nemhauser, and L. Wolsey, “The uncapicitated
facility location problem,” Cornell University Operations Research and
Industrial Engineering, Tech. Rep., 1983.

[28] S. Li, “A 1.488 approximation algorithm for the uncapacitated facility
location problem,” Information and Computation, vol. 222, pp. 45–58,
2013.

[29] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[30] Y. Huang, X. Song, F. Ye, Y. Yang, and X. Li, “Fair caching algorithms
for peer data sharing in pervasive edge computing environments,” in
2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2017, pp. 605–614.

[31] D. Wei, K. Zhu, and X. Wang, “Fairness-aware cooperative caching
scheme for mobile social networks,” in 2014 IEEE international con-
ference on communications (ICC). IEEE, 2014, pp. 2484–2489.

