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ABSTRACT
The trading of social media data has attracted wide research

interests over years. Especially the trading for web browsing

histories probably produces tremendous economic value for data

consumers when being applied to targeted advertising. However,

the disclosure of entire browsing histories, even in form of anony-

mous datasets poses a huge threat to user privacy. Although some

existing solutions have investigated privacy-preserving outsourcing

of social media data, unfortunately, they neglected the impact on the

data consumer’s utility. In this paper, we propose PEATSE, a new
Privacy-prEserving dAta Trading framework for web browSing

historiEs. It takes users’ diverse privacy preferences and the

utility of their web browsing histories into consideration. PEATSE
perturbs users’ detailed browsing times on released browsing

records to protect user privacy, while balancing the privacy-

utility tradeoff. Through real-data based experiments, our analysis

and evaluation results demonstrate PEATSE indeed achieves user

privacy protection, the data consumer’s accuracy requirement, and

truthfulness, individual rationality as well as budget balance.

CCS CONCEPTS
• Security and privacy→ Economics of security and privacy.

KEYWORDS
web browsing history, privacy-preserving, data trading.

1 INTRODUCTION
The web browsing history refers to the set of web pages a user ever

visited in previous online activities, and usually includes titles of

web pages and corresponding URLs [5]. The emergence of big data

era generates petabytes of data [1] per day like the web browsing
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history, which includes social media data (such as tweets), financial,

health and video data. Furthermore, these data have tremendous

usage for data consumers to study users’ preferences, and further

deliver targeted advertising based on the inferred preference. For

example, Nestle corporation achieved a 52% lift in engagement rate

in 2015 compared to the overall performance in 2014 when Behavior

targeting on Twitter [4] was leveraged to infer the user audience

preference.

In addition to the web browser and third-party trackers, Internet

Service Providers (ISPs) such as Verizon and AT&T also have

full access to individuals’ web browsing histories. However, some

countries in European Union have regulated a new data protection

legislation, and online trackers or ISPs will face serious punishment

when violating users’ privacy according to General Data Protection

Regulation (GDPR). Moreover, when data contributors gradually

recognize the economic value of browsing histories and potential

consequences of privacy disclosure [22], they are likely to allow

only a trusted data broker to access their private data provided

that they can receive reasonable money compensation in turn

[10]. Consequently, the largest data broker of the nine typical

data markets by FTC’s survey [3], Acxiom [4], is allowed to access

personal users’ browsing histories, and then sells the related user

dataset to large corporations like Microsoft or Oracle. Thus, data

privacy is monetized as a commodity to be bought and sold in

practical data markets [14][15].

However, the disclosure of entire web browsing histories even

after anonymization still poses a serious threat to user privacy

[27]. For example, the attacker can match a victim’s public social

media status (i.e., Facebook moments or Twitter tweets) with the

given user record of the received user dataset, and further acquire

this victim’s other sensitive information such as health status.

Consequently, privacy leak [25] may result in serious consequences

(e.g., phishing, identify theft). In addition, the trading of perturbed

private datasets has more appealing benefits than single queries,

where the traded private dataset facilitates data consumers’ analysis,

and mitigates the additional work of dividing the original task

into multiple queries. Therefore, it is crucial to design an efficient

privacy-preserving trading mechanism for entire web browsing

histories while balancing user privacy and the utility of data

consumer.

Although previous work has studied the trading problem of

entire text-based Twitter data [27], the intrinsic feature of web

https://doi.org/10.1145/3326285.3329060
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browsing histories distinguishes ours from such work. In general,

data contributors have diverse privacy preferences [12][17] with

respect to various kinds of web browsing histories, which is defined

as themaximum tolerant privacy loss on each category. For example,

an ordinary data contributor usually cares more about health-

related browsing records than other kinds like purchase or video

records. Zhang et al. [27] only propose an outsourcing mechanism

for social media data without consideration of Twitter users’ privacy

preferences. In addition, a practical trading mechanism should

further take the data consumer’ utility [11] into consideration.

Unfortunately, existing work e.g., [27] only measures the accuracy

performance of the trading mechanism on evaluation experiments.

Thus, it is still an unsolved problem to design a practical trading

mechanism while considering data contributors’ diverse privacy

preferences on various kinds of web browsing histories and data

consumers’ realistic accuracy requirements simultaneously.

Designing a feasible trading strategy of various kinds of web

browsing histories for practical data markets usually faces three

major challenges. The first challenge is to satisfy data contributors’

diverse privacy preferences for various kinds of web browsing

histories. A concrete data trading format should be determined in

consideration of any user’s possible privacy leak while trading

entire browsing histories directly. For insensitive categories of

browsing histories, simple adoption of the popular Laplace mech-

anism [15][7] to perturb original records leads to large noise due

to high dimensionality of user features. Nevertheless, no existing

work solves the above two tough problems simultaneously. Thus, it

is nontrivial to design a realistic trading strategy while complying

with the maximum tolerant privacy loss for various kinds of

browsing histories.

The second challenge is on achieving a suitable tradeoff between

the data consumer’s utility on the perturbed user-by-features

matrix and data contributors’ privacy protection. Stronger privacy

protection usually implies more degraded utility, which is possibly

inconsistent with the data consumer’s accuracy requirement.

Conversely, a higher utility may result in data contributors’ unac-

ceptable privacy leak due to violation of their privacy preferences.

In addition, although previous work [5] also aims at addressing

the utility-privacy tradeoff, they focus on the recommendation of

personalized online service rather than the delivery of statistics

results for the whole population. Therefore, it is still largely an

open problem.

The last but not least challenge comes from preventing data

contributors’ possible strategic behaviors. In previous work, the

data contributor’s privacy valuation is supposed to be public

knowledge [15][17], and they are compensated by a fixed private

cost. This probably results in the data broker’s selection bias

under our assumption of unknown privacy valuation. Since the

fixed compensation cost only attracts a group of data contributors

whose privacy valuations are below this value, the corresponding

user records cannot reflect the whole population and the result

is probably biased. Therefore, a reasonable privacy compensation

mechanism should adopt auction to compensate each data con-

tributor. However, each participant possibly misreports the cost

of his unit privacy loss for the higher benefit by auction. Thus,

the truthfulness of the proposed privacy compensation mechanism

further increases the complexity of designing a practical trading

strategy.

In response to the challenges mentioned above, we propose

PEATSE, as a new Privacy-prEserving dAta Trading framework

for various kinds of web browSing historiEs, consisting of a data

perturbation mechanism and a privacy compensation mechanism.

For data perturbation, PEATSE exploits the popular user-by-features
matrix as the ultimate trading format to generate the returned initial

dataset. Due to high feature dimensionality of insensitive categories,

PEATSE further adopts amodified Laplacemechanism to perturb the

normalized data vector. For privacy compensation, PEATSE perturbs
each chosen data contributor’s data elements by the corresponding

perturbation mechanism based on carefully picked Laplace noise,

so as to achieve a desired tradeoff between the data consumer’s

utility and user privacy, while guaranteeing all desired economic

properties simultaneously.

We highlight main contributions as follows.

• To the best of our knowledge, PEATSE is the first work that

considers privacy-preserving data trading for various kinds

of web browsing histories where a practical trading model

is proposed.

• PEATSE satisfies data contributors’ diverse privacy prefer-

ences on various kinds of web browsing histories while

complying with the data consumer’ accuracy requirement

simultaneously.

• Through rigorous theoretical analysis and extensive eval-

uations, PEATSE guarantees data contributors’ acceptable

privacy loss once the data consumer’s accuracy requirement

is achieved, and thus achieves the desired tradeoff between

user privacy and the data consumer’s utility. Moreover, the

evaluation results show the usefulness and feasibility of

PEATSE, and that it achieves data contributors’ individual

rationality, truthfulness and budget balance.

2 PROBLEM FORMULATION
In this section, we introduce the system model, problem statement

and preliminaries for practical data markets trading various kinds

of web browsing histories.

2.1 System Model
As is illustrated in Fig.1, we consider a data trading market

consisting of data contributors (i.e., users), data consumers and a

data broker, who is allowed to access users’ web browsing histories

as a trustworthy third-party platform like Infochimps [2].

2.1.1 Data Acquisition. Web browsing historiesW = [W1, . . .

,Wn
] fromN distinct data contributors, denoted asN = {1, 2, . . . ,n},

are formally given in Definition 1.

Definition 1. (Web Browsing History). For each data contrib-
utor i ∈ N , his web browsing history represents the set of n pairs of
links and the page content, i.e.,W i = {(l1, t1), . . . , (ln , tn )}, where
li refers to the i-th visited URL, and ti corresponds to the content of
the web page.

For the convenience of trading, the web browsing history should

be converted to a structural format. A feasible solution is to divide

W i
into K predefined categories likeU = {Health, Finance, Social,
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Figure 1: The system model for data markets trading
personal web browsing histories.

Video, . . .} in a coarse-grained way, where each pair (li , ti ) is
mapped to the corresponding category according to the content

ti of the web page. The other categorization such as the extracted

topic model [21] can be adopted to define the categories.

Given each data consumer’s procurement request Q , the data

broker first locates the related data contributors’ (e.g., female users

over 25 years old) browsing histories, and then generates the initial

user-by-features matrix Dk
1
with respect to each category k , and

each matrix element means the user’s total browsing times on some

product. Next, our data model is given as follows.

Definition 2. (Data Vector). Given the data consumer’s inter-
ested user feature vector ok = {ok

1
, . . . ,okd } belonging to the matrix

Dk (e.g., the most frequently visited d e-commerce products), all
chosen data contributors’ data elements generate the corresponding
data vector x (ok ) = {x

d
1
, . . . ,xdn }, where x

d
i ∈ Rd represents data

contributor i’s personal browsing records on d released user features.

Therefore, we restrict attention to data contributors’ numerical

data [15]. For example, the data vector xdi may represent an individ-

ual’s browsing frequency xdi = {30, 20, . . .} on any feature vector

ok which includes features like ok
1
=’Amazon/electronics/iPhone’

2

and ok
2
=’Gallze/electronics/Samsung’ belonging to the ’Social’

category. Therefore, the data consumer intends to purchase the

perturbed user-by-features matrix D
′

k on each category k , and
further acquire the interested statistical results by aggregating data

contributors’ private information according to D
′

k .

Data contributors usually have diverse privacy preferences
3

on various categories by the market survey [23]. The preference

vector is denoted as Φ = {ϕ1,ϕ2, . . . ,ϕK }, where ϕk represents

the maximum tolerant privacy loss on the category k to each

data consumer. Given a threshold value ϕ, the category k with

1
also regarded as a real-valued matrix Dk ∈ R

p∗d
, where p and d represents the

number of the related data contributors and the most frequently visited records in the

whole dataset, respectively.

2
The feature means target users ever visited webpages about iPhone for 30 times which

belongs to electronics on Amazon, and the classified titles like ’Amazon’, ’electronics’

can be extracted by the preprocessing of page content ti .
3
also called private budget, and is supposed to be public knowledge.

less than ϕ privacy preference belongs to sensitive categories,

otherwise insensitive one. Obviously, a smaller value ϕk indicates

this category is more sensitive to common data consumers, and

needs stronger privacy protection while being leveraged to generate

the returned matrix. Thus, more data perturbation should be added

to the initial matrix Dk for sensitive categories than insensitive

ones.

In addition toΦ, each data contributor submits the bid vector ci =
{c1i , . . . , c

K
i }, as his claimed cost of unit privacy loss (i.e., private

cost) for each category, which is unnecessarily equal to his real

private cost ci = {c
1

i , . . . , c
K
i } in terms of his possible strate-

gic behaviors. Given each data contributor’s actual privacy loss

ϵi = {ϵ1i , . . . , ϵ
K
i } on each category, the data broker compensates

him with ξi (Q ) =
∑K
k=1 ξ

k
i (Q ), where ξki (Q ) is his obtained

compensation on the category k . Therefore, his utility is defined as

follows:

u (ci ) =

{ ∑K
k=1 (ξ

k
i (Q ) − cki ∗ ϵ

k
i ) i f i ∈ Gk

0 otherwise
, (1)

where Gk is the set of data contributors whose browsing histories

are leveraged to generate the fractional initial dataset Dk , and the

whole initial matrix is D = {D1, . . . ,DK }.

2.1.2 Data Trading. The data broker is likely to trade the perturbed
user-by-features matrix, rather than directly selling entire web

browsing histories or single query answers
4
to data consumers.

Since any feature vector within the returned matrix implies their

interested data contributors’ online activities, the corresponding

statistical results can reflect preferences or tendencies of the user

audience. For example, Nestle Corporation wonders to know the

proportion of target users who ever purchased its product and

properly care for posts so as to choose their preferences for Behavior

Targeting on Twitter [4]. In our scenario, we assume data consumers

only focus on the linear query [6] with respect to the returned

matrix, which is given in Definition 3.

Definition 3. (Weighted Sum). For each data vector x (ok ) ,
the data consumer specifies the corresponding weight vector w =
{w1, . . . ,wn }, wherewi means that his importance or preference over
data contributor i’s elements xdi . The real weighted sum is defined as
ζ =
∑
i ∈N wiд(xdi ), where x

d
i represents the ith row of the fractional

initial matrix Dk and the function д maps this matrix row to [0, 1].

Each data consumer can acquire the corresponding weighted

sum with respect to any interested feature vector on each category.

Combined with the previous example, the data consumer possibly

wonders to know the population of the users who purchase the

iPhone but never buy the Samsung. In particular, the data consumer

submits the procurement request Q = (q,δ ) to the data broker,

where q specifies the group of target users, and the vector of error

bound δ = {δ1, . . . ,δK } represents his maximum tolerant variance

for the statistical result on each category. Thus, the weighted sum

for any feature vector ok should belong to the acceptable range

[ζ − δk , ζ + δk ]. In addition, any data consumer’s δ-accuracy
requirement is given in Definition 4.

4
The reason why the data broker sells the perturbed matrix rather than the single

statistical result is that the private perturbed database can keep a data consumer from

revealing his real analysis task to the data broker, and even exhausting the private

budget before acquiring the interested query answer.
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Definition 4. (δ-accuracy requirement). For each category
k , the data consumer’s any weighted sum query from the returned
perturbed matrix D

′

k satisfies the δk -accuracy requirement if and
only if the output y after the data perturbation mechanism satisfies:

Pr ( |y − ζ | ≥ δk ) ≤ ρ, (2)

where the above inequation holds for any possible output y. Note
that the probability value ρ can be any constant less than 1√

e+1
,

e.g., ρ = 1

3
.

It is worth noting that the data consumer’s utility is guaranteed

when the traded user-by-features matrix satisfies the above δk -
accuracy requirement.Without loss of generality, the data consumer

has a higher utility when the query answer belongs to the acceptable

range with the higher probability 1 − ρ and the deviation value

from the true value is smaller.

Given the requestQ = (q,δ ), the data broker charges the data
consumer with ψ (Q ) =

∑K
k=1ψ

k (Q ), where ψk (Q ) corresponds
to the charged price for any category k . Obviously, if the error

bound δk for any feature vector on the category k is smaller, the

charged priceψk (Q ) would be larger. Moreover, any related data

contributor’s privacy break ϵki should be higher, and thus the

compensation ξki (Q ) is also larger. Without loss of generality, the

proposed trading mechanism is balanced if and only if the charged

price for the data consumer can cover the total compensation cost

paid for all the related data contributors, i.e.,ψ (Q )−
∑
i ∈G ξi (Q ) ≥ 0,

where G = {G1, . . . ,GK }.

2.2 Problem Statement and Preliminaries
We first introduce the attack model as a preliminary, and then

present our design objectives.

2.2.1 Attack Model. The delivery of even anonymous web brows-

ing histories probably causes the user-linkage attack [26], which can

be carried out by a curious or even malicious data consumer. The

attacker can locate the target user according to the prior knowledge

about this user’s open browsing history on social media platform

such as the recently posted tweets on Twitter. Consequently, the

attacker acquires this target user’s other web browsing histories,

especially including health-related sensitive records.

For our scenario, although only browsing times for each category

are released in the returned matrix, unperturbed counts still lead to

the same attack. For example, the malicious attacker can infer the

target user’s position within the received matrix when he counts

the number of this victim’s tweets on Twitter during given periods,

matches the number with candidates’ records, and finally obtains

this victim’s other sensitive information.

2.2.2 Problem Statement. We aim at designing a practical trading

strategy with respect to the aforementioned general trading prob-

lem for various kinds of web browsing histories. After receiving

the data consumer’s request, the data broker first initializes the

user-by-features matrix D through all related data contributors,

including the target users’ various kinds of browsing histories and

the corresponding browsing times within the specified period of

request. In addition, the anonymous user ID is assigned to each

related data contributor in terms of possible privacy break. Next, the

data broker converts the initial matrix D to the perturbed matrix

D
′

, where users’ browsing times on each category k are added

Laplace noise so as to defend against the malicious data consumer’s

possible inference. Moreover, it is essential to satisfy the following

requirements simultaneously while designing the trading strategy.

• Diverse Privacy Preservation: For each categoryk , the attacker
can match any anonymous user ID with the real user

by browsing times in the delivered matrix D
′

k with the

insignificant probability, whereD
′

k is the perturbed user-by-

features matrix related to the category k .
• Accuracy Requirement: The data consumer can achieve δk -
accuracy requirement for any weighted sum query with

respect to each category k from D
′

k .

• Budget Balance: The charged price for any data consumer can

be distributed to all chosen data contributors in an affordable

manner.

• Incentive Compatibility: For any data contributor i , he can
achieve a higher utility bidding for the truthful bid vector ci
than the untruthful bid c̃i , i.e., u (ci , c−i ) ≥ u (c̃i , c−i ), where
c−i represents the set of bid vectors except ci .
• Individual Rationality: Any data contributor i has nonnega-
tive utility for the truthful bid vector, i.e., u (ci ) ≥ 0.

3 PRIVACY-PRESERVINGWEB BROWSING
HISTORY TRADING

In this section, we present PEATSE with the aforementioned design

goals. PEATSE is elaborated as the following steps. First, we describe
the formulation method of the initial user-by-features matrix.

Second, according to the generated initial matrix, we propose the

data perturbation component of PEATSE to satisfy data contributors’
diverse privacy preferences for each category. Finally, with respect

to the perturbed matrix, we introduce the privacy compensation

component of PEATSE to quantify each data contributor’s privacy

loss, and calculate the related compensation cost.

3.1 Generate Initial Matrix
After receiving the data consumer’s request Q = (q,δ ), the data
broker first finds the related data contributors’ various kinds of

browsing histories, and generates an original matrix. Each record is

represented as an event ei = (τi ,ki , ti ), where τi means browsing

times, ki denotes the category this record belongs to, and ti is the
content of the web page. And then the broker maps each record to

the corresponding category by the page content ti .

3.1.1 Initial Matrix. Next, the data broker generates the detailed
user-by-features matrix. For insensitive categories like ’Social’,

the broker first extracts the key user feature of all related data

contributors’ any event ei according to its content ti , then counts

the frequency of each user feature as a term, and finally chooses the

most frequent d features to be added to the returned matrix Dk . It

is reasonable to choose the features most related data contributors

have, because infrequent features are more likely to expose those

data contributor’s real identity. Moreover, for sensitive categories

like ’Health’, we remove the most user features in consideration of

data contributors’ high privacy concern, and only retain the rough

user feature.



Towards Privacy-Preserving Data Trading for Web Browsing History IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

Note that not all data contributors’ browsing information would

be delivered in the returned matrix because of the data consumer’s

acceptable error bound. Therefore, some related data contributors’

browsing times are possibly unavailable once the data consumer’s

required accuracy guarantee is achieved. We will discuss it in

Section 3.C. Consequently, the initial matrix can be taken as an

example in table 1, where N /Ameans the related records are not

released. In table 1, 4 data contributors’ browsing histories are

released with 3 categories, where ’Health’ belongs to sensitive

categories, and thus the feature vector only includes one feature

’Surgery/Fracture’, but other insensitive categeory like ’Social’ has

more released user features.

3.1.2 Normalization. Moreover, data contributor i’s element xi j on
any user feature j in the initial matrix is further normalized to the

range [0, 1] because most data contributors usually have diverse

browsing times for various user features.

3.2 Perturb Matrix
First, we present the first component of PEATSE, namely the

data perturbation component for the returned matrix. Even the

normalized initial matrix probably leads to the user-linkage attack

after the denormalization with the information of some data

elements for each user feature, which assists the attacker to infer

the victim’s real identity until he links the corresponding records

to a real user. As a result, to circumvent data contributors’ identity

exposure with a high possibility, the data broker perturbs the initial

matrix in different ways for various kinds of browsing histories.

Existing work adopt the popular differential privacy [7][8] to

perturb the statistical query answer, as an effective approach first

proposed byDwork et al. [7]. Recall that themain idea of the Laplace

mechanism is to add Laplace noise for the returned statistical result,

so as to limit the attacker’s possibility of inferring some individual’s

private information. However, for our scenario, we return the user-

by-features matrix rather than a perturbed query answer. Hence,

we perturb the data element of the returned matrix.

Since the data consumer can usually acquire multiple weighted

sum queries from the purchased matrix, a new general notion Φ-
indistinguishability is required in order to handle these queries

simultaneously. Given the data vector x (ok ) = {x
d
1
, . . . ,xdn } for

any feature vector ok on each category k , where xdi corresponds

to data elements of the d-dimensional feature vector belonging to

data contributor i . Let x
(i )
(ok )

denote the neighboring data vector

without data contributor i’s records xdi . The formal definition of

Φ-indistinguishability is given in Definition 5.

Definition 5. (Φ-indistinguishability). A randomized mech-
anismMf satisfies Φ-indistinguishability if any two neighboring

vectors x (ok ) ,x
(i )
(ok )
∈ Rn∗d related to the feature vector ok belongs

to the category k , and for any possible output S , we have

Pr (Mf (x (ok ) ) = S )

Pr (Mf (x
(i )
(ok )

) = S )
≤ eϕk , (3)

where Pr (Mf (x (ok ) ) = S ) means the probability density of the

random variable after the general functionMf on x (ok ) , and ϕk is

Table 1: A toy example for the initial matrix with 3

categories in 2 days

Health Social Finance

Surgery/
Fracture

Amazon/
electronics/
iPhone XP

Gallze/
electronics/
Samsung

Stocks/
Profile

Funds/
Profile

2 30 20 N /A 10
3 25 15 8 9
4 N /A 21 14 16
1 28 18 10 8

the privacy budget for any category k . The larger valueϕk indicates

a larger privacy loss because of the higher output difference, and

the attacker is more likely to find the change of the initial matrix.

Specifically, the numeric vector-valued function f maps the matrix

to vectors of reals, and then the sensitivity of the function f over

the data vector x (ok ) is defined as the maximum difference between

f (x (ok ) ) and f (x
(i )
(ok )

), i.e.,

∆fi = max

x
(ok )

,x (i )
(ok )

| | f (x (ok ) ) − f (x
(i )
(ok )

) | |1, (4)

where x (ok ) ∈ R
n×d

.

Next, we elaborate the data perturbation component Mf of

PEATSE for each category. In terms of the data consumer’s accept-

able error bound δ , the data broker only chooses a proportion of

the related data contributors so as to deliver their perturbed data

elements. Because fractional data contributors’ records can generate

the query answer satisfying the data consumer’s δ−accuracy
requirement in Definition 4, the data broker is willing to pay for eli-

gible data perturbation with the less compensation cost. Specifically,

we first introduce two diverse perturbation mechanisms for data

elements from different categories, and then propose the privacy

compensation component of PEATSE to choose the proportion of

data contributors in order to satisfy the data consumer’s accuracy

requirement for a realistic scenario in Section 3.C..

3.2.1 Sensitive Categories. For sensitive categories like U1 =

’Health’, we add Laplace noise
5
to chosen data contributors’ data

elements, i.e.,
Mf (β ) = β + Lap (∆fi/ϕk ), (5)

where β refers to any chosen data contributor’ data elements

belonging to the categoryU1, and dimensionality of the data vector

x (ok ) is 1, i.e., x (ok ) ∈ Rn×1 in terms of the only delivered user

feature. And added noise follows from the one-dimensional Laplace

distribution Lap (λ), with the density function h(x ) = e (−|x |/λ)

where the mean is 0 and the variance is 2λ2. Consequently, added
noise satisfies the equation (6).

Lap (∆fi/ϕk ) ∝ e−ϕk |x |/∆fi , (6)

where ∆fi = |wi |(βi −βi
), and βi and βi

represent the upper bound

and the lower bound of any data element xdi , respectively.

5
The reason why the data broker chooses the Laplace distribution rather than the

other distributions like the Uniform or Gaussian distribution is that only Laplace noise

matches up perfectly with the definition of differential privacy.
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Theorem 1. The proposed perturbation mechanism Mf for
sensitive categories satisfies ϕk -indistinguishability.

Proof. In consideration of the probability density function

h(x ) = e (−|x |/λ) , then for any two data vectors z, z
′

∈ x (ok ) , we

have
h (z )
h (z′ )

= eϕk ( |z
′
|− |z |)

combined with added noise and the

sensitivity 1 of the function f after the normalization of the initial

matrix. Moreover, for any two data vectors x (ok ) ,x
(i )
(ok )
∈ Rn×1, the

corresponding numeric functions f (x (ok ) ) and f (x
(i )
(ok )

) only have

one gap. Thus, for any possible output S ∈ R, we have

Pr (Mf (x (ok ) ) = S )

Pr (Mf (x
(i )
(ok )

) = S )
=

h(S − f (x (ok ) ))

h(S − f (x
(i )
(ok )

))

= e
ϕk ( |f (x

(i )
(ok )

) |− |f (x
(ok )

) |)

≤ e
ϕk ( |f (x

(i )
(ok )

)−f (x
(ok )

) |)
≤ eϕk

(7)

The first line comes from the definition of added noise, and the

third line follows from the triangle inequality. Due to the sensitivity

1 of the function f again, the final line holds. Thus, the theorem

follows. □

3.2.2 Insensitive Categories. For insensitive categories like U3 =

’Social’, multiple user features as the feature vector are returned

in the matrix, indicating feature dimensionality d of this category

is usually high (i.e., x (ok ) ∈ Rn×d ), shown in table 1. A natural

approach is to perturb each dimensionality of this category with

corresponding Laplace noise, i.e.,

Mf (Vi ) = Vi + (Yi1,Yi2, . . . ,Yid ), (8)

where Vi ∈ R
d
is the data vector of the feature vector belonging to

the same category, and Yi j are drawn i.i.d from the equation (6).

However, since the change of any user feature on this category

increases the sensitivity of the function f , the prior method leads to

a larger deviation of Laplace noise with the higher dimensionality

of the feature vector according to the equation (6). Specifically, if

each data element for the feature vector ofU3 is introduced noise

by the equation (5), then added noise for the higher dimensionality

becomes non-negligible compared with the norm (i.e., 1) of each
data element after the normalization. Consequently, the data

consumer’s utility of the returned matrix for this category would

decrease largely due to the large deviation of noise. Therefore, the

traditional Laplace mechanism fails.

Inspired by previous work [27], we add noise to the data vector

for this category in each row, i.e.,

Mf (Vi ) = Vi + ωI, (9)

where ω represents the random distance between the original

vector Vi and the perturbed vector V
′

i , and I refers to a d-
dimensional unit random vector. Note that the new perturbation

mechanism requires distance noise drawn from the Laplace distri-

bution Lap (γmax∆fi/ϕk ), where γmax represents the maximum

distance between any two data vector Vi and Vj , and γmax ≤
√
d

because each data element has the maximum value 1 after the

normalization. Note that for insensitive categories, ∆fi = |wi | | |V i −

V i | |1, where V i and V i is the supremum and infimum of the data

vector Vi , respectively.

Theorem 2. For insensitive categories, the randomized mechanism
Mf also satisfies ϕk -indistinguishability.

Proof. According to the new perturbation mechanism in equa-

tion (9), we have

Pr (Mf (x (ok )) = S )

Pr (Mf (x
(i )
(ok )

) = S )
=

h(ω (V ,Vi )I1)

h(ω (V ,Vj )I2)

= e
ϕk

γmax
(ω (V ,Vi )−ω (V ,Vj ))

≤ e
ϕk

γmax
ω (Vi ,Vj ) ≤ eϕk

(10)

The first line is based on the definition of the perturbation

mechanism, and the second line comes from the fact that any two

d-dimensional unit vector are generated with the same probability,

and the third line holds due to the triangle inequality. □

3.3 Privacy Compensation
In this section, we further consider the second component of

PEATSE, namely the privacy compensation component for data

contributors whose various kinds of browsing histories are lever-

aged to generate the returned perturbed matrix. Because the data

consumer purchases the perturbed matrix so as to acquire weighted

sum queries with the acceptable error bound in Definition 4 for

any feature vector on each category, data contributors’ private

information like released data elements xdi has to be leaked partly

by answering each query, and thus they must be compensated.

Next, we propose a practical privacy compensation mechanism for

a realistic data trading scenario.

3.3.1 A realistic scenario. Suppose that the data broker’s budget6

is B for any returned user-by-features matrix. Since fixed privacy

compensation probably leads to the biased statistical answer, each

data contributor usually reports his private cost ci = {c1i , . . . , c
K
i }

by auction in a realistic scenario. Moreover, considering that data

contributors have diverse privacy budgets for different categories,

it is inefficient to achieve the same lowest privacy guarantee on

all categories. Thus, it is more reasonable to quantify any user’s

privacy loss and calculate privacy compensation separately with

respect to each category.

Next, we give an intuitive privacy compensation mechanism in

Algorithm 1, which demonstrates a data broker has to purchase the

amount of privacy from certain data contributors to achieve the

data consumer’s desired accuracy requirement. Suppose that each

data contributor’s upper bound of the privacy loss on each category

is given as the input, i.e., ϵi = {ϵ1i , . . . , ϵ
K
i }, which will be further

discussed in Sec 3.C.(3).

In consideration of the limited budget B, the data broker

picks data contributors from those with the less than
B

K∗r of

compensation cost in advance according to line 5. Next, the broker

calculates the number of data contributors who are willing to

accept the minimum privacy loss
1

4δk
according to line 6-11.

6
The budget is assumed to be given when the sale price of the returned matrix is set as

the optimal price based on data consumers’ bid profiles by Bayesian optimal auction

[28].



Towards Privacy-Preserving Data Trading for Web Browsing History IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

Algorithm 1: Privacy Compensation Mechanism
Input: Initial matrix D, the upper bound set of privacy loss

ϵ = {ϵ 1, . . . .ϵn }, the data consumer’s error bound δ , the
maximum distance γmax , the set of data contributors’ private
cost c, and the budget B .

Output: A set G = {G1, . . . , GK } of selected data contributors, the

payment vector p and the perturbed matrix D
′
.

1 {t1, . . . , tK } ← 0, G ← ∅⃗, p← 0;
2 // Data Contributor Selection ;

3 for k = 1 to K do
4 Sort all data contributors from D in the increasing order of cki ;
5 Find the largest index r such that ckr ∗

1

4δk
≤ B

K∗r ;

6 for i = 1 to r do
7 ϵki =

1

4δk
;

8 if ϵki ≤ ϵki then
9 tk = tk + 1;

10 end
11 end
12 if tk ≥ |N | − 4δk then
13 Choose the first |Gk | = |N | − 4δk data contributors as

winners;

14 for i = 1 to |Gk | do
15 Gk ← Gk

⋃
{i };

16 Mf (β ) = β + Lap (∆fi /ϵki ) to D
′

k ;

17 OrMf (Vi ) = Vi + Lap (γmax∆fi /ϵki )I to D
′

k ;

18 // Payment Scheme ;
19 pi = pi +min( B

K∗r , c
k
r+1 ∗

1

4δk
);

20 end
21 end
22 end
23 return (G, p, D

′
);

By line 12-20, if the number is larger than |N | − 4δk , then the

broker chooses the first |Gk | data contributors, and perturbs each

winner’s data elements with actual privacy loss of
1

4δk
based on the

corresponding category of the data perturbation mechanism. Note

that any unselected data contributors’ data elements would not be

released in the returned matrixD
′

. Finally, in line 19, we distribute

the payment ξki (Q ) = min( B
K∗r , c

k
r+1 ∗

1

4δk
) to each winning data

contributor i on each category k . Note that for our scenario, each

data consumer is charged for ψk (Q ) = B
K on each category k .

For the page limit, the time complexity of Algorithm 1 is given as

O (K · Nloд(N )).

3.3.2 Theoretical Analysis. Algorithm 1 shows that the data broker

can satisfy the data consumer’s accuracy requirement in Definition

4 once he purchase the ϵki amount of data privacy from at least

|Gk | data contributors on each category, where ϵki and |Gk | are

only related to the data consumer’s error bound δk . Next, we
demonstrate the efficiency of Algorithm 1 in Theorem 3.

Theorem 3. The data consumer can achieve desired δ-accuracy
guarantee ifMf meets the following conditions on each category k : 1)
There are at least |Gk | data contributors whose privacy loss is larger
than 1

4δk
, i.e., ϵki ≥

1

4δk
, for i ∈ Gk ; 2) |Gk | ≥ N − 4δk .

Proof. For any category k , suppose that the mechanismMf
satisfies δk -accuracy, and the set of selected data contributors in

the returned matrix D
′

k areGk and ϵki ≥
1

4δk
, i ∈ Gk . First assume

that the opposite of condition 2) holds, i.e., |Gk | < N − 4δk , then
we derive the false fact so as to prove the pseudo-proposition of

our hypothesis.

Let Gk denote the set of unselected data contributors, i.e., Gk =

N \Gk , and further |Gk | > 4δk . Recall that the data consumer

obtains the weighted sum query for each category. Let S denote data
consumers’ acceptable output set satisfying δk -accuracy guarantee,
i.e., S = {y ∈ R7 |y − ζ | < δk }, where ζ =

∑
i ∈Dk wiд(xdi ). By the

definition 4, we have any output y by the mechanismMf satisfies

Pr (y ∈ S ) ≥ 1 − ρ.

The set Gk is further divided into two parts, i.e., G
1

k = {i ∈

Gk |д(x
d
i ) = 1} and G

0

k = {i ∈ Gk |д(x
d
i ) = 0}. And obviously we

have max( |G
0

k |, |G
1

k |) > 2δk . Suppose that |G
1

k | > 2δk (the other

case is the same). Next, we consider the other distant matrix DL
k

which has hamming distance |L| with Dk , where L denotes the set

of different indices between DL
k and Dk , and L ⊂ G

1

k , |L| = 2δk .

Therefore, for any subscript i ∈ L, д
′

(xdi ) = 0, whereas д
′

(xdi )
remains the same.

Next, we compare the difference between the probability of

outputs by the distance matrix DL
k and the initial matrix Dk

separately belonging to the acceptable output set S . Let Di
k and

Di+1
k represent two neighboring matrixs which only differ in the

ith indices of L, for any 0 < i < |L|, then we have:

Pr (Mf (Dk ) = y)

Pr (Mf (D
L
k ) = y)

=

|L |−1∏
i=1

Pr (Mf (D
i
k ) = y)

Pr (Mf (D
i+1
k ) = y)

≤
∏
i ∈L

eϵ
k
i

= e
∑
i∈L ϵki ,

(11)

where the second line holds once selected data contributors’

data elements are perturbed based on privacy loss ϵki , which is

also smaller than the upper bound ϵki . Therefore, PEATSE naturally

achieves ϕk -indistinguishability. Moreover, for any output ŷ, as the
weighted sum based on the distance matrix DL

k by the mechanism

Mf , we have:

Pr (ŷ ∈ S ) ≥ e−
∑
i∈L ϵki Pr (y ∈ S )

≥ e
(− 1

4δk
×2δk )

× (1 − ρ)

=
1 − ρ
√
e

(12)

Obviously, when ρ < 1√
e+1

, we have
1−ρ
√
e
> ρ. Note that y∗ ≥

ζ + 2δk , where y
∗
is the weighted sum over all the perturbed data

vector, i.e., y∗ =
∑
i ∈DL

k
wiд

′

(xdi ). We have |ŷ − ζ | < δk by the

definition if ŷ ∈ S . Moreover, we further have |ŷ − y∗ | = |(y∗ −
ζ ) − (ŷ − ζ ) | ≥ |y∗ − ζ | − |ŷ − ζ | ≥ δk according to the triangle

inequality, and the inequality holds with the probability of larger

than ρ, which deviates from the fact of Definition 4. Therefore, our

original hypothesis fails, and we prove |G | ≥ N − 4δk . □

7R is the set of real numbers.
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Based on theorem 3, PEATSE indeed achieves the desirable

tradeoff by setting a fixed privacy loss for chosen data contributors

on condition that it satisfies the data consumer’s δ-accuracy
guarantee. Finally, we show economic properties of PEATSE in

theorem 4.

Theorem 4. The proposed practical privacy compensation compo-
nent of PEATSE achieves individual rationality, truthfulness as well
as budget balance.

Proof. First, we prove PEATSE is truthful. According to the

work [18], the mechanism is truthful if and only if the data

contributor selection algorithm is monotonic, and each winning

data contributor is paid the critical payment.

First, we prove that any data contributor cannot increase his

utility by misreporting his private cost regardless of others’ report.

Suppose that any chosen data contributor i on any category k

reports a lower private cost c̃ki ≤ cki . According to the Algorithm 1,

his claimed cost is still lower than ckr+1, and he still wins in terms

of unchanged privacy loss. Thus, the monotonicity is satisfied.

Next, we prove the chosen data contributor is paid the critical

payment. Suppose if data contributor i reports a higher cost than

ckr+1, i.e., c
k
i ≥ ckr+1, i will lose and another data contributor with

lower than or equal to ckr+1 will replace him as the newwinner. Thus,

his utility decreases to 0. Conversely, this data contributor still wins

but is yet paid ckr+1 ∗ ϵ
k
i , and his utility is never improved because

of the misreporting. Therefore, PEATSE satisfies truthfulness.

For unselected data contributors, their privacy loss on this

category k is 0, and his compensation ξki (Q ) = 0. For the set Gk
of chosen data contributors, each data contributor’s privacy loss

on each category k is ϵki =
1

4δk
. The compensation is ξki (Q ) =

min( B
K∗r , c

k
r+1 ∗ ϵ

k
i ) ≥ cki ∗ ϵ

k
i = cki ∗ ϵ

k
i because of cki ≤ ckr+1

according to the sorting operation in Algorithm 1, and cki ∗ϵ
k
i ≤

B
K∗r

due to line 5. Thus, each data contributor is individual rational.

For each category k , all data contributors’ total compensation∑
i ∈Gk ξ

k
i (Q ) = |Gk | ∗min( B

K∗r , c
k
r+1 ∗ ϵ

k
i ) ≤ r ∗min( B

K∗r , c
k
r+1 ∗

ϵki ) ≤
B
K , and PEATSE satisfies budget balance. □

3.3.3 Upper Bound of Privacy Loss. We further give the upper

bound of any data contributor’s privacy loss. First, we formally

define the data contributor’s privacy loss on each data vector xdi ,
which is regarded as the bound of all the possible values according
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to any two neighboring vectors (i.e., x (ok ) and x
(i )
(ok )

) with and

without participation of his elements xdi .

Definition 6. (Privacy Loss). If the proposed perturbation
mechanism Mf generates the perturbed matrix D

′

, then data
contributor i’s privacy loss over the data element xdi is defined as:

ϵki (M) = supx
(ok )

,S

��������
loд

Pr (M (x (ok ) ) = S )

Pr (M (x
(i )
(ok )

) = S )

��������
. (13)

Next, we derive the upper bound ϵki of each data contributor’s

privacy loss ϵki (M) on each category k , which depends on the data

consumer’s acceptable error bound δk and the sensitivity of the

function f on the data vector xdi , shown in Theorem 5.

Theorem 5. Each data contributor’s privacy loss on each category
k is bounded by ϵki (M) ≤

∆fi√
δk /2

.

Proof. For the page limit, we omit the detailed proof. Conse-

quently, in Algorithm 1, the data contributor who has the sensitivity

∆fi = 1 would be chosen as the winner when the upper bound is

larger than
1

4δk
, i.e., δk ≥

1

32
. □

4 EVALUATION
In this section, we evaluate the performance of PEATSE in con-

sideration of the data consumer’s accuracy guarantee and data

contributors’ privacy protection.

4.1 Evaluation Settings
4.1.1 Dataset. We first introduce a real-world dataset collected

by some handset manufacturer, which includes 12473 web users’
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various kinds of web browsing histories on February 2009, ranging

from E-commerce purchasing records, visited finance websites,

to video websites. We count each data contributor’s browsing

times on each user feature for any category, and then generate the

initial matrix. For example, for the ’Social’ category, if some data

contributor’s page content is related to the extracted user feature

’Amazon/electronics/iPhone’, then we increase his browsing times.

4.1.2 Settings. We generate data contributors’ unit private costs

according to three distributions, i.e., normal distribution, uniform

distribution and exponential distribution. For any category k ,
suppose that data contributors’ privacy preference ϕk on any

category k varies within [10
−1, 101, . . . , 1013]. To calculate the

weight vectorw , we learn it by applying the linear regression to the

corresponding statistical result from all related data contributors,

and further normalize the vector so as to get unit L2 norm. For

the weighted sum query by the perturbed matrix, we evaluate the

accuracy performance and the inference probability of PEATSE
and existing work [27] for sensitive and insensitive categories,

respectively.

Specifically, the metrics for accuracy performance include the

data consumer’s accuracy and the probability of the query answer

belonging to the acceptable range [ζ − δk , ζ + δk ] (also called

acceptable probability). Moreover, the accuracy is defined as α =

1−
| ˆζ −ζ |
| ˆζ +ζ |

, where ζ and
ˆζ denote the true value by the initial matrix

and the weighted sum query answer according to the perturbed

matrix, respectively. In addition, each data point is the average

report after running 200 times.

4.2 Evaluation Results
4.2.1 Evaluation of Accuracy. Fig.2 and Fig.3 demonstrate the data

consumer’s accuracy both goes up when the privacy preference

ϕk increases for sensitive and insensitive categories, respectively,

which proves usefulness of PEATSE. The reason lies in the fact that

the higher privacy preference leads to a smaller variance 2λ2, and
probably generates smaller Laplace noise. Thus, the query answer

from the perturbed matrix would not deviate from the true value

largely.

In Fig.3, for both Zhang et al.’s work [27] and PEATSE, we can
observe that the accuracy results are close to each other under

the same dimensionality d = 3 or d = 15 especially for the

privacy preference larger than 10
9
. Obviously, the reason is also

two approximate query answers due to smaller noise. PEATSE is

inferior to Zhang et al.’s work [27] slightly for smaller privacy

preference, because they sacrifice the data contributor’s privacy by

enlarging the privacy budget to ϕk ∗ω (Vi ,Vj ) in spite of the higher

data accuracy.

4.2.2 Evaluation of Acceptable Probability. From Fig.4 and Fig.5,

it can be seen that the acceptable probability goes up with the

increase of the error bound δk , for both sensitive and insensitive

categories, which guarantees each data consumer can obtain the

acceptable query answer with a higher probability, and further

reflects feasibility of PEATSE. It is understood that the higher error

bound leads to a broader acceptable range for the data consumer,

and thus the weighted sum query answer belongs to this range

with a higher probability.

Specifically, PEATSE has a higher acceptable probability than

existing work [27] under any fixed error bound δk when δk ranges

within [1, 2.4]. This is because existing work performs unsteadily

when the error bound is smaller, and is inadequate to solve the

trading problem with the data consumer’s accuracy requirement.

In addition, it appears a higher acceptable probability for the higher

dimensionality d = 15 than the lower dimensionality d = 3 for

any fixed δk , which shows added noise would not increase for the

higher dimensionality, and also verifies validity of PEATSE.

4.2.3 Evaluation of Total Compensation. In Fig.6, we observe that

the data broker pays less privacy compensation for chosen data

contributors when the error bound δk increases from 1 to 2.4. It

is obvious that the higher error bound means the smaller privacy

loss according to Algorithm 1, and thus the compensation becomes

less by the payment scheme.

4.2.4 Evaluation of Inference Probability. Fig.7 shows both PEATSE
and existingwork [27] achieve privacy protectionwhen the attacker

only has limited prior information for the victim, where the

inference probability represents the probability of an attacker with

given information inferring the victim’s browsing records from the

perturbed matrix. Without loss of generality, the attacker’s prior

information is modeled as known fractional data elements, where

the number d varies within the range [1, 25]. In addition, for any

victim, we set the attacker’s known data vector V̂i as the vector of
known d elements and zero for other unknown features.

Next, we compare the distance between V̂i and each data vector

from the initial matrix and perturbed matrix, respectively. It can be

observed that the inference probability is significantly improved

at dimensionality d = 13 for the initial matrix. This is because

the fewer data contributors’ data vectors are close to the known

vector V̂i , and the victim’s real identity would be exposed with the

higher probability with the increase of dimensionality. However,

PEATSE shows the lower inference probability for the perturbed

matrix, and indeed protects the data contributor’s privacy even

when dimensionality increases to d = 22. In addition, we can see

PEATSE outperforms slightly than Zhang et al.’s work [27] about

the inference probability from Fig.7.

According to the above evaluation results, PEATSE guarantees

the data consumer’s accuracy requirement and data contributors’

privacy preferences simultaneously, and well balances the utility

and user privacy.

5 RELATEDWORK
5.1 Query-based Trading
A growing number of related literatures [15][6][13][16] have

investigated query-based trading for data markets like Acxiom

[4] in recent years. Koutris et al. [13] first propose query-based

pricing especially in consideration of the buyer’s possible arbitrage

behavior. The buyer possibly infers more accurate query answer

by asking multiple cheaper queries with the less query cost.

However, they focus on general-purpose data rather than private

data. Conversely, follow-up work by Li et al. [15] and Niu et al. [20]
also design arbitrage-free pricing function, but further consider

privacy loss from data contributors when releasing perturbed

common aggregated statistical results about the population, as well
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as the corresponding privacy compensation mechanism design.

Specifically, only the query answer by added Laplace noise is

returned to the buyer.

However, different from the above work, we focus on the trading

of the entire dataset rather than the single query answer in terms

of most analysts’ preferences for the noisy dataset, also regarded as

the non-interactive model. Therefore, our work seriously perturbs

each data element in the returned dataset in case of the possible

user-linkage attack [26]. In addition, it becomes more difficult to

supply the utility of the released dataset simultaneously. Specifically,

Zhang et al. [27] only design the data perturbation mechanism for

the text-based Twitter dataset, but neglect the analysis for the

buyer’s utility by the purchased perturbed dataset. On the contrary,

our work achieves accuracy guarantee by the rigorous proof when

analyzing the performance of the returned dataset for the data

consumer.

5.2 Incentive Issues for Trading
Other previous work [11][24][9] mainly aim at incentivizing data

contributors to disclose their real privacy valuations in the context

of mechanism design. Under the assumption of the unknown

privacy valuation, each data contributor probably misreports a

higher privacy valuation for the higher benefit. Ghosh et al. [11]
regard privacy as traded commodity, and design the privacy trading

mechanism for the counting query by running truthful auction.

Wang et al. [24] propose an incentive mechanism to make data

contributors control their own data privacy by reporting a noisy

version and the truthful valuation in terms of the untrusted data

collector. Moreover, Nissim et al. [19] further consider the data

contributor’s price for privacy as private information because the

higher price probably reflects his more sensitive information.

Unfortunately, none of the above work has taken data contribu-

tors’ diverse privacy preferences on various kinds of web browsing

histories into consideration, and further considered the trading of

the entire dataset and the utility of the returned dataset.
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6 CONCLUSIONS
In this paper, we have proposed a privacy-preserving trading frame-

work PEATSE for entire web browsing histories in consideration of

both data contributors’ diverse privacy preferences and the data

consumer’s utility. The data consumer can purchase the perturbed

user-by-features matrix with guarantee of the desired accuracy

requirement. Besides, data contributors can be compensated for

privacy loss due to the delivery of sensitive and insensitive browsing

records, and they have to report private costs truthfully for

maximizing their utility. Through real-data based experiments, the

evaluation and analysis results demonstrate PEATSE well balances

user privacy and the data consumer’s utility, and further achieves

desirable economic properties of truthfulness, individual rationality

and budget balance.
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