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Abstract-
In this paper, we present a Fleet Management Cen-

ter application implemented using a stream processing
infrastructure we call System S. System S enables the
deployment of large scale applications with mechanisms
for sharing multi-party data sources, software compo-
nents, and even intermediate results. This approach
significantly reduces the cost of software integration, and
ownership, the major factor in Intelligent Transportation
Systems. In addition, the system includes an adaptive
data source management that determines the list of
relevant data sources based on the current locations of
the entities monitored or managed by the applications.

I. INTRODUCTION

Intelligence Transportation System (ITS) applica-
tions are critical to improve the efficiency of modern
transportation [7]. Some ITS applications are capable
of answering complex queries such as finding the
fastest routes for individual vehicles taking into ac-
count realtime road conditions [6]. Building a scalable
and flexible ITS system, however can be a tremendous
challenge. Traffic data come from many heterogeneous
sources as streams, in different forms, content and
quality. Both spatial and temporal analysis is needed to
correlate data from sources in large geographic areas
or time periods. The demands of analytical results
come from many user groups, such as drivers, highway
patrol, department of transportation. They pose not
only large numbers of simultaneous queries, but also
queries of significantly different nature.
Not surprisingly, software development and integra-

tion is a major cost factor in ITS applications. It is
important that we make these software artifacts as
reusable and modular as possible. We must be able
to compose them effectively in different applications
that can answer the various kinds of queries. Such
a system requires standard and reusable mechanisms
for interfacing the data with the outside world. In
order to facilitate growth and incorporation of new
technologies, the system must enable the creation and
deployment of new ITS applications without disrupting
existing ones. Furthermore, new applications should
be able to reuse intermediate results produced by
existing applications in order to minimize duplicate
or redundant processing of data. Finally, the system
must allow location-sensitive applications to adapt to
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Fig. 1. An application that takes in data streams from sensor
networks and webcams is deployed in System S.

the current locations of the entities they are tracking
or assisting.

In this paper we describe a Fleet Management
Center (FMC) ITS framework, and show how we
address those challenges using many interconnected
modular, reusable software components called Pro-
cessing Elements (PEs), each of which takes data of
certain content and format and perform various kinds
of analysis. Different PEs may be interconnected in
a processing graph (or workflow) that takes in data
from different sources and produces desired end results
(such as directions to a fleet of vehicles along the
shortest routes using real time traffic conditions). The
PEs are deployed in System S [3], an infrastructure
that supports the deployment of large scale stream
processing applications on the fly. We also use a Data
Source Manager (DSM) to dynamically select data
sources that are relevant to our ITS application.
The rest of the paper is organized as follows. We

give an overview of System S in Section II. Section III
explains how application adaptation and data source
management are accomplished in the system. We
illustrate a fleet management application and provide
vehicle routing performance results in IV. We con-
clude in Section V.

II. SYSTEM OVERVIEW AND EXAMPLES

We have implemented our approach within a stream
processing system referred to as System S. A sample
configuration of System S with a deployed application
is shown on Figure 1. The system is centered around
a Stream Processing Core (SPC) [3], a scalable dis-
tributed middleware for stream processing. The SPC
consists of a large cluster of dedicated processors and
an execution context upon which stream processing
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applications are deployed. Each stream processing
application consists of a processing graph, which is
a directed acyclic graph of stream processing compo-
nents, namely data sources and processing elements
(PEs).

Data sources deliver streaming primal data into the
system and PEs perform various types of operations
on streaming data - filtration, annotation, transforma-
tion, stream join, etc. PEs are individually deployable
and reusable software components and are intercon-
nected by multi-access (single-writer, multiple-reader)
streams.

End-users interact with System S by specifying
stream queries that describe the desired end results
to them. We refer to System S queries using the
name inquiries. Inquiries are pursued by assembling
and deploying processing graphs of interconnected
PEs that can produce the desired end results. These
processing graphs may be assembled manually or au-
tomatically. In this paper, we demonstrate System S's
ability to support Intelligent Transport System oriented
applications using processing graphs that have been
assembled manually by an application developer or
administrator. These graphs can be parameterized for
different use-cases. In [1] we describe an ontology-
based application composer for System S that automat-
ically composes the processing graph for an inquiry
using detailed descriptions of data sources and PEs in
ontologies along with Al planning algorithms. We do
not elaborate on the details of automatic composition
here.

For purposes of illustration, consider as a simpli-
fied example: an inquiry requesting traffic congestion
reports for a particular roadway intersection. Such an
inquiry may draw audio data from a sound sensor data
source and apply an Audio Pattern Analysis PE, which
matches the data to known audio patterns to determine
the level of congestion at the intersection (isolating
the lower thread in Figure 2). In order to improve the
accuracy of such an assessment, the application may
use a Video source, extracting images from the video
stream and examining them for alignment to visual
patterns of congestion at an intersection (the upper
thread). The end result would then be achieved by
joining feeds from the two analytic chains.

This simple workflow can be extended further, by
including additional PEs and data sources. In fact,
it describes a small part of the Fleet Management
Center service (FMC) application discussed in Section
IV. In addition, applications in FMC provide vehicle
routing services based on the analysis of real-time data
obtained from the sensors.

Each data source delivers primal data into System S
by way of a SourcePE. The SourcePE (denoted by "S"
in Figure 1), a special type of PE that also runs in the
SPC, serves the sole function of bringing data from an
external source into the system. SourcePEs encapsulate
the drivers, and other source dependent configuration
setup to access a broad variety of external sources.
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Fig. 2. A stream processing graph that utilizes roadside cameras
and microphones to produce traffic congestion information.

The data is packaged into internally streamable and
processable Stream Data Objects (SDOs). SDOs are
lightweight data containers that carry data from Sour-
cePEs to PEs, from PEs to other PEs, and eventually
to SinkPEs (the dual of SourcePEs, denoted by "D"
in Figure 1) that deliver inquiry result SDOs outside
of the SPC (e.g., to an end user or a data store).
Source PEs and Sink PEs allow the mechanisms for
interfacing with the outside world to be reusable.
The same Source and Sink PEs can be reused with
different parameters for bringing in data from similar
data sources and for pushing out results in similar
manners.
PEs and data stream instances in SPC are statically

assigned individual security and privacy labels, inher-
ited in part from the applications' effective user IDs,
and the PE classes. SPC connects PEs to the data
streams only if their respective security and privacy
labels allow it. If necessary the labels can be ad-
justed using "downgrader" PEs that sanitize sensitive
information (e.g. remove identifying information, etc).
Applications can tap into past (archived) or present
(real-time) data. Past data is stored by the system and
can be extracted and processed as a stream.
PEs can be co-deployed on the same processing

node (hardware) and can also be replicated across
multiple nodes. Data can be processed serially, from
one PE to another (linear graphs), but parallelizable
tasks can be performed more efficiently by streaming
data to concurrently operating distributed PEs. The
PE lifecycle management and resource allocation tasks
are carried out by a Job Manager (JMN), an integral
system component of System S. The JMN receives
requests to deploy PEs with their flowgraph speci-
fications represented in a Job Description Language
(JDL). The JMN interprets the JDL, computes the
adequate resource allocation with respect to resource
availability, and QoS constraints and priorities spec-
ified in the JDL, and deploys the PEs in SPC. In
addition it provides APIs to monitor and terminate
deployed PEs.

Another component of System S is the Data Source
Manager (DSM) which manages and activates data
sources based on requests and feedbacks from appli-
cations and users. The DSM provides a virtualization
of the data source from the application perspective,
allowing application developer (or automatic com-
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poser) to focus on instrumenting the data analytics
independently of how the data is brought into the
system.
An important feature of our infrastructure is the

ability to reuse intermediate streams across differ-
ent applications. Once an application (or processing
graph) is built and deployed in response to a users
inquiry, the set of intermediate streams produced in
this processing graph are added to the set of data
sources that are managed by the DSM component.
These intermediate streams are called derived streams.
Subsequent applications that are deployed can make
use of these derived streams. The main advantage of
this feature is to allow sharing of common processing
across applications and to avoid unnecessary duplicate
computation.

III. DATA SOURCE MANAGEMENT

The Data Source Manager (DSM) component pro-

vides a repository with services for managing external
data sources that are available to the system. DSM
services include: (1) managing information about all
sources, (2) providing the appropriate source PE con-

figuration to connect to external sources, and (3)
activating or deactivating sources PEs depending on

current application needs. DSM also supports data
source specific monitoring services, implemented in
System S as stream processing applications that mon-
itor the availability and quality of existing sources.

As illustrated in Figure 3, DSM consists of a

meta-data and a semantic (Minerva) database, and
services to interact with these databases. The meta-
data database contains the system attributes of the data
source, such as type of data produced by the source,

the URL and configuration parameters to access the
data source. It also contains real time attributes such
as data rates and packet loss ratios, which can be used
by other system components to rank the quality and
manage active data sources. The semantic database
extends the meta-data with attribute relationships and
additional descriptions of the data sources expressed
as facts in the Web Ontology Language (OWL [4]). In
addition, it supports reasoning based on Description
Logic Programs (DLP [2]). It supports a SPARQL
[5] query interface and provides results to queries,
that include both directly asserted facts as well as

facts that are inferred using DLP reasoning. A key
characteristic of the semantic database [8] is that it can
perform incremental updates to the ABox (assertions
on instances) of the ontology, but any updates to the
TBox (assertions on concepts) requires a regeneration
of the results of reasoning and is time-consuming.
Hence, any update to the ABox (such as the current
state or quality of a data source) can go directly to
the semantic database. However, even this operation
is slower compared to a traditional database due to
the necessity of checking the logical consistency of
the new facts. Thus, if the update rate of the metadata

Fig. 3. Data Source Management Service Architecture of System S

of a data source is very high, the updates are first
performed in the meta-data database, where they are
aggregated and periodically propagated to the semantic
database by the DSM database adapter. When the
TBox changes (which do not occur very often in our
system), the changes are made to a standby semantic
database which regenerates the results of reasoning.
When the standby database is ready, the DSM swaps
the two databases in order to make the TBox changes
available to the system.

Stream application composers (human or auto-
mated) express their requirements for a data source in
the form of RDF semantic queries using the SPARQL
language. DSM executes the query on its semantic
database to determine the list of potential data source
instances suitable for the application. Data sources
selected by the stream application composers are then
connected with Source PEs that are configured accord-
ing to the configuration attributes specified in the meta-
data database of DSM.

After deployment the various applications can refine
the desired data source semantic descriptions, e.g. limit
their interest to sensors located in certain areas if all
the vehicles of interest are concentrated in that area.
This is achieved using application specific DSM agents
(PE 'A' in Figure 3) that translate the data source
requirements into the corresponding SPARQL queries.
The DSM Connection Management service uses the
SPARQL queries to maintain a list of data sources of
interest, and activate or deactivate the corresponding
source PEs.

IV. APPLICATION TO FLEET MANAGEMENT
SERVICES

A. FMC Application Architecture
In FMC, routes for delivery trucks are set at the

beginning of the shift, informed by any known traffic
conditions at the time of departure. There is a standing
inquiry for each truck; it watches for changes in traffic
conditions that warrant route replanning and provide
an updated route to the truck. The routes are based on
a collection of destinations and the current location



4

of the vehicle (determined by a GPS transmitter in
the vehicle). Accompanying the standing, vehicle-
specific routing inquiries are inquiries that examine
streaming data from multiple sensors and other sources
and update the roadway and traffic conditions, with
special focus on corridors covering known vehicle
destinations.
The stream processing application is illustrated in

Figure 4. The application is built using the System S
stream processing infrastructure, and consists of a set
of PEs arranged into processing graphs. The upper por-
tion of the processing graph depicts the route update,
and the lower portion depicts the location condition
update. In the route update portion are the various
PEs - analytic modules that receive the streaming data
and perform functions such as generating the K best
potential travel corridors (a corridor delineates a region
set of the map that is likely to be traversed by the
vehicle), deciding on routes based on vehicle types
and, where available, traffic conditions. The two main
results of this portion of the application are the route
updates for the vehicles and updates to the list of
currently active locations. The results guide the focus
of the condition-assessment processing (in the lower
part of the graph). The route update portion involves
the following PEs:

Vehicle LOC: Receives GPS data of current vehicle
locations and package it into internally streamable and
processable SDOs.

Vehicle DEST: Retrieves a list of destination co-
ordinates for the vehicle, and package it into SDOs.
Various implementations of the PE can either retrieve
this information from a database, or receive it directly
from user console.

Join Vehicle ID: Joins the LOC and the respective
DEST coordinates of every vehicle received on its
input ports. It generates a new join SDO, containing
the vehicle ID, its current location, and the list of stop
coordinates, when this information changes.

Potential Corridor Generation: Generates the corri-
dors that might be traversed by the vehicle. The output
SDO is the input augmented with the list of regions
contained in the corridor (e.g. states or zip codes), and
way-points (main cities, etc). The set of way-points
constitutes a chain of virtual links, for each of which
a route must be computed. For scalability reasons, this
PE uses a summarized road-map information, which
is not frequently updated.

Locations of Interest: Store the corridors in the
location list database for use by other PEs in the
condition assessment applications.

Vehicle Route Decider: Several PEs, assigned to
a particular region (e.g. one PE per state). Each PE
listens for SDOs that contain a corridor intersecting
with its region (other SDOs are ignored). The PE looks
in those SDOs for or virtual links that are located
within its assigned region and replace them with the
shortest routes.

Join Route: This PE merge results from the various

Vehicle Route Decider (excluding virtual links) into
a subgraph. When it can find a shortest-path in the
subgraph, it generates an SDO with that route.
The lower portion contains an inquiry per known

data source (weather sensor networks in this example),
drawing data from the source, processing the data to
determine its location and the conditions, and updating
a Location Conditions store, the sole recipient of
condition inquiries' result data. This data is retained
for some limited duration and triggers rerouting in the
upper inquiries. Other data sources might include non-
sensor data sources such as local radio weather report
sources or traffic incident report sources. But these are
secondary sources, drawn from other service providers,
possibly providing stale reports.

For rapidly changing conditions, it would be better
to draw data from directly accessible sensors or sensor
networks, using devices such as traffic surveillance
cameras, in-road vehicle sensors, wireless sensors ca-
pable of sensing temperature, barometric pressure and
humidity, infrared remote temperature detectors (to
detect road surface temperatures), and even roadside
microphones (to analyze traffic noises). In more per-
manent installations where power consumption is not
a factor, each of these can produce high volumes
of streaming data, which can be processed by many
stream processing applications into usable results.

There are a few non-sensor sources, providing in-
formation not limited to a single geographic area;
these may deliver weather updates that span a wide
range. There are many more sensors, though, since
the scope of the data is limited by the sensor's range:
a traffic camera at street intersection can only deliver
data within the camera's (possibly fixed) range. Many
sensors covering anticipated travel corridors must be
be deployed, and activated by DSM when respective
travel corridors are active, with their data processed
by separate stream-interconnected PEs, in response to
inquiries. The location condition update consists of the
following PEs:
DSM Agent: translates the location list into semantic

queries for the DSM connection management which
in turn activates the appropriate source PEs to satisfy
the requests. There is one specialized DSM agent per
modality, e.g. weather, traffic report.

Sensor Network Gateway PE: is a source PE spe-
cialized to query sensor gateways. DSM connection
management dynamically reallocate source PEs in
response to requests from the DSM agent.

Location Extractor and Loop Data Congestion An-
alytics: are one of many PEs used to assess the road
conditions. In this example they extract the Induction
Loop data, and analyze its content to estimate the
impact on traffic delays.

Condition update: persist weather related location
condition to a Road Condition database.
The application also includes sink PEs (map vehicle

position, view route, and map condition) that present
the results of the user inquiry to a user interface,
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Fig. 4. Fleet Management Center Application. The application consists of route computation PEs (top portion of the figure), and an

example of route condition-assessment PEs (bottom part).

or automatically send that information directly to the
vehicles.

B. Incremental Application Deployment and Derived
Stream Reuse

Note that the route assessment application can easily
be extended with new applications to increase the
accuracy of the route report, as new modalities (or pro-

cessing resources) become available. This is because
the location list and the location condition databases
provide a separation between the PEs that update the
database, and PEs that read their data. This separation
allows the PE in the top part of Figure 4, which
update the corridors, to be developed and deployed
independently of the PEs in the lower part, which are

responsible for updating the location conditions. For
instance several route selection PEs can be deployed in
parallel to handle fleets of vehicles that have different
routing requirements. Similarly, diverse applications
can be deployed to update the location conditions
with new modalities that corroborate, or improve the
accuracy of the location condition.

Derived data streams from existing applications can

also be registered in DSM as a Data Source, and
reused to support other applications. Reuse is allowed
within the limits of the respective application security
and privacy constraints, which are enforced by SPC.
For instance if the vehicles managed by the FMC
application are shuttle vans, we can extend the appli-
cation to dispatch vans to pick new customers along
their assigned route. In this example, the application
uses a source PE that takes customer pickup and
drop-off street addresses in input, a PE that converts
the addresses in lat-long coordinates, and a PE that
matches the coordinates to the routes (derived stream
of the Join Route PE in the original FMC application),
currently assigned to the vans. The later PE selects
the van that is the best match for this customer and
modifies its route accordingly to include the customer.

C. Experiments

In this experiment, we measure the performances
of the route update, the upper portion of the pro-

cessing graph in Figure 4, which is the most CPU
intensive part of the FMC application. For the purpose

of the experiment, we randomly generate a global
map of 10,000 nodes connected by 40,000 road-
sections that are 1km to 10km long. Nodes in the
global map are uniformly distributed into four regions
(A,B,C,D), such that 1% of the road-sections connect
nodes located in separate regions (A-B, B-C, or C-D).
We decompose this global map into five maps: (1) a

corridor map consisting of the road-sections crossing
a region border and the nodes that they connect to
(a virtual connection is assumed from those nodes to
all other nodes located in the same region) ; and (2)
four individual road maps, one per region, containing
the nodes within that region, as well as nodes in other
regions that are directly connected by a road-section to
a node in the region, and the road-sections between the
nodes. As illustrated in Figure 5, the corridor map is
used by the Corridor Generation PE, and the regional
maps are used by the Vehicle Route Decider PEs of
the distributed routing.
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Fig. 5. Experiment setup. The top part of the figure shows the
distributed workflow of the routing algorithm. The bottom part
shows the centralized routing workflow used for comparison.
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We compare the distributed route update with a
centralized Dijkstra shortest-path (also a Vehicle Route
Decider PE), using the global road-map. The workflow
of the centralized routing is shown in the lower part
of Figure 5. In order to provide a fair comparison with
the distributed route update, we uniformly balance
the routing queries of the centralized routing between
N = 5 instances of the Vehicle Route Decider, so that
the same amount of CPU resources is available to both
implementations. We also include the performances of
a centralized approach without load balancing using a
single Vehicle Route Decider.
We approximate the application as a queuing sys-

tem. In such a system, the total run time T consists
of a constant delay t, plus a processing time spent
in the most CPU intensive PE. This processing time
depends on the maximum number C of queries per
seconds that the system can handle, and varies with
the query arrival rate A. Other processing time spent in
less CPU intensive PEs are comparatively negligible,
and included in t. The total run time is equal to
T = t + 1/(C -A). If we vary the arrival rate A,
and measure the corresponding runtime T, we can thus
derive the respective values of C and t.
As depicted in Figure 5, we insert two monitoring

PEs to carry out the measurements. The Measure Input
PE measures a moving average of the inter-arrival rates
A, and annotates the input SDO with a timestamp. The
Measure Output PE uses this timestamp information
(which is transparently carried through the interme-
diate PEs), to compute the total runtime T. The two
PEs are collocated on the same host, so that the same
clock reference is used to compute the intervals. All
other PEs are allocated on separates hosts in order to
distribute the CPU utilization. The target deployment
testbed used in our experiments consists of four 4-way
3GHz Intel Xeon(TM) nodes and five 2-way 2.4GHz
AMD Opteron (TM) 250, running the Linux Suse
9.3 operating system and interconnected with lGbs
network cards via a Cisco Catalyst 6509 switch. For all
the experiments, we use the same sequence of routing
requests, which consist of randomly generated source-
destination pairs uniformly distributed across the map.

Figure 6 shows the results of our experiments. The
corresponding values of C and t are shown in Table
I. The table also include the average route lengths.
The results indicate that the distributed routing offers
74% more throughput than the centralized approach
with load balancing (N = 5 CPUs). However, the dis-
tributed approach computes routes that are 7% longer
than the centralized approach on the average. This
penalty is due to the lower level of details available in
the corridor map.

V. CONCLUSION
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Fig. 6. Delays of the distributed versus the non-distributed stream-
based route determination architecture.

TABLE I

PERFORMANCES OF THE ROUTING ARCHITECTURES.

Implementation C (queries/s) t (ms) Avg length
Distributed 198 10 169.59km

Centralized (N=5) 114 0 158.79km
Centralized (N=1) 29 0 158.79km

processing applications. The use of a stream pro-
cessing oriented architecture addresses several of the
challenges faced in the implementation of ITS appli-
cations. It promotes the paradigm for reusable and
modular software components that can be composed
in different applications to answer different kinds of
ITS queries; it provides reusable components for inter-
facing the data with the outside world; and it provides
the mechanisms for managing concurrent applications,
share derived streams across applications, and extend
existing applications into larger applications without
disturbing the existing ones.
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