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Abstract—As metropolises develop, air pollution has become a
serious problem, especially in developing countries like China.
Many governments and researchers have devoted themselves
to tackling and solving this problem. With the proliferation
of smartphones, mobile crowdsensing is becoming a promising
paradigm for monitoring large-scale environmental phenomena.
In a practical crowdsensing system, incentives should be pro-
vided to encourage the participation of rational smartphone
users, because it incurs various costs on users to collect sens-
ing data. However, monitoring fine-grained air pollution in a
large urban area based on crowdsensing will lead to high pay-
ments, which makes designing an efficient incentive mechanism a
challenging problem. Fortunately, compressive sensing (CS) has
been proved as an effective technology to reduce the amount
of collected data via exploiting the spatial correlations among
sensing data. In this article, we employ CS in the air pollution
monitoring application, in which only a sampled set of loca-
tions are selected to collect data and provide incentives to the
participants, and air pollution concentrations in unselected loca-
tions are inferred via CS. We propose an active learning scheme,
which iteratively selects valuable locations to collect sensing
data. Moreover, an expectation maximization-based algorithm is
designed to detect the contexts in which sensing data are collected,
and an efficient incentive mechanism is provided to encourage
users with low costs participating. Comprehensive simulations
are conducted to demonstrate the performance of our proposed
scheme.

Index Terms—Active learning (AL), air pollution monitoring,
compressive sensing (CS), crowdsensing, incentive.

I. INTRODUCTION

W ITH the modernization of peoples’ lives, air pollu-
tion has emerged as an acute problem in urban areas,
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Fig. 1. Illustration of a crowdsensing system for air pollution monitoring.

especially developing nations (e.g., China and India). Long-
term exposure to air pollutants (e.g., NO2, PM2.5, and CO)
leads to a high risk of several health issues, such as res-
piratory infections, heart disease, and lung cancer. To track
and solve this problem, some cities try to monitor air pol-
lution by deploying stationary measuring stations. However,
building such stations is significantly limited by the availabil-
ity of land and large costs of maintenance (30 000 USD per
year), which results in difficulties of obtaining measurements
of fine-grained air pollution concentrations in a large urban
area. For example, only 22 measuring stations have been built
in Beijing, a city with an area of 16 400 km2. Although sev-
eral works [1], [2] have focused on inferring fine-grained air
qualities by exploiting the correlations with other datasets,
such as traffic flows and points-of-interest (POIs), direct mea-
surements of fine-grained air pollution provide fidelity and
accuracy unsurpassable by other ways.

Mobile crowdsensing provides an unprecedented oppor-
tunity for collecting sensing data on a large scale (e.g.,
community or city), which takes advantage of widely dis-
tributed modern mobile devices (e.g., smartphones) equipped
with abundant sensors. Numerous environment-centric appli-
cations have been developed based on the paradigm of
crowdsensing, such as traffic monitoring [3] and noise map-
ping [4]. In these applications, smartphone users report their
location-based measurements to a central platform via wireless
networks. After aggregating plenty of geographically dis-
tributed measurements, the platform can obtain a fine-grained
overview of an environmental phenomenon. Similarly, air pol-
lution monitoring can be conducted based on crowdsensing,
as shown in Fig. 1. Although smartphones are not equipped
with environmental sensors at present, fortunately, sensor-
integrated portable external hardware [5] has been developed,
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and smartphones incorporating small low-cost environmental
sensors are coming soon [6].

Recently, several efforts [7]–[10] have been put into devel-
oping crowdsensing systems for monitoring air pollution in an
urban area. However, most of them focus on the implementa-
tion of portable sensing devices or smartphone applications.
For example, a crowdsensing system, named P-Sense, is
designed in [8], where external sensing devices can measure
the concentrations of several gases like carbon dioxide, com-
bustible gas, and carbon monoxide. Yang et al. [10] proposed
an architecture of the people-centric Internet of Things system
for urban environment measuring, in which an interaction
mechanism between human and sensing devices is provided.
Sensing data can be transferred from devices to smartphones
via Bluetooth. Different from these works, we assume smart-
phones can measure air pollution concentrations already, and
we focus on designing an efficient air pollution monitoring
scheme based on compressive crowdsensing, which includes
an incentive mechanism to encourage smartphone users with
low costs participating and an algorithm to select a sam-
pled set of locations to collect measurements to reduce
payments.

An efficient and appropriate incentive mechanism is a key
component in a practical crowdsensing system. On the one
hand, certain monetary rewards are expected by smartphone
users to participate in sensing, because numerous resources
are consumed, such as power, bandwidth, and human efforts.
As a rational individual, a smartphone user will not partici-
pate if the reward he/she earns is less than his/her cost. On the
other hand, the platform aims at minimizing its total payment
under the condition of guaranteeing the quality and quantity
of the collected data. Although a number of incentive mech-
anisms [11]–[14] have been proposed based on game theory,
they focus on ensuring the truthfulness of participants. They do
not consider the various values of sensing data from an overall
perspective and pay each measurement through balancing its
value and cost.

To monitor fine-grained air pollution in an urban area, a
large amount of measurements in different locations should be
collected, which is still costly for the platform. Fortunately,
there exists an inherent spatial correlation among sensing
data in different locations, which has been observed in real
datasets [1]. The correlation exists because air pollutants
released by pollutant sources disperse in 3-D space accord-
ing to a certain model (e.g., the Gaussian model [15]). By
exploiting the correlation, compressive sensing (CS) [16] can
employed to significantly reduce the amount of collected sens-
ing data (i.e., only a sampled set of locations are selected
to collect measurements). The air pollution concentrations in
unselected locations can be accurately inferred based on col-
lected measurements. A few existing works [17]–[19] have
employed CS in crowdsensing systems. However, these works
simply assume smartphone users are cooperative, who will do
sensing tasks allocated to them without incentives. In con-
trast, we combine CS into our incentive mechanism design,
providing location-dependent incentives to encourage valuable
smartphone users with low costs participating.

In this article, we consider a practical crowdsensing system
with rational smartphone users to monitor fine-grained air pol-
lution in a large urban area, where the participation of users is
strongly stimulated by the incentives provided to them. A cen-
tral platform located in cloud aggregates all collected sensing
data and recover the whole air pollution map via CS, with the
aim of minimizing the total payment spent for collecting mea-
surements. An efficient incentive mechanism is expected to
dynamically adjust the incentives provided to users in different
locations, according to the measurements already collected and
the spatial distribution of users. Given such an incentive mech-
anism, only valuable and low-cost users will be encouraged
to participate and paid. In addition, sufficient measurements
in different locations should be collected, to guarantee the
accuracy of recovering the whole air pollution map via CS.

This problem is highly difficult due to several challenges.
First, the relationship between an arbitrary incentive and the
participation of smartphone users is not clear. It is imprac-
tical to collect the cost information of all users and then
choose the cheapest ones in a real crowdsensing system, as
it takes a lot of time and energy of smartphone users, low-
ering their participating motivation. Second, the quality of
each collected measurement is not guaranteed, due to mea-
suring errors of hardware and sensing contexts (e.g., indoor
versus outdoor), which can greatly impact the usability of
measurements. Note that indoor and outdoor measurements
have significantly different values in the same location and
only outdoor measurements are useful. Third, the value of a
measurement for detecting the whole air pollution map and the
incentive provided to it are tightly coupled. The value needs to
be estimated before deciding what incentive to provide, while
incentives published to users influence which measurements
can be collected.

To address these challenges, we propose an active learn-
ing (AL) scheme which iteratively collects measurements in
selected locations, to obtain an accurate and fine-grained air
pollution map and reduce the total payment as much as pos-
sible. We first employ a Gaussian air pollution dispersion
model to formally analyze the relationship between the fine-
grained pollution concentrations in different locations and the
emission rates of all pollutant sources existing in the urban
area. Then, we build a probabilistic model to characterize
the participation of a crowd of rational smartphone users
given a certain incentive. Next, we develop an expectation
maximization (EM)-based algorithm, to distinguish indoor and
outdoor measurements collected in the same location and esti-
mate the pollution concentration of the location based on
outdoor measurements. Given the estimated concentrations in
a sampled set of locations, we employ CS to recover the whole
air pollution map and detect pollutant sources. To collect suf-
ficient and valuable measurements in different locations, we
propose an iterative algorithm based on the idea of AL. In
each iteration, a subset of locations without measurements are
modestly selected, and proper incentives are provided in these
locations.

The major contributions of this article are summarized as
follows.
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1) We combine CS into incentive mechanism design in
a crowdsensing system, which can significantly reduce
the amount of collected measurements, and therefore,
decrease the total payment spent to monitor fine-grained
air pollution in a large urban area.

2) We propose an AL-based scheme to collect sensing data,
in which a sampled set of valuable locations without
measurements are iteratively selected to query users by
providing proper incentives. The incentives in different
locations are updated adaptively in each iteration accord-
ing to the collected measurements and the geographical
distribution of users.

3) We also provide an EM-based algorithm to detect
the contexts of collected measurements, to distinguish
indoor and outdoor measurements.

4) We perform comprehensive simulations and the results
confirm the superiority of our scheme in terms of the
total payment and the accuracy of detection.

The remainder of this article proceeds as follows. The mod-
els and preliminaries are presented in Section II. Section III
illustrates the problem formulation, as well as the work-
flow of our proposed scheme. In Section IV, the designs
of our proposed scheme are described in detail, including
the EM-based pollution concentration estimation algorithm,
the CS-based pollutant source detection algorithm, the AL-
based location selection algorithm, and the incentive mecha-
nism. Section V shows the performance of our simulations.
Finally, we discuss related work and conclude this article in
Sections VI and VII, respectively.

II. MODELS AND PRELIMINARIES

A. Air Pollution Dispersion Model

In an urban area, air pollutants are always released by sev-
eral natural or anthropogenic pollutant sources, such as power
plants and wild fires. Several mathematical models [20]–[22]
have been studied to characterize the nature of air pollution
dispersion, considering the emission rates of pollutant sources,
the direction and velocity of wind, atmospheric turbulence,
and so on. These models can be employed to simulate the
movement of pollutants in atmosphere and predict future con-
centrations in different scenarios. In this article, we employ a
most widely used one, Gaussian model, in this article. Here,
we emphasize that any other air dispersion model can be used
in our proposed compressive crowdsensing-based urban air
pollution monitoring system. Choosing a proper air pollution
dispersion model is also a critical issue, specially in urban
areas (due to the effects of skyscrapers, streets, temperatures,
and so on), which is not within the scope of this article.

Basically, Gaussian model assumes pollution concentrations
decay in 3-D space according to the Gaussian distribution
as shown in Fig. 2. Accordingly, the complete equation for
Gaussian dispersion modeling is formulated as follows:

C = Q · 1

π ūσyσz
· e

−y2

2σy2 · e
−H2

2σz2 (1)

where C denotes the pollution concentration observed in a
location caused by a pollutant source. Q is the pollutant

Fig. 2. Illustration of the Gaussian air pollution dispersion model.

emission rate of the source, ū represents the wind velocity,
y is the crosswind distance between the observed location and
the source, and H is the height of the source. σy and σz are
two constant dispersion parameters, which measure the atmo-
spheric turbulence. Fig. 2 plots an illustration of the Gaussian
dispersion model, in which we can see pollutants diffuse
quickly in the downwind direction, and the pollution concen-
trations decay as the Gaussian distribution in the crosswind
and vertical directions.

In this article, we only consider static pollutant sources and
assume they release pollutants continuously at certain emission
rates. Moreover, we suppose the wind velocity and direction
can be known in prior from other datasets like meteorological
data, and we set the height of pollutant sources as a fixed
value (e.g., 50 m) according to common knowledge. Then,
given the locations and emission rates of all pollutant sources
in the whole urban area, the pollution concentration of any
location can be calculated according to the dispersion model.

B. Crowdsensing System Model

In this article, we aim to detect pollutant sources and their
emission rates based on a crowdsensing system, as shown
in Fig. 3, in which a plenty of mobile users equipped with
monitoring sensors participate in collecting sensing data. All
sensing data is aggregated and analyzed by a central platform
resided in cloud.

For the convenience, we virtually divide the whole monitored
urban area into N small grids of the same size, e.g., 200 m ×
200 m. The set of girds is denoted by N = {1, 2, . . . , N}.
The air pollution concentration in each grid can be seen as
uniform while different grids may have different values.

We suppose there are k1 pollutant sources in the whole mon-
itored urban area, and they locate in different grids. Thus,
the location of a pollutant source can be denoted by a grid.
The emission rates of the pollutant sources are denoted by
Q = {Q1, Q2, . . . , Qk}. Note that the number of pollutant
sources k and their emission rates Q are unknown by the
platform in prior and need to be monitored by crowd users.

1Note that compared with the number of grids, the number of pollutant
sources is sparse, i.e., k � n.
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Fig. 3. Illustration of the urban air pollution monitoring system based on
mobile crowdsensing.

We define an index vector g = {g1, g2, . . . , gN}T to indicate
whether a grid contains a pollutant source as (2). If a pollutant
source is in grid i, then, gi equals to the emission rate of the
pollutant source; Otherwise, gi = 0

gi =
{

Qj, if pollutant source j is in grid i
0, if there is no source in grid i

, ∀1 ≤ i ≤ n.

(2)

Air pollutants released by these sources disperse in space,
vitally influenced by winds, which lead to different pollution
concentrations in different locations. The pollutants in a grid
are the accumulation of pollutants dispersed to the grid from
all sources. We use C = {C1, C2, . . . , CN}T to denote the
pollution concentrations in all grids.

By employing the dispersion model introduced above, we
can mathematically analyze the relationship between the pol-
lution concentration of each grid and the emission rate of
each pollutant source. Specially, we build a transfer matrix
� ∈ R

N×N , which satisfies the following equation:
⎡
⎢⎣

C1
...

CN

⎤
⎥⎦ =

⎡
⎢⎣

�11 · · · �1N
...

. . .
...

�N1 · · · �NN

⎤
⎥⎦ ×

⎡
⎢⎣

g1
...

gN

⎤
⎥⎦. (3)

According to (1), we can derive that

�ij = 1

π ūσyσz
· e

−d2
ij

2σy2 · e
−H2

2σz2 (4)

where dij denotes the downwind distance from grid gj (the
location of a pollutant source) to grid gi (the location of an
influenced grid).

Given a certain incentive in grid i, a set of measurements
sensed by different users can be collected by the platform,
which is denoted by Mi = {m(i)

1 , m(i)
2 , . . . , m(i)

γ }, where γ rep-
resents the number of collected measurements. In this article,
we consider the measurements may be sensed in different

contexts, e.g., indoor and outdoor.2 However, only outdoor
measurements are useful to detect the pollution concentration.
We use a latent vector Zi = {z(i)

1 , z(i)
2 , . . . , z(i)

γ } to indicate
whether a measurement is sensed indoor or outdoor, i.e.,

z(i)
r =

{
0, m(i)

r is sensed indoor
1, m(i)

r is sensed outdoor
∀r = 1, 2, . . . , γ . (5)

Note that the value of Zi is unknown by the platform.

C. User Participation Model

In our scheme, the platform provides the same payment
for each measurement collected in the same grid for the sake
of fairness, while payments for different grids can differ. We
denote the payment for each measurement in grid i as Pi, and
define a payment vector as P = {P1, P2, . . . , PN}. Given a cer-
tain payment Pi, rational smartphone users with lower costs in
grid i will actively participate in sensing for earning money.
To understand the relationship between payment Pi and par-
ticipation behavior of crowded users, we build a probabilistic
participation model for a crowd of rational smartphone users
in the following.

As some resources (e.g., power and bandwidth) are con-
sumed for collecting sensing data, costs are incurred on
smartphone users. The cost of a specific user depends on many
factors, such as the hardware of smartphones, the remain-
ing power of batteries, the quality of wireless networks, and
the impact of his/her participation. These factors lead to var-
ious costs on different users for collecting a measurement in
the same grid, which is private information of each user. We
denote the cost of user s as cs ∈ [cmin, cmax], where cmin
and cmax represent the lower bound and the upper bound,
respectively.

First, we build a model to characterize the participation
of one rational smartphone user given a certain payment.
Apparently, a rational user will not participate in sensing if
the payment he/she earns is less than his/her cost. We use a
random variable Xs to indicate whether user s will participate
in sensing given an arbitrary payment P, and thus, the value
of Xs can be defined as

Xs =
{

0, if payment P is less than cost cs

1, otherwise.
(6)

As it is unnecessary to collect measurements from all users,
the platform tends to choose users with the lowest costs for the
sake of saving money. However, it is impractical to collect the
cost information of all users. First, collecting cost information
from all users is costly in both latency and power. Second, the
smartphone users, who submit their cost information without
being chosen, will lose interest in participating in the future.

To avoid collecting cost information, we set a uniform pay-
ment P ∈ [cmin, cmax] for each measurement collected in the
same grid. Thus, only users with cs ≤ P will participate in
sensing. The extra money (P − cs) paid for each measure-
ment can be seen as the overpay for avoiding collecting private

2Note that our EM-based pollution concentration estimation algorithm
proposed in Section IV-A can be easily extended to the situation with more
than two contexts.
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TABLE I
NOTATIONS AND DESCRIPTIONS

information from users. The probability distribution of random
variable Xs can be represented as

f (Xs; p) =
{

p, if Xs = 1
1 − p, if Xs = 0

which is the Bernoulli distribution with success probability
p = Pr(Xs = 1) = Pr(cs ≤ P).

Second, we analyze the participation behavior of a crowd
of rational users in the same grid. If the population in grid i
is known as ni, the number of participants in grid i, Yi, can
be represented as Yi = ∑ni

s=1 Xs. We assume the costs of a
crowd of users follow a certain probabilistic model accord-
ing to the law of large numbers. The model can be learned
by counting the numbers of participants under different pay-
ments. Take the uniform distribution as an example, e.g.,
cs ∼ U(cmin, cmax). We can deduce that given a payment Pi,
Yi obeys the Binomial distribution as Yi ∼ B(ni, pi), where
pi = [(Pi − cmin)/(cmax − cmin)]. Thus, the probability of
collecting γ measurements equals to

Pr(Yi = γ ) = ni!

γ !(ni − γ )!
pγ

i (1 − pi)
ni−γ . (7)

For convenience, all main notations and their descriptions
used in this article are summarized in Table I.

D. EM Algorithm

In this section, we briefly introduce some basics of the EM
algorithm [23], which will be applied in estimating the pollu-
tion concentration in a grid. The EM algorithm is an iterative
method for finding the maximum likelihood estimate (MLE)
of parameters in statistical models. Given observed data M
generated by a statistical model, an unobserved latent data Z
and a vector of unknown parameters θ , along with a likeli-
hood function L(θ; M, Z) = p(M, Z|θ), the MLE of unknown
parameters θ is

L(θ; M) = p(M|θ) =
∑

Z

p(M, Z|θ).

The EM algorithm finds the MLE of θ by iteratively per-
forming an expectation (E) step and a maximization (M)
step.

1) E-Step: Calculates the expectation of the log-likelihood
function under the current estimate of θ , with respect to
the conditional distribution of Z given M

Q
(
θ |θ (t)

)
= EZ|M,θ (t)

[
log L(θ; M, Z)

]
.

2) M-Step: Calculates the parameters which maximize the
expectation of log-likelihood

θ (t+1) = arg max
θ

Q
(
θ |θ (t)

)
.

The iterations stop upon convergence.

E. CS Technology

Some basics of CS are given in this section, which is
employed to recover the whole pollution map based on mea-
surements collected from a sampled set of grids. CS is a
promising technique for reducing the sample rate of data with
a sparse structure. Consider a target data y = [y1, . . . , yn]T ,
which can be decomposed under a basis � = {�i}n

i=1 ∈ R
n×n.

Therefore, y can be represented as y = �x = ∑n
i=1 xi�i,

in which xi is the coefficient of basis vector �i. y is called
k-sparse if the coefficient vector x has only k nonzero elements
and k � n.

CS employs a linear encoder to compress an n-dimensional
vector into an m-dimensional vector, where m < n. Assume
matrix � = {�i}m

i=1 ∈ R
m×n is a collection of measuring

vectors and vector z = [z1, . . . , zm]T are measurements. A
measurement zi is the inner products of y and �i, as

z = �y = ��x = �x

where � = �� ∈ R
m×n, called sensing matrix.

A widely used reconstruction approach is the �1-norm
minimization, which can be solved in polynomial time by
linear programming

arg min
x̂

‖̂x‖�1
, s.t. z = �̂x

where x̂ is the estimate of x. According to theory of CS, y
can be accurately reconstructed if � satisfies the restricted
isometry property (RIP) [24] of order 3k. Moreover, RIP can be
achieved with a high probability if m = O(poly(k, log n)) [25].

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on July 30,2020 at 17:00:25 UTC from IEEE Xplore.  Restrictions apply. 



9432 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

Fig. 4. Illustration of the workflow of our proposed iterative scheme.

III. PROBLEM AND OVERVIEW

A. Problem

In this article, we consider the problem of minimizing the
total payment for accurately detecting pollutant sources in a
large urban area, via designing an iterative AL-based scheme
with incentives to collect sensing data. The problem can be
formulated as

arg min
P

N∑
i=1

(γ · Pi), s.t. ‖̂g − g‖�2
≤ δ (8)

where ĝ represents the estimation of g, and δ is a predefined
threshold to guarantee the accuracy of detection. To solve this
problem, we iteratively select a sampled set of grids to col-
lect sensing data, instead of collecting data from all grids.
By providing an efficient incentive mechanism P, γ measure-
ments can be collected in each selected grid. Then, pollution
concentrations in these grids can be estimated, and further
the locations and emission rates of pollutant sources can be
detected.

This problem is very challenging because there exists a
tradeoff between accurately detecting pollutant sources and
minimizing the total payment. On the one hand, collecting
measurements from the users with the lowest costs can achieve
the minimum payment. However, these measurements may
suffer a high data redundancy, missing important information
for recovering the whole pollution map. On the other hand,
the measurements which carry the most valuable information
for detecting pollutant sources may come from users with high
costs, incurring high payments. Additionally, how to determine
the value of a measurement in detecting pollutant sources is
still unclear.

B. Overview

The workflow of our proposed iterative scheme is illustrated
in Fig. 4. In each iteration, there are four major steps.

1) Smartphone users in the selected grids participate in
sensing, stimulated by the incentives published by the

platform. As a result, measurements in these grids are
collected.

2) For each grid with collected measurements, the platform
estimates the pollution concentration by distinguishing
indoor and outdoor measurements.

3) Based on the estimated pollution concentrations obtained
so far, the platform detects the locations and emis-
sion rates of pollutant sources. If the detection result
converges to the ground truth, the iteration stops.

4) Otherwise, the platform continually selects 	log N
 new
grids and sets proper incentives to them. Then, the next
iteration starts.

To realize this scheme, there exist four key issues that need
to be addressed.

1) Quality of Measurements: First, it is unknown to the
platform whether a measurement is sensed indoor or
outdoor, while only outdoor measurements are valid in
estimating the pollution concentration. Second, a group
of measurements from the same grid are needed to
eliminate their measuring errors cooperatively.

2) Unknown Valuable Grids for CS: Choosing grids to
collect measurements which are valuable for detecting
pollutant sources via CS, can reduce the amount of
collected measurements, as well as the total payment.
However, how to measure the value of each grid in
detecting pollutant sources remains unsolved.

3) Unknown Number of Iterations: It is difficult to deter-
mine how many iterations are sufficient to guarantee the
accuracy of pollutant source detection (namely judging
the convergence), because the gap between the estima-
tions and the ground truth cannot be calculated directly,
and the enough number of sampled grids depends on an
unknown parameter k according to RIP.

4) Balance Between Accuracy and Payment: In terms of
choosing grids to collect measurements in each iteration,
achieving high detection accuracy and low total payment
should be balanced.

In response to these issues, we propose an EM-based
algorithm for pollution concentration estimation, a CS-based
algorithm for pollutant source detection, an AL-based algo-
rithm for grid selection, and an incentive mechanism, which
are described in the following sections, respectively.

IV. SCHEME FOR AIR POLLUTION MONITORING

In this section, we describe the details of the iterative
scheme.

A. Pollution Concentration Estimation

At the beginning of an iteration, smartphone users in grids
with positive incentives are stimulated to participate in sens-
ing. Based on the measurements collected from the same grid,
the platform needs to estimate the pollution concentration in
each grid with measurements. In practice, a measurement may
be sensed under different contexts, like indoor and outdoor.
The values of indoor and outdoor measurements are signifi-
cantly different, while only outdoor measurements are valid
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Algorithm 1 EM-Based Algorithm for Pollution
Concentration Estimation
Input: A group of measurements Mi and ε

Output: Estimated parameters θ i = {Ii, ρi, Ci, σi}
1: // Initialization
2: Ii = min(Mi), Ci = max(Mi);
3: ρi = σi = var(Mi);
4: λI

i = λO
i = 0.5;

5: log L(0)(θ i|Mi) = −∞;
6: while |log L(t)(θ i|Mi) − log L(t−1)(θ i|Mi)| > ε do
7: log L(t)(θ i|Mi) = 0;
8: // E-step
9: for r = 1 to γ do

10: wI
r = f (m(i)

r |Ii, ρi) ∗ λI
i ;

11: O
r = f (m(i)

r |Ci, σi) ∗ λO
i ;

12: log L(t)(θ i|Mi)+ = log(wI
r + wO

r );

13: wI
r = wI

r
wI

r+wO
r

and wO
r = wO

r
wI

r+wO
r

;
14: end for
15: // M-step
16: λI

i = ∑γ

r=1 wI
r and λO

i = ∑γ

r=1 wO
r ;

17: Ii = ∑γ

r=1 m(i)
r ∗ wI

r and Ci = ∑γ

r=1 m(i)
r ∗ wO

r ;
18: ρi = ∑γ

r=1 (m(i)
r − Ii)

2 ∗ wI
r and σi =∑γ

r=1 (m(i)
r − Ci)

2 ∗ wO
r ;

19: end while
20: return θ i.

in the pollution concentration estimation. Therefore, the plat-
form needs to distinguish indoor and outdoor measurements
first. In this section, we show how to apply the EM algorithm,
which can classify indoor and outdoor measurements and find
the MLE of the pollution concentration in a grid.

We assume that either indoor or outdoor measurements
collected in a grid obeys a normal distribution with the expec-
tation equal to the ground truth of the grid. In grid i, the
indoor and outdoor distributions are denoted by N (Ii, ρi) and
N (Ci, σi), respectively.3 Given measurements Mi collected in
grid i, parameters θ i = {Ii, ρi, Ci, σi} can be estimated via the
EM algorithm as shown in Algorithm 1.

In Algorithm 1, the E-step and the M-step are itera-
tively executed until the log-likelihood function converges
(i.e., the gap between two successive iterations is less than
a small threshold ε). In the E-step, for each measurement
m(i)

r collected in grid i, probabilities wI
r and wO

r are updated,
respectively, based on current estimated parameters θ i and
mixture proportions of indoor and outdoor normal distribu-
tions {λI

i , λ
O
i }. Note that {wI

r, wO
r } is the probability distribution

of latent variable z(i)
r to denote whether measurement m(i)

r is
sensed indoor or outdoor. In the M-step, parameters of indoor
and outdoor normal distributions are updated according to the
new values of {wI

r, wO
r }.

Due to the existence of various contexts and measur-
ing errors, a group of measurements should be collected to

3Note that we estimate the pollution concentration in a grid as the expecta-
tion of the outdoor distribution achieved by Algorithm 1. We do not distinguish
the estimation and the ground truth in this section.

Fig. 5. Estimation error versus number of measurements under different
percents of indoor measurements are mixed in.

guarantee the accuracy of the pollution concentration esti-
mation. To make sure the number of measurements needed,
we do an extensive simulation as an example, to show its
impact on the estimation accuracy. In the simulation, the val-
ues of measurements are randomly generated under parameters
I = 30, ρ = 15, C = 100, and σ = 10. As shown in Fig. 5, we
plot the estimation error with varying the number of measure-
ments and the percent of indoor measurements. It is observed
that the estimation error declines in general as the number of
measurements increases no matter how many indoor measure-
ments are mixed in. However, the decrease of estimation error
becomes minimal after a certain number of measurements. In
our case, 25 measurements are sufficient, which achieves 98%
accuracy in average and higher than 90% accuracy in the worst
case.

B. Pollutant Source Detection

In this section, we show how to employ CS to detect
the locations and emission rates of pollutant sources, based
on the obtained pollution concentration estimations so far.
We denote the set of grids with collected measurements by
π = {π1, π2, . . . , πm}, where m is the number of grids with
collected measurements and πi ∈ {1, 2, . . . , N}. The esti-
mated pollution concentrations in these grids are denoted by
Ĉ = {Ĉπ1 , Ĉπ2 , . . . , Ĉπm}T

.
As there is C = �g, C can be seen as decomposed into

g based on basis vectors �, although � is not orthogonal.
Due to the sparsity of g, CS can be employed to recover the
whole pollution map based on Ĉ. Given Ĉ, its corresponding
transfer matrix is �′ = {�πi}m

i=1. Therefore, the value of g can
be estimated as ĝ, by solving the following problem:

arg min
ĝ

‖̂g‖�1
, s.t. Ĉ = �′̂g. (9)

The nonzero elements in ĝ point out the locations and emission
rates of pollutant sources.

To obtain an accurate estimation ĝ, transfer matrix �′ should
be carefully chosen according to RIP. However, verifying an
arbitrary matrix �′ satisfies RIP or not is combinatorially com-
plex in time, and there are (2n − 1) different choices of �′.
Thus, it is impossible to determine the sampled set of grids π

at the start of the scheme. As illustrated in Fig. 4, we enlarge
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Fig. 6. Illustration of the fivefold cross validation method used to judge
convergence.

the sampled set of grids step by step. In each iteration, 	log n

new grids are selected to collect measurements, and proper
incentives are set in these grids. As k is unknown, the number
of iterations cannot be decided in prior. The iteration should
end when the estimation of pollutant sources ĝ converges to
the ground truth g.

However, due to the unknown g, it is nontrivial to judge
when the convergence is achieved. To test the difference
between our estimation ĝ and ground truth g, we adopt the
k-fold cross-validation method. Cross-validation is a technique
for assessing how accurately a predictive model will perform
in practice, which is trained given a set of labeled samples.
In a round of cross-validation, the labeled dataset is divided
into two subsets: one is used to train the model (called train-
ing set); the other is used to validate (called testing set). The
mean squared error (MSE) of the testing set is always used to
assess the accuracy of the trained model. Multiple rounds are
performed using different partitions to reduce the assessment
error. In our scheme, we use fivefold cross validation, where
the set of pollution concentration estimations Ĉ is randomly
partitioned into five equal sized subsets, as shown in Fig. 6.
In each round, a single subset acts as the testing set Ĉ(test)

to assess error ‖Ĉ(test) − � · ĝ‖�2
, while the other four subsets

compose the training set Ĉ(train), which are used to achieve ĝ
by solving (9).

C. Incentive Mechanism Design

To guarantee collecting sufficient measurements (e.g.,
γ = 25) with a high probability, a proper payment should be
provided to stimulate low-cost smartphone users. The proper
payment set in a certain grid can be deduced according to the
user participation model described in Section II-C.

We take costs of users following uniform distribution (e.g.,
cs ∼ U(cmin, cmax)) as an instance, to illustrate how to deduce
the payment set to a grid. Given the number of users in grid i,
ni, we have derived that the number of participants Yi fol-
lows the Binomial distribution, i.e., Yi ∼ B(ni, pi), where
pi = [(Pi − cmin)/(cmax − cmin)]. To stimulate at least γ users
participating with success probability no less than 99%, i.e.,

1 −
γ−1∑
r=0

Pr(Yi = r) ≥ 99%.

According to (7), pi can be computed by solving the above
inequality. Then, payment Pi can be calculated as Pi = pi ·
(cmax−cmin)+cmin. Fig. 7 plots the payment when varying the

Algorithm 2 AL-Based Algorithm for Grid Selection in an
Iteration
Input: Set of grids N , transfer matrix �, payment P, current

sampled grids π (t) and estimation of pollutant sources ĝ(t)

and ĝ(t−1)

Output: Updated sampled grids π (t+1)

1: for each i ∈ N \ π (t) do
2: Calculate Ii and Ri according to Eq. (10) and Eq. (11);
3: end for
4: for l = 1 to 	log N
 do
5: π (t+1) = π (t) ∪ {arg max

i

Ii
Ri·Pi

};
6: end for
7: return π (t+1);

Fig. 7. Payment set for each measurement versus number of smartphone
users in a grid.

number of users under two different cost distributions, where
cmin = 1 and cmax = 20. We can observe that as the number
of users grows, the required payment for each measurement
declines, while the marginal decrease becomes smaller and
smaller.

D. Grid Selection

According to the design of our scheme shown in Fig. 4,
in each iteration 	log N
 new grids should be selected to set
proper incentives by the platform if the detection of pollu-
tant sources does not converge. By carefully selecting partial
grids to collect measurements, the platform can obtain more
labeled data (pollution concentration estimations) to solve the
CS-based pollutant source detection problem, which coin-
cides with the general framework of pool-based AL as shown
in Fig. 8. AL [26] is a major solution to exploit unlabeled
data in machine learning, where the learner can decide which
unlabeled data to pose queries.

In this article, with the objective of enhancing the accu-
racy of pollutant source detection and maintaining a low
payment, we consider employ a density-weighted AL method
to decide which grid is chosen. The method considers not
only the payment for collecting measurements in the grid but
also the informativeness and representativeness of its pollution
concentration estimation in pollutant source detection.

First, we show the mathematical definition of informative-
ness and representativeness of the labeled data of a grid, given
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Fig. 8. Illustration of the pool-based AL framework for pollutant source
detection.

the current sampled data. We denote the estimations of pollu-
tant sources in iteration (t − 1) and iteration t as ĝ(t−1) and
ĝ(t), respectively. For an arbitrary grid i ∈ N \π , its infor-
mativeness Ii is defined as the difference between the two
pollution concentrations computed based on ĝ(t−1) and ĝ(t),
respectively, i.e.,

Ii = �i ×
∣∣∣̂g(t) − ĝ(t−1)

∣∣∣. (10)

Intuitively, the higher Ii, the more information contained by
grid i. The representativeness of grid i is defined as how the
instance of grid i distinguishes with the current sampled ones
in data structure, i.e.,

Ri = 1

|π (t)|
∑

j∈π (t)

sim
(
�i,�j

)
(11)

where sim(�i,�j) calculates the cosine similarity of the two
vectors. According to CS technology, the higher Ri, the lower
value of gird i to detect pollutant sources.

Then, we design a heuristic algorithm for selecting 	log N

grids by balancing their payments, informativeness and repre-
sentativeness at the same time. As shown in Algorithm 2, the
informativeness and representativeness of each unsampled grid
are calculated based on the set of sampled grids (lines 1–3).
Then, 	log N
 grids with the largest value of metric [Ii/(Ri·Pi)]
are selected in each iteration (lines 4–6), and proper incentives
are set in these grids to collect measurements.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
scheme, especially Algorithm 2.

A. Methodology and Setups

It has been proven by many previous works [19], [27] that
CS performs well in recovering a sparse vector from a few
samples, compared with common interpolation methods, such
as linear interpolation and Kriging interpolation [28]. Thus, in
our simulations, we concentrate on showing the performance
of our proposed grid selection algorithm, compared with three
baseline algorithms.

1) Random: This algorithm randomly chooses 	log N
 new
grids in each iteration until convergence.

2) Greedy-Payment: The cheapest 	log N
 grids are
selected in each iteration until convergence.

3) Greedy-Informativeness: In each iteration, 	log N
 grids
with the most information are picked up.

4) Greedy-VRR [29]: This algorithm considered the ratio
between payment and informativeness as the metric to
choose grids.

Three metrics are used to evaluate the performance of the
four algorithms from different aspects.

1) Error of Estimation: This metric is calculated as
[(‖̂g − g‖�2

)/n], where ĝ is estimated according to (9)
based on all measurements collected until convergence.
It measures the accuracy of detecting pollutant sources
based on our iterative scheme.

2) Total Payment: We sum up the incentives given to all
participants collecting measurements in selected grids as∑

i∈π (γ · Pi) to represent the total payment.
3) Number of Iterations: This metric is proportional to

the total number of sampled grids as well as the time
consumed for the crowdsensing process.

The default setting of system parameters is as follows. All sim-
ulations are conducted on a square area divided into 50 × 50
grids (N = 2500), and the size of each grid is equal to
200 m×200 m. The wind blows from west to east at ν = 5 m/s.
Transfer matrix � ∈ R

2500×2500 can be computed according
to (4) given σy = 200 and σz = 1000. The locations and the
emission rates of pollutant sources are randomly chosen from
{1, . . . , 2500} and {1000 mg/s, . . . , 5000 mg/s}, respectively.
The population ni in each grid is randomly generated vary-
ing in [50, 200]. We conduct simulations considering both
uniform distribution and normal distribution for the costs of
smartphone users, with cmin = 1 and cmax = 20. Given ni,
the value of payment Pi provided to each measurement can be
known according to Fig. 7. For example, if there are 60 users in
a grid, the payment is set as 11.64 and 9.83, respectively, con-
sidering uniform distribution and normal distribution of costs
of users. We study the performance of Algorithm 2 and the
four baseline algorithms by varying the number of pollutant
sources k from 5 to 25, respectively. The result of each setting
is the average of ten runs. The simulations are implemented in
MATLAB R2018a on a Dell server (PowerEdge T420, Intel
E5-2400, 1.8-GHz CPU, 4-GB DDR3 memory, 300-GB Disk)
with Windows 10 operation system.

B. Simulation Results

Figs. 9–11 plot the performance of the five algorithms under
uniformly distributed costs of users, while Figs. 12–14 plot the
performance under normal distributed costs of users.

Figs. 9 and 12 show the error of estimated pollution
sources achieved by different algorithms. We can find that
our algorithm can accurately detect pollution sources via CS
if sufficient measurements are collected. The estimation error
achieved by our algorithm is less than 30%, no matter how
the number of pollution sources varies. The result also demon-
strates that the cross-validation method works well for judging
the convergence of our iterative scheme. We can find that
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Fig. 9. Error of estimation versus number of pollutant sources under uniform
distributed costs.

Fig. 10. Total payment versus number of pollutant sources under uniform
distributed costs.

Fig. 11. Number of iterations versus number of pollutant sources under
uniform distributed costs.

greedy-VRR algorithm and Algorithm 2 perform better in dif-
ferent settings, compared with the other three algorithms, as
both cost and informativeness of measurements are consid-
ered. Moreover, all algorithms perform better under uniform
distributed costs than normal distributed costs because more
measurements are collected as shown in Figs. 11 and 14.
When there are ten pollution sources, the estimation errors
achieved by our algorithm are 10.0 and 25.7 under differ-
ent distributed costs, which are 39.0% and 43.9% lower than
greedy-VRR algorithm, and 64.8% and 67.0% lower than
greedy-informativeness algorithm, respectively.

Figs. 10 and 13 show that more payment is needed as
k increases. Although greedy-payment algorithm chooses the
cheapest grids in each iteration, it consumes more money com-
pared with greedy-informativeness algorithm, greedy-VRR
algorithm, and Algorithm 2. This is because the cheapest mea-
surements may suffer poor values in pollutant source detection,
which leads to collecting more measurements as shown in
Figs. 11 and 14, and thus, incurring a high payment. When
there are 25 pollutant sources, Algorithm 2 can save 64.9%
and 33.1% payment compared with greedy-informativeness

Fig. 12. Error of estimation versus number of pollutant sources under normal
distributed costs.

Fig. 13. Total payment versus number of pollutant sources under normal
distributed costs.

Fig. 14. Number of iterations versus number of pollutant sources under
normal distributed costs.

algorithm, and save 13.0% and 21.5% payment compared with
greedy-VRR under two different cost distributions.

As shown in Figs. 11 and 14, more iterations are needed
by the four baseline algorithms, compared with our algorithm.
In other words, more measurements are collected by the base-
lines to achieve accurate pollutant source estimations, which
incurs higher payments. We can find that random algorithm
and greedy-payment algorithm need significantly more mea-
surements, as cheap but low-value measurements are chosen
by them. Specifically, 57.4% and 51.5% more measurements
are needed by random algorithm and greedy-payment under
uniform distributed costs, compared with our algorithm, when
there are 20 pollution sources.

VI. RELATED WORK

In environment-centric crowdsensing applications (e.g., pol-
lution mapping and traffic monitoring), the platform needs to
aggregate plenty of sensing data and pay to participants. In
this section, we review related works from the following two
aspects important for reducing the total payment.
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A. Compressive Crowdsensing

CS has been proved to be efficient in reducing the amount
of sampled data [27], [30]. A few works [17]–[19] have
applied it in crowdsensing. Xu et al. [19] solved a fundamen-
tal problem when applying CS in crowdsensing applications,
which is the base of transforming sensing data into sparse
representation that is unknown. In this article, the base can
be derived according to the air pollution dispersion model.
Xu et al. [17] considered cost diversity of sensing samples
and design cost-aware CS to balance total cost and recovery
accuracy. However, the cost of each sample should be known
a prior and the cost minimization is achieved given a fixed
amount of sampled data. In [18], an online task allocation
algorithm is proposed to minimize the number of collected
sensing data by leveraging the spatial and temporal correla-
tion. Similarly, we repeat the crowdsensing process and choose
specific grids to collect data in each cycle. However, instead of
assuming cooperative smartphone users, we consider them as
rational and provide incentives to them, which does not incur
latencies and overheads in gathering their costs before each
round.

B. Incentive Mechanism Design

A series of studies [12]–[14] have been dedicated to design-
ing incentive mechanisms for crowdsensing applications to
stimulate smartphone users participating in sensing. In [12],
a recurrent reverse auction is employed to select participants
according to their locations given constraints in budget and
coverage. Koutsopoulos [13] derived a mechanism that mini-
mizes the total cost paid to participants by tracking the quality
of their reported cost information and using it for determin-
ing participation level and payment. Zhao et al. [14] proposed
online incentive mechanisms by considering smartphone users
randomly arrive one by one. Under a budget, the value of
services provided by participants is maximized before a given
deadline. All these mechanisms collect private information
from each smartphone user before the sensing process, and
focus on making them truthful. Different from these stud-
ies, we analyze the participation model in terms of a group
of users rather than an individual, which follows statistic
laws. Therefore, incentives can be designed according to the
population in interested areas.

VII. CONCLUSION

This article has focused on reducing the total payment
by exploiting the spatial correlations of sensing data for
compressive crowdsensing-based urban air pollution monitor-
ing. Specifically, we first employ a Gaussian air pollution
dispersion model to characterize the relationship between
the fine-grained pollution concentrations and the locations
and emission rates of pollutant sources. Then, we propose
an iterative scheme to recruit smartphone users collecting
measurements. In the scheme, we provide an EM-based
algorithm for detecting measurements collected in different
contexts. Also, an incentive mechanism is designed to stim-
ulate smartphone users participating. Finally, the framework

of pool-based AL is employed to select the most informa-
tive and representative grids to set incentives in each iteration.
Comprehensive simulations have been conducted to confirm
the superiority of our proposed algorithms.
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