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Abstract—The rapid penetration of mobile devices has provided
ample opportunities for mobile devices to exchange sensing data
on a peer basis without any centralized backend. In this paper,
we design a peer based data exchanging model, where relay nodes
move to certain locations to connect data providers and consumers
to facilitate data delivery. Both relays and data providers can gain
rewards from consumers who are willing to pay for the data. We
first prove the problem of relay node assignment is NP-hard, and
provide a centralized optimal method to decide which relay nodes
goes to which location with an approximation ratio. Then we define
an autonomous compensation game to allow relays make individual
decisions without any central authority. We derive a sufficient
and necessary condition for the existence of Nash equilibrium. We
analyze and compare this distributed game to the centralized social
optimal solution, and show that the game incurs small bounded
social costs, and efficient under various network sizes, numbers of
providers, consumers, and device mobility.

I. INTRODUCTION
The penetration of mobile devices with various sensors has

made peer data exchange feasible and valuable in many daily
life scenarios. In many places (e.g., roads, parks, airports)
there are high densities of mobile devices like smartphones
carried by users. Each device can collect sensing data of certain
types around its location, and such data may carry important
information needed by other users. For instance, a passenger
on a bus passing by an accident scene can take a photo, which
is important for drivers in nearby blocks so they can know
what is causing the jam and how to change the route. Before
taking her baby out for a walk, a mother wants to know the
air quality distribution around a neighborhood, and pedestrians
in the neighborhood could provide such kind of data. In these
scenarios, data exchange among peer users provide valuable
information, and users are willing to pay a reward to obtain
desired data.

In such peer data exchange, the one that possessing certain
data is called a provider and the one needing data from others
is called a consumer. Usually, the devices have limited radio
transmission range, and the density of mobile devices may not
always be high enough to ensure direct connectivity among
all consumers and providers. To facilitate data exchange, some
relay nodes, motivated by the economic incentive, may move
to certain relay locations to connect consumers and providers,
and forward data possibly over multiple hops.

In this paper, we study the following problems: what is
the optimal strategy to decide which relay node should go to
which location? If consumers requesting the same data can pool
their rewards, what is the optimal payment allocation algorithm
among relays and providers? The strategy and algorithm must
be efficient to incur small overheads in computation and node
movements, and effective to incentivize relays and providers for
peer data exchange.
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There are several challenges to these questions. First, given
multiple relay nodes and relay locations, there is a combinatorial
thus exponential space of who goes where, leading to an
NP-hard problem. We have to design an efficient algorithm.
Secondly, the reward pool must be allocated and paid to relays
and providers in a way to compensate them fairly based on
their contributions. Third, although a centralized algorithm that
computes and dictates which relay goes where may achieve
global optimal efficiency, in reality no central authority exists
and each relay may make its own decision. The payment must
be allocated effectively among peers.

We summarize our contributions to address these challenges:
• We formulate the problem of finding relay locations for

relay nodes as an optimization problem in graph theory.
We show its NP-hardness and propose a centralized ap-
proximation algorithm that decides their payments based
on the assignment.

• We design an autonomous compensation game for relay
nodes to make decisions of where to go individually.
We derive the condition for the existence of pure Nash
equilibrium, and provide distributed mechanisms for relay
nodes to choose the strategy.

• We show that the social cost, quantified by moving
distances of relay nodes, is linear to network size for
centralized mechanism. Compared to the social optimal
assignment by a central authority, the cost for distributed
mechanism is bounded by two measures: Price of Anarchy
and Price of Stability. We further analyze how practical
factors affect these bounds, and demonstrate our approach
remains feasible under provider/consumer mobility.

II. RELATED WORK
Current studies for data exchange among peers focus on

two main aspects: efficient and accurate method for managing
the exchanging process and fair payment rules for attracting
participants.

Helgeson et al. [4] provide a bottom implementation approach
for managing data exchange in a network from industrial point
of view, and it could be the basis for all data exchange
model. Rahman et al. [10] study how to assure security in the
exchanging process. More recent work designs data exchange
models dealing with further constraints such as ability to recover
document damage [8], and adaption to big data [1]. Compared
with our approach, they all consider a centralized system to
supervise the whole process.

Meanwhile, algorithmic game theory has been partly used
to study participants’ incentive to exchange data. Gao et al.
[3] propose an auction policy to attract more long-term user
participation. Luo et al. [7] also design mechanisms for partic-
ipatory sensing systems to incentivize contribution from users.
Similar as our work, they are trying to attract more users
to participate through providing rewards, but their designs all
require a centralized system to deal with payment.



On the other hand, data transmissions under mobility have
raised much scientific interest in the past ten years. Zhao et
al [12] started a frame work of controlling the mobility for
data transport ferries in a delay-tolerant network, where data
is relayed by ferrying nodes and stationary nodes together.
After them, Kavitha and Altman [5] study similar message
ferry routes design in sensor networks using polling models.
Our work considers a different form for delivering data, mainly
taking advantages of mobile devices’s ability. If the desired data
requires huge storage, these data ferry schemes may also be a
good choice.

III. NETWORK MODEL AND BASIC ASSUMPTIONS FOR
DATA EXCHANGE

In this section, we first present our crowdsensing model for
peer data exchange and basic assumptions. Then we illustrate
how it works within the whole process through an example.
A. A Crowdsensing Approach for Data Exchange

Our data exchange system consists of several kinds of
participants. Besides consumers, providers and relay nodes
introduced before, there are some clearance nodes accepting
relay information and deciding payments among others.

Before describing the whole process, we first list several
important assumptions. Firstly, providers, consumers and clear-
ance nodes are uniformly distributed and their positions do
not change in a short time. Clearance nodes can communicate
with each other, so each can acquire all the relay information.
Each node u entering the system has an unique l-bit account
ID number, denoted by Au and known by themselves and the
clearance nodes. Secondly we do not consider transmission
failures or cheating nodes. The relay information has much
smaller size compared to data, thus their transmission costs are
negligible and not considered. Lastly, a relay node transmits
one unit of data one time and the amount of transmission is the
number of data units.

95
6

5 1

1

(a) (b)

(c) (d)
Consumers Providers Relay nodes

Fig. 1. A complete process for transmitting a group of data. The numbers
beside nodes is the corresponding rewards if a relay nodes works there.

With these assumptions, the data exchange system works as
shown in Fig. 1. Firstly, consumers send requests for some
data, each naming a payment. Then, providers with required
data are found. After that, relay locations to connect consumers
and providers are found, as well as the delivery paths. Then
a central entity calculates the reward for each location, and
assigns relay nodes to those locations to finish data delivery.
Alternatively, if each relay knows the information about those

locations and rewards, it can make its own decision to go to
specific location, without the central entity. Once the delivery
is done, all involved nodes send messages to clearance nodes,
which decide the payments for all relays and providers.
B. Payment Decision for Each Participant

Two key factors decide payments for relays and providers.
First, the system should get information for all the actual
transmissions. Second, the payments should be “fair” to all
participants. We will introduce a transmission graph structure
as a record of how a specific piece of data is delivered, then
show how payments are decided to achieve fairness.

To construct the transmission graph, providers and relays
send short messages to their nearest clearance nodes each time
they receive a piece of data from others (i.e., inflow message,
denoted by T (i)), or send one to the next node (i.e., outflow
message, denoted by T (o)). Specifically, when data with label
L is transmitted from node u to node v, both u and v will send
a 3l+|L|-bit tuple (L,Ag, Au, Av), where node g is the original
generator of the data and |L| is the length of the label.

After data delivery, all clearance nodes communicate with
each other so that all messages about the same data are handled
by the same clearance node. For each group of providers and
consumers (labeled by L̂), such messages are used to build
the whole transmission graph TG(V,E, ĝ, β) by Algorithm
1 (Table I). The algorithm analyzes all messages to obtain
participating peers as vertices and corresponding transmissions
as edges. din(u) and dout(u) denote the in/out degrees for
vertex u, and they are further used to decide which role the
vertex plays in the whole transmission process.

TABLE I
ALGORITHM 1: REBUILDING TRANSMISSION GRAPH

Input: {T (∗)
j }

Λ
j=1 = {(L̂, Aĝ, Auj , Avj )}Λj=1.

Output: TG(L̂) = (V,E, β, ĝ).
1: Set V =

⋃Λ
j=1{gj , uj , vj} and E = ∅

2: For (û, v̂ ∈ V )
If ∃j1, j2 such that uj1 = uj2 = û, vj1 = vj2 = v̂

Add directed edge (û, v̂) into E.
3: For (ũ ∈ V )

If din(ũ) > dout(ũ)
β(ũ) = 1

Else If din(ũ) < dout(ũ)
β(ũ) = 2

Else
β(ũ) = 3

Participants are classified by function β : V → {1, 2, 3} into
3 types for payment decision. To be precise, consumers are of
type-1 and providers are of type-2. And a relay node receives a
piece of data once, but may transmit it to multiple peers. Those
having the same out degree and in degree are of type-3, while
those having more out degree than in degree are also type-2.
Now we present the payment rule.
• Every u with β(u) = 1, either a consumer or not, pays a

price of data (decided in advance), consisting the whole
reward pool. This is because vertices of type-1, even
though not consumers at the beginning, act as consumers.

• P1 percent of reward is given to the generator ĝ. This
corresponds to a fairness principle that one producing
widely popular data should be better rewarded.

• P2 percent of reward is given to those of type-2 and 3, and
what u receives is proportional to the ratio dout(u)∑

β(v)6=1

dout(v)
.



This is awarding each relay node according to the propor-
tion of transmissions it does in all transmissions.

• The rest reward is given to those of type-2. How much
u receives is proportional to the ratio dout(u)−din(u)∑

β(v)=2

dout(v)−din(v) .

This corresponds to the situation that some relay nodes
receive data from one source and transmit it to multiple
destinations. They actually makes extra efforts besides data
transmission, e.g. storing the data for a long time. And we
use the number of transmissions for sending out data minus
the number of transmissions for receiving data to measure
their extra effort, and this rule awards them according to
the proportion of their extra efforts in all such efforts.

IV. CENTRALIZED METHOD TO ASSIGN RELAY NODES

In this section, we provide a centralized method to assign
relay nodes to relay locations. Here we suppose that the central
entity knows all nodes’ positions. Providers and consumers
do not move before data delivery completes, and relay nodes,
supposed to be enough, will follow the assignments. Meanwhile,
the energy cost of transmitting each data unit is the same. Then
the assignment has two steps. The system first finds necessary
locations requiring relay nodes to deliver data. Then it assigns
proper potential relay nodes to these locations.
Step 1: Given N1 providers {uj}N1

j=1, N2 consumers {vj}N2
j=1,

and transmission range d, the system seeks the least k locations
{wj}kj=1 and corresponding edges, such that ∀i, j there exists a
path from ui to vj via some w′ls or v′j′s, with all edges shorter
than d. We call this relay location decision problem. Here we
want to minimize the number of relay locations, i.e. the number
of necessary relay nodes, so that a centralized system can assign
the least number of relay nodes to relay locations.

To show the complexity of relay location decision
problem, we refer to a NP-hard problem, namely
Steiner tree problem with minimum number of Steiner points
(STP-MSP in short), which is to find the least number of
extra points and corresponding edges within bounded length to
connect a set of terminal points in two-dimensional Euclidean
plane [2]. To be specific, relay nodes problem requires a
similar solution with respect to two sets of terminal points,
and one of them must be leaf-points, i.e. having degree one.

We reduce the STP-MSP problem to relay location decision
problem to show the complexity. The solution to STP-MSP
problem must be a tree and at least one of terminal points is leaf-
point (because if an extra point is leaf-point, it could be deleted
to decrease the number). So solving a STP-MSP problem for
{p1, p2, . . . , pn} is exactly solving the relay location decision
problem for a pj being provider u1 and the rest of points being
consumers {v1, v2, . . . , vn−1}. Thus if we have an algorithm
to solve relay location decision problem, we could solve STP-
MSP problem by running it n times, selecting a pj each time as
u1, and find the best result among them. This shows the relay
location decision problem is also NP-hard.

Despite its NP-hardness, we provide an approximation algo-
rithm to solve it in Table II. As for the approximation ratio,
in fact Algorithm 2 without the last loop (line 8) is a ratio-3
approximation algorithm solving STP-MSP problem, and the
last loop will increase the number of vertices in the solution
by at most N1. As a result, Algorithm 2 outputs a solution
that minimizes the number of relay locations at no more than

3k + N1, where k is the number of relay locations in a
solution to relay location decision problem. Roughly speaking,
the approximation ratio is N1 + 3.

For time complexity, the key part is the third loop (line 6)
consisting of at most O(N1+N2) rounds (corresponding to the
O(N1 +N2) connected components with at most O(N1 +N2)
vertices each), each of which requires at most O(N1 + N2)

3

operations. Since other parts requires less than O(N1 + N2)
3

operations, the time complexity is O((N1 +N2)
4).

TABLE II
ALGORITHM 2: DECIDING RELAY LOCATIONS

Input: u1, u2, . . . , uN1 , v1, v2, . . . , vN2 , d.
Output: Graph T = (V,E).
1: Set V = {u1, u2, . . . , uN1 , v1, v2, . . . , vN2}, E = ∅;
2: Let euv be the edge between u 6= v ∈ V ;
3: For (u ∈ {u1, u2, . . . , uN1}, v ∈ {v1, v2, . . . , vN2})

If euv ≤ d
Add euv into E

4: Sort all euv’s to {ei} in length increasing order;
5: For (i ∧ ei ≤ d)

If ei connects two different connected components of T
Add ei into E;

6: While (There are more than two connected components) Do
For (a, b, c ∈ V in three connected components of T )

If ∃s, s.t. edge esa, esb, esc shorter than d
Add s into V and esa, esb, esc into E;

End while
7: For (i)

If ei connects two different connected components of T
Divide ei into d |ei|

d
e parts and add into T ;

8: For (1 ≤ i ≤ N1)
If ui has degree larger than one

Replace ui by a new vertex u′i and add (ui, u
′
i) into E

In the output graph, vertices who are not from input are relay
locations, in each of which at least one relay node is needed
to help transmit data. The reward ri, i = 1, 2, . . . , k associated
with each of them can be calculated as follows. Firstly, find a
path from each provider to each consumer. Then change these
undirected edges into directed ones according to the direction
of paths they are in to get the transmission graph. Finally use
the payment rule introduced in Section III.
Step 2: Given relay locations, the system chooses relay nodes
closest to these locations from all potential ones, in the sense
that the summation of distances all relay nodes should move
is minimized. To obtain this, we can use the Kuhn-Munkres
algorithm [9], which finds the minimum matching for weighted
bipartite graph. We can construct a complete weighted bipartite
graph G(V1, V2, E) where the relay locations belong to V1 and
the original positions of potential relay nodes belong to V2.
There is an edge between each vertex u ∈ V1 and each one
v ∈ V2 weighted by their distance. Then we run Kuhn-Munkres
algorithm to find its minimum matching, which is exactly the
optimal assignment for relay nodes.

V. AN AUTONOMOUS COMPENSATION GAME FOR
INDIVIDUAL RELAY NODE DECISIONS

The centralized method does not consider the preferences of
relay nodes. As shown in Fig. 1. (d), the reward associated with
each relay location varies a lot. A centralized system assigns
the closest potential relay node to each location, in order to
minimize their moving distance so data transmission can begin
quickly. However, if relays can make their own decisions, they
may choose locations with high rewards, not closest.



We want to design a game where relay nodes make in-
dividual decisions of destinations, and we hope there exists
Nash equilibrium. Intuitively, a Nash equilibrium is a group
of players’ strategies where no one could strictly benefit by
changing only his own strategy. Specific to our problem, the
equilibrium means each relay node goes to a location where it
can gain the most reward if others do not change their locations.
With the assumption that every player is rational to choose
the best strategy for himself, relay nodes will choose locations
corresponding to the Nash equilibrium individually.

Now we introduce the autonomous compensation game. We
suppose that the optimal positions for relay nodes, as well as
the corresponding rewards, are known to all potential relay
nodes, either calculated by themselves or broadcast by the
system. In this game, the reward of each location will be
equally shared by all players moving there. So players need to
find a strategy to decide where to move to gain higher utility.
Generally speaking, the utility of each player should be the
reward he receives by acting as relay minus the energy cost
of doing so and other cost for moving to the specific position.
The energy cost is proportional to the number of transmission
one does, thus proportional to the reward. The moving cost is
quite complicated, and we only introduce a simple version due
to space limitation, leaving other analysis in a future journal
version.

Suppose there are M players ({ξj}) and k locations ({wi})
with value (ri). Define X : {wi} → 2{ξj},X (wi) =
{j|node ξj goes to location wi}. The utility of each player is
U(ξj) =

ri
|X (wi)| where j ∈ X (wi). Here we consider players

choose pure strategy, that is each one decides to go to only
one location to do transmission in a short period. Then the
corresponding pure Nash equilibrium requires

X (wi) 6= ∅, ∀i (1)
ri

|X (wi)|
≥ rj
|X (wj) + 1|

, ∀i 6= j (2)

Constraint (1) guarantees that there is at least one relay node at
each relay location, so the network is connected. Constraint (2)
ensures that when everyone chooses the strategy associated
to the equilibrium, each player cannot gain more utility by
changing his strategy when others keep their strategies. Here
players are homogeneous since they choose the strategies to
maximize their utilities without considering the cost generated
during their moving to specific locations. As a result, to find
an equilibrium, we only need to study the number of players
going to each location.

Theorem 1. A sufficient and necessary condition for the exis-
tence of pure Nash equilibrium is:

M ≥
k∑
i=1

max{1, d ri
rk
e − 1} (3)

where ri is in decreasing order. And the equilibrium is unique
if the equality holds.

We give a sketch of proof and leave the complete one in a
future journal version. From constraint (1), at least one peer
occupies location wk. From his point of view, if there exists a
location wt with reward rt satisfying: rt > m·rk but |X (wt)| <
m, then he will go to wt to improve his utility. This means the

reward of location wi should be divided by at least d rirk e −
1 agents once ri

rk
> 2. On the other hand, if the number of

peers are more than M0 =
k∑
i=1

max{1, d rirk e − 1}, we can first

construct an equilibrium allocation for M0 agents, and prove
there is an equilibrium for each M > M0 by induction. Finally
the uniqueness is proved by contradiction.
Remark: In practice, we also need to define dij as the distance
between wi and ξj , and assume the cost for ξj moving to wi
is c · dij with a constant factor c. Then the Nash equilibrium
requires for ∀i and ∀j ∈ X (wi)

X (wi) 6= ∅ (4)
ri

|X (wi)|
− c · dij > 0 (5)

ri
|X (wi)|

− c · dij ≥
ri′

|X (wi′) + 1|
− c · di′j , ∀i′ 6= i (6)

Generally speaking, finding the Nash equilibrium is solving a
system of integer equations, which is an NP-hard problem and
there is no common method for approximate solutions. With
similar analysis as the one before, we can still have a necessary
condition for the existence of Nash equilibrium

M ≥
k∑
i=1

max{1, d ri
rk + c · (dmax − dmin)

e − 1} (7)

where dmax = max{dij , 1 ≤ i ≤ k, 1 ≤ j ≤ M} and dmin =
min{dij , 1 ≤ i ≤ k, 1 ≤ j ≤M}.

Although the pure Nash equilibrium is assured if there are
relative enough players participating, in most circumstance, the
peers join the game, meaning deciding to relay data, in a series
of time. Assuming player ξ1 joins firstly, followed by ξ2, and
so on, we show how the equilibrium is approached: (1) Before
the M0-th player joins, each player chooses the location with
highest actual reward, that is the reward for each peer going
there, at the moment he decides to participate. If there are
multiple such locations, choose the one where no relay node
goes yet to avoid a failure of whole system, or randomly one
if these locations are occupied by at least one relay node. (2)
After that, each player still chooses the location with highest
actual reward when he comes. But if there are multiple such
locations, choose the one with highest total reward. According
to the proof of Theorem 1, we know the equilibrium always
holds after any player joins in this way.

VI. PERFORMANCE EVALUATION FOR DATA EXCHANGE
SYSTEM

In this section, we evaluate our design in three as-
pects. We first show that the transmission overhead is
roughly a linear function of the network size, or num-
bers of providers/consumers. Then we show how practical
provider/consumer mobility impacts the performance. Finally,
we analyze Nash equilibrium and find the upper/lower bounds
of the extra costs incurred when potential relay nodes make
individual decisions.

A. Transmission Overhead as Functions of Network Size

We present the relationship between transmission overhead
and the numbers of providers and consumers in the network.
Since there is no closed form solution for finding proper
positions for relay nodes, we use approximation algorithms.



Fig. 2 shows the total transmission overhead as functions to
the numbers of providers/consumers, and network diameter.
The results are averaged over 1000 runs, where all consumers,
providers and potential relay nodes are independently and
uniformly distributed in a D×D square. We can see that when
the transmission overhead increase linearly as the number of
providers or consumers increases when either remains fixed.

N1

Transmissions
Overhead

D=1.5 km
D=1.0 km
D=0.5 km

N2

Transmissions
Overhead

D=1.5 km
D=1.0 km
D=0.5 km

(a) (b)

Fig. 2. Total transmission overhead as functions of numbers of
providers/consumers (N1/N2) with different D’s.
B. Impact of Practical Mobility

In reality, providers and consumers are not always static. To
analyze how devices’ mobility influences data exchange, we
follow the model in [6] that finds the nodes’ speeds and pause
times each follow a log-normal distribution.

We assume providers and consumers are walking around
slowly in the D × D square, and following Log-Normal
distributions denoted by lnN (µ, σ2). Potential relay nodes
can move at 10km/h on average to assigned locations, and
providers/consumers will stop once all relay nodes reach their
destinations and data delivery starts. Here we define a concept of
second move. When relay nodes reach their destinations, some
of these locations may no longer be suitable for data delivery
because providers/consumers have moved. Thus a fraction of
relay nodes may need to move a second time to some new
locations.

Fig. 3 shows how the average speed of providers/consumers
impact second move overhead. It varies from static, nor-
mal walking (3km/h) to slow running (5km/h). The proba-
bility that second move happens increases almost linearly as
providers/consumers move faster (Fig. 3.(a)). This is intuitive
because the faster they move, the more likely some original
relay locations become obsolete. The fraction of relay nodes
that need a second move, however, fluctuates but remains at
a low percentage (8 ∼ 12% in Fig. 3.(b)). Thus when second
move is needed, only one in ten relay node is affected. Also
the total second move distance as a ratio of previous move’s
total distance, is also small (7 ∼ 15% in Fig. 3.(b)). These
show that the mobility of providers/consumers has small chance
(5 ∼ 25%) of incurring a very small additional overhead.

C. Metric for Nash Equilibrium

In autonomous compensation game, each potential relay node
chooses strategy of going to some relay location individually. It
is natural that more relay nodes go to those relatively ”richer”
locations in the equilibrium. They work together to relay data,
even though one is enough, which is the “inefficiency” due to
individual choices. We use a welfare function of cost form to
measure the inefficiency, and compare it to the social optimal
assignment. Since more than one Nash equilibrium may exist,
the best or the worst equilibrium as quantified by the welfare

correspond to the two metrics of Price of Anarchy (PoA in short)
and Price of Stability (PoS).

1) Price of Anarchy: Let S be the joint strategy sets for
players E ⊆ S be the set of strategies in equilibrium. In
this game, the total moving cost C : S → R for a group of
players’ strategies is considered as social welfare which should
be minimized, and the optimal solution can be found according
to the analyze in Section IV. Then Price of Anarchy is defined as
the ratio between the social welfare of the “worst equilibrium”
and the one of optimal “centralized” solution. In the simplest
model, all relay nodes ignore the moving cost when choosing
strategies. With previous notations, a lower bound for optimal
social welfare is k · dmin and an upper bound for the worst
equilibrium is M · dmax. So the correspondingly upper bound
for Price of Anarchy is

PoA =
maxs∈E C(s)

mins∈S C(s)
≤ M · dmax

k · dmin
Intuitively, when more people are doing a fixed amount of work,
there will be more unnecessary cost. And when more amount
of work are given to a fixed number of people, there will be
less waste due to competition.

2) Price of Stability: With the same setting as PoA, PoS
measures the ratio between the “best equilibrium” and the
optimal “centralized” solution. By definition, 1 ≤ PoS ≤ PoA.
The closer they are to 1, the less inefficiency in the equilibrium.
The metric of PoA is an upper bound, and the metric of PoS is
the lower bound for the inefficiency in an equilibrium. Here the
optimal solution is exactly the same as before. For the best
equilibrium, the upper bound corresponds to the assignment
where k nodes go to the same locations as in the optimal
solution, and others go to furthest locations. Then we deduce
an upper bound for PoS:

PoS =
mins∈E C(s)

mins∈S C(s)
≤ 1 +

(M − k) · dmax
k · dmin

D. Numeric Evaluation of PoA/PoS

We evaluate the impact of different factors in PoA/PoS
following similar settings with simulation.

Fig. 4. shows that PoA and PoS are monotonously decreasing
as the number of providers (consumers) increases while number
of consumers (providers respectively) fixed. The curves are
similar to inverse proportional functions, consistent with our
earlier theoretical analysis.

Fig. 5 shows PoA and PoS are both linear functions of the
number of potential relay nodes (M ), similar as previous anal-
ysis. We also find that the gap between PoS and PoA becomes
narrower when more providers/consumers exist. The gap is
caused by multiple Nash equilibriums. Thus less equilibrium
and narrower gap exist when there are more providers and
consumers.

Fig. 6 shows that PoA and PoS follow earlier analysis at
when network diameter (D) is small but becomes unreasonable
when D > 1.5km. This may be caused by the fixed price for
each piece of data, regardless to the distribution of providers
and consumers. When peers are in a larger area, more relay
nodes are needed, resulting in a decrease of reward to each of
them. This shows increasing the price for data for larger network
diameter is necessary.
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Second Move 
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Fig. 3. Performance of our approach as a function of average speed v (km/h) of providers and consumers with impact of N1 (N2 fixed). (a) Second move
probability vs v. (b) Fraction of second move nodes vs v. (c) Second move overhead vs v.
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Fig. 4. PoA/PoS as a function of N1 (N2) with impact of N2

(N1respectively). M = 50, D = 1km.
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Fig. 5. PoA/PoS as a function of M with impact of N2 (N1 fixed) or N1 (N2

fixed respectively). D = 1km. (a) PoA vs M when N1 = 3. (b) PoS vs M
when N1 = 3. (c) PoA vs M when N2 = 3. (d) PoS vs M when N2 = 3.

VII. CONCLUSIONS

We design a crowd sensing incentive framework for peer data
exchange where consumers need data from providers, and relay
nodes facilitate the exchange by going to relay locations to
connect them. Relays and providers gain utilities by relaying
or generating desired data. We first propose a centralized
method to assign relay nodes to locations, then introduce
a new autonomous compensation game model for them to
make decisions individually. We analyze the condition for the
existence of the Nash equilibrium, and evaluate how different
factors impact the overhead. We also compare the inefficiency
in individual decision to that of social optimal assignment, and
find that it does not increase too much when participants have
more freedom choosing their strategies, due to the bounds in
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Fig. 6. PoA/PoS as a function of D with impact of N2 (N1 fixed) or N1 (N2

fixed respectively). M = 100. (a) PoA vs D when N1 = 3. (b) PoS vs D
when N1 = 3. (c) PoA vs D when N2 = 7. (d) PoS vs D when N2 = 7.

the increasing rate of the Price of Anarchy/Stability.
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