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Abstract—Emerging innovative edge devices like drones, self-
driving cars, phones/tablets and IoT nodes are revolutionizing
our daily lives. Caching data among peer edge devices enables
data sharing needed in many applications. In such applications,
network scalability and node mobility bring many challenges. They
change the topology and the resources in the network and make the
network less robust. In this paper, we propose peer data caching
strategies that consider the scale and mobility of these increasingly
popular edge devices. We propose a grouping method creating a
layered design to reduce the number of entities in each layer.
We propose inter-group and intra-group optimization problems
which proactively cache data onto best places to support robust
and fast data access. We develop a 7-approximation algorithm for
inter-group optimization and use uncapacitated facility location
problems to solve intra-group optimization. We also transform
the mobility of nodes into node behaviors to reduce the impact of
mobility on the network. Our extensive simulation results show that
our proposed strategies can apply to large-size and high-mobility
networks, while achieving satisfactory results for data access.

I. INTRODUCTION

Smart edge devices possessing powerful computational capa-
bilities, rich sensing modalities, and fast data transmission radios
are becoming pervasive in our daily lives. They are expected
to accomplish unprecedented tasks such as intelligent drone
cruise, self-driving, and personalized health management. Many
such applications produce massive amounts of sensing data and
require the sharing of data among peer devices.

Consider some situations where the peer data sharing provides
rich information and the foundation of various applications.
On a campus, smartphones carried by students and faculty
generate sensing data; cars that drive on campus collect road
and traffic information. When shared with peer devices, such
data can inform people about activities and emergencies, help
drivers avoid traffic and find parking spaces. In a large mall,
shoppers can share their locations with merchants to obtain the
latest coupons for discounts. In peer data sharing, caching helps
nodes to access high demand valuable data. For example, cached
traffic accident photos and video clips help keep nearby drivers
aware of the traffic conditions, and cached activity information
may help authorities to manage the population flow to avoid
overcrowded public spaces.

Previous work [1], [2] have studied data caching in edge
environments, usually confined at a relatively small scale and
largely static topology (e.g., people staying in a corner of a
square or an atrium). Peer caching under the large number and
the high mobility of nodes is needed for many applications (e.g.,
pedestrians, vehicles across multiple city blocks). Meanwhile,

the scale and mobility in edge scenarios bring many challenges.
First, when the number of nodes grows, the latency to obtain
input information from all these nodes becomes too high. By
the time all the information is collected, topology changes may
have made the information obsolete. Second, the computational
power of the network may not be sufficient to analyze all the
information accurately. Computational overhead often grows
more than linearly with the number of nodes. If the network
size is large, it takes too long to compute the caching decisions
of which nodes should cache which data. Naively collecting the
information and conducting computation more frequently will
only lead to much increased overhead.

To enable data caching under high mobility and large scale
in edge computing, we propose a 2-tier hierarchical grouping
method, which organizes the network into multiple groups. We
first find the best group where a data chunk should be cached
(inter-group data caching), and then find the best nodes in
this group to cache the data chunks (intra-group data caching).
Compared with the traditional “flat” structure, it has several
advantages. First, in the multi-layer structure, nodes form a
group, and groups form the network. This hierarchy decreases
the number of entities that must be managed in each layer,
and the operation in each layer can be made transparent to
each other, both leading to better scalability. Second, it also
reduces the number of operations needed when nodes move
and the network topology changes. This helps to transform
the mobility issue to certain behaviors of nodes. When such
behavior occurs, the corresponding processes will be triggered.
Finally, we proactively cache data onto the best places based
on the current situation, where the demanding groups can have
quick and robust access to the corresponding data.

Specifically, we propose an approximation algorithm for inter-
group optimization problems, and utilize an existing algorithm
for intra-group optimization. We propose algorithms to trans-
form mobility issue to simple node behaviors to alleviate the
impact on nodes. Our simulation shows that our proposed
strategies can adapt to different scales of network and different
levels of mobility, while keeping the accessing time for data
low and successful ratio for delivering data high.

We make the following contributions in this paper.
• We introduce scalable caching in high-mobility edge com-

puting environments. The system is effective in the large
scale and frequent mobility scenarios, offering fast data
access and fair caching. We use a novel grouping method
to reduce the computation and communication overhead to
address network scale and node mobility.978-1-5386-6808-5/18/$31.00 c©2018 IEEE



• We formulate the inter-group data caching optimization
problem and propose an approximation algorithm to solve
it. We prove that the approximation ratio is 7. We also
propose solutions to the intra-group data caching problem.

• We propose node behavior problems to transform the
mobility of nodes to certain node behaviors. We then design
the corresponding algorithms that the node behavior will
trigger.

• We implement our design in a network simulator, and
extensive simulations show that our design can adapt to
different node mobility and network scale, while achieving
short latency for data access.

The rest of this paper is organized as follows. In Section II
we discuss some related work on edge computing, cooperative
caching and facility location problems. In Section III we discuss
the model of our designed system. In Section IV we give the
problem formulation and algorithms of our design. We evaluate
the proposed algorithms and methods in Section V. Finally, we
conclude this paper in Section VI.

II. RELATED WORK

Edge computing [3] brings computing, storage services in
close proximity to mobile users. It saves resource (battery,
storage, data traffic) consumptions of mobile devices and may
provide services at a quality similar to cloud-based ones. Peer
data sharing among devices enables peer devices to share
sensing, control data to create many novel applications. Our
previous work propose peer data discovery [2] focusing on how
to discover and retrieve data, and fair caching in peer data
sharing [4] addressing how to ensure fair and efficient caching
among peer devices of limited resources. These previous work
establish the foundation of peer data sharing. To adapt to new
application scenarios, we further study how to adapt caching
decisions to network scale and node mobility.

The mobility of nodes in edge computing scenarios has
already drawn much attention. Some work focuses on finding
the optimal placement of resources to adapt to mobility patterns.
Shiqiang Wang et al. [5] study the service placement for Mobile
Micro-Clouds to support the coexistence of users and service
instances. The solutions are based on the predictions in a
certain look-ahead window, and they perform data migration
dynamically on edge clouds to support service delivery. M.
Reza Rahimi et al. [6] propose a framework to model node
mobility and propose an optimal service allocation algorithm
called MuSIC to support large numbers of nodes. Lin Wang et
al. [7] study the online resource allocation for edge clouds where
the user mobility is arbitrary. They propose online algorithms to
put resources where user mobility and resources are not known.
Some work using location-based data storage so that the node
can have access to data based on their locations. Patrick Stuedi
et al. [8] propose WhereStore to store data based on locations.
It finds the pattern of device locations to distribute resources
among smartphones and clouds.

Network scale has also attracted attention in edge computing.
Multi-tier and hierarchical approaches provide easy network
expansion and improve resource utilization. Liang Tong et al. [9]
propose a hierarchical approach that places the load at different
tiers of the network to minimize the delay for mobile devices.

Jose Oscar Fajardo et al. [10] combine client-driven adaption
and network-assisted adaption to achieve multimedia delivery.
The client-driven adaption places the content close to the user,
and the network-assisted adaption improves the quality of media
in highly dynamic channels.

The optimal resource placement problem can often be mapped
to the classical Facility Location (FL) problem. Most work maps
their problems into different kinds of FL problems or modifies
related FL problems to solve resource placement. Usually, either
Uncapacitated Facility Location (UFL) problem [11] or rent-or-
buy problem [12] is used. The more general case for these two
problems are Connected Facility Location (ConFL) problems
[13]. Among them, UFL does not consider the content dissem-
ination costs, while rent-or-buy problem does not consider the
facility building costs in ConFL problem. In this paper, we will
reference mostly to the UFL problem and its solutions. The
current best solution that we find is proposed by Shi Li [14],
where they obtain a 1.488-approximation algorithm.

III. SYSTEM DESIGN

We now discuss the model, methodology and decision process
of our proposed system.

A. System Model
Let graph G = (V, E) be a connected undirected graph repre-

senting the network topology for a multi-hop wireless network,
where vertex set (V) represents the nodes in the network, and
edge set (E) represents the connection links between nodes.
Nodes will move inside the network, and connection links will
break and reconnect between different nodes. Data will be
generated continuously, and some nodes will request specific
data. To achieve fast and robust access, we will first select
some nodes to proactively cache data. These nodes will obtain
data from the data producer. This phase is called dissemination
phase. Then the requesting nodes will access data from these
caching nodes, which is called accessing phase. We present the
detailed design next.

B. Grouping Method
Maintaining network over different scales and nodes mobility

is crucial in peer data sharing applications. Networks with
smaller numbers of nodes are easier to coordinate because
limited amounts of data need to be transmitted to compute
caching decisions. For a large flat network, the data transmitted
would require huge computation and transmission overheads,
which a peer-based network cannot afford. Thus, we propose
a hierarchical grouping method, which divides the network
into multiple, connected and smaller groups each consisting
of multiple nodes. The number of groups and the number of
nodes in each group are both limited for easier management.
The design adapts to scalability and mobility by forming and
dissolving groups.

When proactively cache data into the network, the network
will first decide which data chunk 1 to distribute onto which
groups. Then the group that receives the data distribution
decides which nodes in the group will cache the data chunk.
These two decisions are made independently.

1One data item consists of multiple data chunks of the same size; this uniform
size makes the design simpler [4].



1) Optimal data placement: Caching data in optimal places
can provide fast and reliable data access, critical for satisfactory
user experience. First, the network decides the optimal groups
to cache the data chunk. This problem is inter-group (data
caching) optimization problem. The goal is to find groups
both near data requesters and low cost for caching, such that
every data request can be satisfied, and each group does not
store more data than its capacity.

After such a group is chosen, this group will decide the
optimal nodes to cache the chunk, which is the intra-group
(data caching) optimization problem. The goal is to ensure
both fast data access and fair caching loads among mostly
individually owned nodes, which are crucial problems in edge
computing [4].

2) Node behavior under mobility: Node mobility can cause
many problems such as transmission losses and topology
changes. Ensuring service quality while network properties are
changing is challenging. Grouping method brings a solution to
minimize the impact of mobility on the network. In our design,
every node must belong to one and only one group, and the
mobility of a node may change the group which it belongs
to. The unpredicted mobility of nodes is classified into two
simple node behaviors: leaving a group or joining a group. Upon
nodes leaving/joining a group, such node behaviors trigger the
corresponding processes to adjust data caching, so as to maintain
inter-group optimality despite minor violations. Node behavior
problem discusses conditions and the corresponding triggered
processes under the mobility of nodes.

3) Group maintenance: Over time, nodes may join or leave
a group, varying group sizes and resources. Some groups may
grow too large, making it hard to compute efficient data caching
decisions. Other groups may shrink to only several nodes with
little resources. Neither produces sufficient benefits to offset the
cost of maintaining them. Thus a group may need to be split
or dissolved under such conditions. When to split or dissolve
groups is the group maintenance problem. We have some basic
design and preliminary results on conditions and operations 2

for groups to dissolve and split. Due to space limitations, we
will not elaborate on the detail design in this paper.

C. Decision Making Procedure

The procedure of making caching decisions is as follows.
Periodically, the node mobility and the connection information
are collected. Then, whether group maintenance actions are
needed is decided and conducted if so. Next, if a new data
request for a data chunk appears, the inter-group optimization
problem is solved to find the optimal group. If there is no
new request, this process will be skipped. Then intra-group
optimization is invoked to find the optimal nodes in each
chosen group. Finally, the mobility of nodes is detected, and the
corresponding process will be triggered. For easy presentation,
we first consider the centralized algorithm and assume that there
is a centralized server, which holds and processes all the infor-

2We consider communication and computational costs for a group to maintain
itself. If they exceed certain thresholds, the group will split or dissolve. Splitting
makes two new groups. Dissolving removes a group and nodes in the group
will join other groups.

mation, responsible for sending the decisions to corresponding
groups/nodes.

We make the following settings and assumptions for the
application scenarios.

1) Routing and accessing cost: We use the expected trans-
mission count (ETX) model as the routing strategies and ac-
cessing cost metric [15]. It finds the least contentious route
in multi-hop wireless networks to ensure reliable and fast data
transmission.

2) Data dissemination: Once groups, and eventually nodes
receive instructions to cache data, they will fetch data using
information (e.g., producers or previous cached nodes of the
data chunk) in instructions.

3) Network scale: This work focuses on peer sharing situa-
tions much beyond a local wireless transmission neighborhood,
e.g., at campus and mall scale. We do not consider scales beyond
such sizes, such as a whole city, which will most likely require
the combination of peer and cloud assisted sharing.

IV. PROBLEM FORMULATIONS AND ALGORITHMS

A. Inter-group Data Caching Optimization Problem

Inter-group optimization problem focuses on how to distribute
data onto groups to make sure that 1) data are placed near
to requesting nodes for quick access, and 2) the cost for data
caching is low. The goal of the optimization is to minimize both
the cost of data access and cost for fetching data. The cost of
data access κijn is the cost of a demand interest j to get data
from group i which will cache data n. For the cost of data
access κijn, we use the obtained expected transmission count
(ETX) between i and j. The cost of fetching data φin is the cost
of group i to get data n from the original data source, which
is the ETX between i and the data source node. The κijn and
φin are known after analyzing the information of ETX probes.
We formulate this problem as an integer linear programming
problem.

min
∑
i

∑
j

∑
n

κijnaijn+
∑
i

∑
n

φingin (1)

s.t.
∑
n

qngin 6li (∀j), (2)∑
i

aijn >rjn (∀i,∀n), (3)

aijn 6gin (∀i,∀j,∀n), (4)
aijn, gin ∈{0, 1}, (5)

rjn ∈{0, 1}, (6)
lj , κijn, φin >0. (7)

In the problem formulation, aijn and gin are assignment
variables. aijn = 1 means group j that demands data n will
access it from group i. gin = 1 means group i will cache data n.
Constraint (2) ensures the cache will not exceed the total storage
of group li. qn is the size of data n. In real situations, since the
nodes may leave or join a group, new data may be carried into
a group before another round of inter-group optimization. Thus,
we will leave some vacant storage for caching in case of nodes
joining and bring new data. We set li smaller than the total



storage of the group. Constraint (3) makes sure that all demands
for data will be satisfied. rj,n indicates group j demands data
n. If a group j needs to access data n, there must be at least
one data access assignment. Constraint (4) ensures that if data
n on group i can be accessed from another group j, data n
must be cached on group i. Constraints (5) – (7) are the ranges
for every variable. Note that if group i caches a data chunk
that other groups demand, the data chunk will be marked with
a “loan number” equal the number of those groups requesting
from group i. The notations are presented in Table I.

This problem has significant differences from the current
data or facility placement problems. We introduce the data
chunk ID n and place all data chunks simultaneously, rather
than placing data items one by one. When the algorithm runs
continuously over time, many data chunks already exist in the
network. When inter-group optimization problem needs to be
reconducted, especially when the number of groups changed
due to the group maintenance problem or when new data chunks
generated in the network, it is not practical to find a reasonable
order to caching data chunk one by one.

This inter-group optimization problem is NP-hard. We present
a very simple proof here. First, we make one special case.
Assume that there is one only chunk n0 in the network. In
equation (2), we set li to be large enough to contain all the
possible cache data copy. In equation (3), we set rj0 = 1. In
this special case, it can transform into the actual Uncapacitated
Facility Location (UFL) problem. Since UFL problem is NP-
Hard, and one special case of our problem is UFL, our problem
is harder than UFL problem, thus NP-Hard as well. Next we
propose an approximation algorithm.

The intuition of the approximation algorithm is to approx-
imate the largest value of dual problem. First, we obtain all
the information from the network, including the current groups,
connections, demanding nodes, and data chunks. We then obtain
the dual problem and increasing the certain dual variables, in
order to gradually advance to the largest possible value of dual
problem. During the process, if certain criteria are met, the data
chunk will be assigned to cache on a certain group. Basically,
groups near the demand and with ample resources will cache the
data chunk. We have proved that this approximation algorithm
has the approximation ratio of 7. There are three types of nodes
getting from the cached data, which is 1, 2 and 4 times larger
in cost respectively than the previous one. This indicates that
the approximation ratio is 7 at most. Due to space limitations,
we leave out the detailed proof on the approximation ratio of
this algorithm. 3

max
∑
j

∑
n

rjnαjn−
∑
i

liβi (8)

s.t. αjn − θijn 6κijn (∀i,∀j,∀n), (9)∑
j

θijn − qnβi 6φin (∀i,∀n), (10)

αjn, βi, θijn >0 (∀i,∀j,∀n). (11)

3The detail proof of the approximation ration can be viewed at
https://mcl.cewit.stonybrook.edu/resources/7-approximation-proof/

Algorithm 1 Inter-group Optimization
Input: G,Mn,N , E
Output: DF [], IDF []

1: ∀(j, n) ∈ (Gq,N )
2: while ∃(j, n) /∈ DF ∪ IDF do
3: for all j ∈ Gq , n ∈ N do
4: if (j, n) /∈ DF then
5: αjn+ = Uα
6: end if
7: end for
8: for all i ∈ G,j ∈ Gq , n ∈ N do
9: if αjn > κijn then

10: θijn = αjn − κijn
11: end if
12: if j′ ∈ Gq and κj′jn > αj′n then
13: IDF [(j, n)]← DF [(i, n)]
14: end if
15: end for
16: for all i ∈ G,j ∈ Gq , n ∈ N do
17: if

∑
j∈Gq

θijn > φin then
18: if ∃(j, n) ∈ IDF then
19: for all j ∈ Gq do
20: if (j, n) ∈ IDF and θijn > 0 then
21: (tj, tn)← IDF [(j, n)]
22: DF [(tj, tn)]← (i, n)
23: else if (j, n) /∈ IDF and θijn > 0 then
24: DF [(j, n)]← (i, n)
25: end if
26: end for
27: else
28: DF [(j, n)]← (i, n)
29: end if
30: end if
31: end for
32: end while

TABLE I
NOTATIONS USED IN THE FORMULATION AND THE ALGORITHM

e ∈ E Connections in the network
n ∈ N Data chunks in the network
mn ∈Mn Data sources of data chunk n
g ∈ G Groups in the network
Gq ⊂ G Set of groups which demand data chunk n
DF [] Direct freeze pair set
IDF [] Indirect freeze pair set
Ux Unit increase value of var x
κijn The cost for demand j access data n from group i
φin The fairness degree cost for group i cache data n
qn The size of data n
li The available storage capacity of group i
rijn The indication of group j request data n from group i
aijn, gin The assignment variable for caching
α, β, θ The assignment variable in dual problem

The detailed approximation algorithm is described in Algo-
rithm 1, and the notations used are given in Table I. The dual
form of the optimization problem is given at (8) to (11).

The algorithm works as follows. For each pair of demand
and chunk jn (i.e., a node in group j demanding certain chunk
n), we need to find a group to store chunk n for group j. A
demand-chunk pair jn “freeze” to a group if it finds a group
that will cache data n (direct freeze), or a group also requires
data n and has found another group will cache data n (indirect
freeze). Every demand-chunk pair must freeze to a group in
which the chunk will be stored. If the demand-chunk pair does



not have a group to store, the corresponding cost parameter on
the αjn is increased by a set unit (lines 3-7). Lines 9-11 ensure
the feasibility of the problem, which is to satisfy (9). Lines 12-
14 are to indirectly freeze the demand which has already been
frozen to a group. Then, lines 16-31 are to decide which group to
cache the corresponding chunks. Lines 17-26 are used to select
groups supporting the demand-chunk pair that can freeze to an
indirect frozen pair. Some of the groups will be selected to cache
corresponding chunks. Lines 27-29 make the groups caching
the data in which the demand-chunk pairs do not freeze to any
frozen groups. When all the demand-chunk pairs are frozen, the
algorithm terminates. The indices of direct freeze (i, n) indicates
that group i will cache data chunk n. This information will then
be forwarded to the corresponding group. Then the group will
decide which nodes will cache the data chunk n next.

We now discuss the complexity. We assume G and N rep-
resent the cardinality of G and N . Apparently, inside the while
loop (between line 2 and line 32), the most time consuming
part is the loop start at line 16. The complexity is O(G2N2)
from the number of loops inside. Since Gq ⊂ G, the maximum
complexity for getting all the demand-chunk pair is no more
than O(N2), and this applies for all the groups both caching
and demanding ones. Lines 3-7 cost less than O(GN), and
the lines 8-15 cost no more than O(G2N). The outer while
loop will execute for a longer time. However, it will not exceed
maxκijn/Uα. If we increase α to maxκijn, all demand-chunk
pairs will be directly frozen. So the iteration time will be no
more than C = maxκijn/Uα. Thus, in total, the complexity
will be no more than O(CG2N2). For a certain network, C
and G are determined, thus the computational complexity is
related to the number of data chunks.

B. Intra-group Data Caching Optimization Problem

Intra-group optimization problem focuses on how to cache
data chunks on certain nodes in a group to ensure fairness
and low latency. The goal is to find the optimal way to put
data chunks onto certain nodes, in which the nodes can get
the demanded data chunks quickly, while keeping the caching
fair among all the nodes in the group. Fair caching is a crucial
concept in peer-based scenarios. It spreads the caching workload
evenly among nodes and avoids concentration on small fractions
of nodes. It is crucial since nodes will run out of resources too
quickly. The idea that lets most nodes participate in caching
based on the current situation is called fair caching.

The problem for determining caching locations can be
mapped to an extension of the classical Facility Location
problem. In this case, the Uncapacitated Facility Location
(UFL) problem best suits our problem [16]. The UFL problem
considers the accessing cost from nodes to the facility and the
cost to build the facility. To use the UFL problem, we set the
accessing cost as our own accessing cost, and the facility build
cost can be mapped to the fairness degree cost. We use ETX
as the latency metric for the accessing cost. The cost is the
ETX between demanding nodes to data caching nodes. Fairness
degree cost measures the resources usage condition of a node.
Fair caching has been studied in [4], which we leverage the

fairness degree cost in this study as

fi =
S(v)

Stol(v)− S(v)
,

where S(v) is the used storage of node v, and Stol(v) is the
total storage of that node.

After getting the accessing cost and fairness degree cost,
we plug them into the UFL problem and use the solutions
(the optimal location of a facility) of the UFL problem to
determine where to cache data chunk. Since the UFL problem
is NP-hard, an approximation algorithm will be used. The best
approximation ratio, for now, is 1.488. We implement one of
the approximation algorithms with the approximation ratio of 4
to distributed data chunk inside a group [16].

C. Node Behavior Problem

The node behavior problem maps the unpredictable move-
ment of nodes into simple algorithms that can be categorized
into two major behaviors on the node-group level: node leaving
a group or node joining a group. Each behavior will trigger the
corresponding algorithm. These algorithms will try to preserve
the optimal result of the inter-group caching.

1) Nodes leaving behaviors: The movement a node may
change the connection thus topology. If a node loses all con-
nections to every node in the group to which it now belongs, it
leaves this group. This triggers the node leaving behavior since
the resource of the group is changed. Algorithm 2 describes
the detail process of the node leaving behavior algorithm. The
algorithm redistributes data chunks optimally based on the
resources a group now has.

Algorithm 2 Node leaving algorithm
Input: node v that will leave group g

1: g ← g − v
2: if v.DemandData = ∅ then
3: Intra-group optimization (g)
4: else if v.DemandData = n then
5: Intra-group optimization (g)
6: v0 ← FindStore(v, n)
7: v0.loanNo[v, n]← v0.loanNo[v, n]− 1
8: end if

The algorithm considers two situations whether the leaving
node demands any data. If the leaving node does not demand
any data, the group will redistribute the already cached chunks
among nodes that are still in the group. In the leaving node de-
mands some data, the data storage will not change immediately.
Since the node is likely moving to a nearby group, the data can
still be accessed quickly.

Note that the data will be managed by a “loan number”, which
represents the expected number of demand for the data this
group cached. The original loan number equals the xij . The
leaving node will change the “loan number” between groups,
minus one from the original group from which it gets data. 4 If
the loan number is 0, which means no groups thus nodes need
the data, and the group will stop maintaining the data (e.g., not

4If the group, which the node leaves from, has some other nodes requesting
the same data, then the group demanding for the data will not change, and the
corresponding “loan number” will not change.



getting the new version of the data). Data will not be deleted
until expiration in case there will be other demands later.

2) Nodes joining behaviors: After a node leaves a group,
it will join a new group where it can benefit most to the
network. To prevent the node from moving in and out of groups
frequently, the node will become a member of a group that it has
most connections to. Algorithm 3 describes the detail process for
a node to join a group. This algorithm evaluates whether to get
data for the joining node and keeps the inter-group optimization
result.

Algorithm 3 Node joining algorithm
Input: node v that will join group g, k > 1

1: g ← g ∪ {v}
2: if v.DemandData = ∅ then
3: Intra-group optimization (g)
4: else if v.DemandData = n then
5: v0 ← FindData(n)
6: c← κgv0n
7: if c > k × φgn then
8: g.StoreData(n)
9: Intra-group optimization (g)

10: else
11: v0.loanNo[v, n] = 1
12: end if
13: end if

The algorithm also considers two situations whether the
leaving node demands any data. If a node joins a group without
demanding any data, the group will redistribute the cached data
chunks among nodes in this group, including this newly joined
node. Since the resources are changed, data chunks must be
redistributed by applying intra-group optimization. Meanwhile,
if a node joins and it demands some data, the group needs to
find the data to fulfill the demand. It first sends a request to find
out where the data are cached or originated, and estimates the
accessing cost, which is also the cost of fetching. If accessing
cost is k times larger than the cost to get the data chunk
from within the group, then the group can proactively cache
data for this demand. Intra-group optimization will be applied.
Otherwise, the group will add a request from groups which
cached the data chunk. Then, the groups receive the request will
adjust the “loan number”. Since accessing costs will always be
paid for accessing the data, k should be larger than 1. k is set
based on node mobility to prevent a node from leaving a group
quickly after joining. If a node moves quickly (like a car), k
should be relatively larger. Due to space limitations, we will not
elaborate on the determination of k.

In all situations listed, we only require intra-group opti-
mization. It avoids frequently applying inter-group optimiza-
tion, which costs much more computation and communication
resources than intra-group optimization. It keeps the previous
inter-group optimization results with minor variations. The
deviation will be reset whenever another round if inter-group
optimization applies.

V. PERFORMANCE EVALUATION

In this section, we evaluate proposed algorithms and strate-
gies. We focus on answering the following questions: 1) How
do the algorithms and strategies adapt to node mobility and

network scale? 2) How do they perform under different amounts
of data? 3) How do routing strategies and request patterns affect
their performance?

To answer these questions, we implement our algorithms
using ns-3 simulator [17]. We generate different mobility traces
on all different number of nodes. Nodes are randomly placed
in the field, with the average density 0.02km2 per node. In
average, each node has direct connections to 4 other nodes
(neighbors). Node connections are set to ad-hoc Wi-Fi network,
using physical layer IEEE 802.11g, with the practical connection
range to be 152 meters found from ns-3. The packets for
ETX probes use UDP broadcast at a data rate of 1 Mbps.
The transmission of interest and data packets uses the route
calculated from the ETX metric and transmitted through UDP
at a data rate of 54 Mbps. The routing table is refreshed
every second (in the simulation time) by the smallest ETX
value. Nodes will send packets to the destination using routes
computed from ETX metric.

In order to get a data chunk from the caching groups or
nodes, the demanding nodes will send an interest packet to the
nodes which cache the data chunk, and this node will send the
data chunk packets back to the demanding nodes. The mobility
model for nodes is the random waypoint in our evaluation.
Unless otherwise specified, new data chunks are generated every
15 seconds, and for each data chunk, there are 5 nodes which
will demand this data. The size of each data chunk is 5 Kbytes.
We also leave 25% vacant storage when apply the inter-group
optimization constraints (2). We conduct our simulations on
computers with Intel Core i5-4590 and 8GB RAM. All results
are the average of 5 simulations.

A. Performance under Different Data Amounts

We first evaluate the performance under different data
amounts. In this case, there are 5 to 15 data chunks generated
and then cached on selected nodes every 15 seconds. The
total number of nodes in the network is between 100 to 500
and initially divided into around 10 to 20 groups for different
networks. In the network, there are 30% moving nodes at human
walking speed, and the rest of the nodes remain static.

Fig. 1 shows the average data access time (a), successful data
delivery ratio (b) and message overhead (c). The successful
data delivery ratio is the ratio between successfully delivered
data chunks and the corresponding interest from the demanding
groups. The average data access time is the time between send-
ing the interest packet and receiving all corresponding chunks.
The message overhead is the overall data packets transmitted
in the network, not including interest packets. Our proposed
strategy can obtain good delivery ratio under different amount
of data, over 89%. Meanwhile, the average accessing time for a
data chunk is less than 3 seconds, which shows our algorithms
can achieve fast data access. As for the message overhead,
the more data inside the network, the more data need to be
transmitted, thus the more message overhead.

Fig. 1(d) shows the average number of hops for data trans-
mitted to the demanding nodes. If there are more data in the
network that is requested, the contention will be higher. The
routing will not always go through direct paths since their ETX
metrics around congested areas will be high. This can help
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Fig. 1. The performance of the proposed strategy under different total amounts
of data chunks in different sizes of networks. (a) The average data delivery
time for the successfully delivered data. (b) The successful data delivery ratio.
(c) The overall message overhead of all transmitted data chunk packets in the
network. (d) The average number of hops data chunks being transmitted before
they reach the destination.

explain why it takes longer to get the data when the amount
data is larger, and why the overhead is not proportional to the
number of data chunks. Meanwhile, we observe that the number
of hops decreases when the number of nodes is larger. With
more nodes but the same amount of data, less contention will
appear in the network. Although the caching node might be
farther from demanding node in hop count, the average data
transmitted is smaller because of less contention. This helps to
explain why the data access time drops when the number of
nodes is larger.

B. Performance under Different Mobility

As we mentioned before, we map node mobility into two
kinds of node behavior. We test our algorithms and strategies
under different mobilities, from 30% to 50% of nodes moving
like pedestrian walk (1.5m/s). The rest of the nodes are still
immobile. We use the baseline settings as 5 chunks per 15
seconds with the total number of nodes between 100 to 500,
initially 10 to 20 groups. This shows that our proposed strategies
adapt to the scale of the network.

Fig. 2 shows the average data access time (a) and successful
data delivery ratio in this scenario (b). In general, our proposed
solutions still achieves high data delivery ratio, at least 89%.
Meanwhile, the average data access time remains less than 3.3
seconds. We also plot the average number of hops data travel in
Fig. 2(c). It shows that the more mobility, the more data packets
will be transmitted. Since our strategies compute the routing
table frequently (once per second), mobility could incur more
data transmissions. It also explains the decreasing time when
the number of nodes is larger since data packets are transmitted
fewer times.

We also test our algorithms and strategies under more intense
mobility. In some real scenarios, cars serve as important edge
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Fig. 2. The performance of our pro-
posed strategy under different per-
centage of nodes move at pedestrian
speed. The strategy can adapt to dif-
ferent situation of mobility of the
nodes. (a) The average data delivery
time. (b) The successful data deliv-
ery ratio. (c) The average number of
hops of all transmitted data chunks.
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Fig. 3. The performance of our pro-
posed strategy under different per-
centage of nodes move at car speed.
The strategy can adapt to intense
situation of mobility of the nodes. (a)
The average data delivery time. (b)
The successful data delivery ratio.
(c) The average number of hops of
all transmitted data chunks.

devices with more computational capabilities, power, and stor-
ages. Thus, we set 30% to 50% of all nodes moves like a car
(11-15m/s, about 25-35 mph) in these scenarios. The rest of the
nodes are still immobile.

Fig. 3 also shows the average accessing time (a) and success-
ful data delivery ratio (b) in this much more intense mobility
scenario. The mobility has some impact on the delivery ratio
of data, but it remains over 85% recall rate. The data access
is very quick, less than 0.5 seconds. Fig. 3(c) shows that the
number of data transmission hops is lower than that in previous
work and some fluctuation exists. This is due to the selection
of nodes. Since nodes move faster, it is likely to have more
fluctuations in hops. The above simulation results show that
our design solutions perform well under intense node mobility.

C. Performance under Different Request Patterns

We next evaluate the impact of different data request patterns.
Data are often of different popularities, and the each data chunk
may be requested in different frequency. We test our algorithms
and strategies under two different request patterns, random
and Zipf-like distribution [18]. Zipf-like request distribution
is a common statistical model for data requests. For different
request patterns, different data chunks are requested by different



numbers of nodes. We keep other parameters in the baseline
settings.
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Fig. 4. The performance of different request pattern for data demand. Zipf vs
random. The difference is not very significant. (a) The average data delivery
time. (b) The successful data delivery ratio.

Fig.4 shows the average data delivery time (a) and success-
ful data delivery ratio (b) on different data request patterns.
Between these two request patterns, the difference is not sig-
nificant, presumably the numbers of data chunks and requests
are the same. It also achieves very quick data access, in less
than 0.3s. For the data delivery rate, the result is also very
satisfactory. This also shows that our proposed strategy can
adapt to different data request patterns.

VI. CONCLUSION AND DISCUSSION

In this paper, we have introduced the problem of peer data
caching under high mobility nodes and varying scale networks
in pervasive edge computing environments. We have proposed
a grouping method to build a two-layer hierarchy design to
reduce the entities being managed in each layer. Then we have
formulated inter-group and intra-group optimization problems,
and propose a 7-approximation algorithm to solve inter-group
optimization. We have also proposed the node behavior problem,
to transform node mobility into respective node-group action
processes. We have developed algorithms to perform these
action processes. We have implemented proposed algorithms
and tested it on network simulator. The result shows that
our proposed strategies work in different network scales and
different node mobilities, while achieving satisfactory results
for data accessing.

Running continuously over time is crucial for applying PDS
into real new scenarios. We have proposed the group behavior
problem and have had some primitive results. In the future work,
we will discuss in detail about the design and algorithms for
continuous running. Meanwhile, the approximation algorithm
we proposed is a centralized one. Centralized algorithm needs
a centralized server to collect and control data. Centralized
algorithms are sometimes not practical enough as detailed
information of each node is hard to collect timely. We will
design distributed algorithms in the future. Privacy is also one
of the crucial issues in edge scenarios. Some new technologies
such as blockchain can help on this topic. We will address how
to apply such technologies in edge scenarios in our future work.

For the dissemination part, the basic idea is the cache nodes
will first fetch the data from the data source, and when the
interest comes to the node, it can send the data to the demanding
node. The data requesting and transmission patterns are totally
different. In our future work, we will design the corresponding

evaluation on this phase. We will also consider real traces and
terrains for the node mobility and the methods to improve data
access robustness (e.g., data retransmission when lost) in our
future work.
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