
APEX: Automatic Precondition Execution with Isolation and
Atomicity in Internet-of-Things

Qian Zhou
Department of Electrical and Computer Engineering

Stony Brook University
qian.zhou@stonybrook.edu

Fan Ye
Department of Electrical and Computer Engineering

Stony Brook University
fan.ye@stonybrook.edu

ABSTRACT
In Internet-of-Things there are situations where before users can
execute commands on IoT devices, certain conditions must be met
for sake of safety, correctness or efficiency. Thus, a series of other
commands need to precede the user commands in a correct order
to make those conditions true. Users have to consciously follow the
order andmanually send those commands one by one, which is error
prone and inconvenient. We propose APEX, a system automatically
deducing, satisfying all the preconditions of the user commands. It
has two strategies. Evaluation on a 20-node testbed proves that our
conservative strategy sustains high execution success rates despite
resource contention, while in realistic enterprise environments, our
aggressive strategy may execute significantly faster, saving up to
7s and reducing about 46% of conservative strategy’s time cost.

CCS CONCEPTS
• Networks → Application layer protocols; Cyber-physical
networks; • Computer systems organization → Reliability.

KEYWORDS
Internet of Things, building automation, isolation, atomicity
ACM Reference Format:
Qian Zhou and Fan Ye. 2019. APEX: Automatic Precondition Execution with
Isolation and Atomicity in Internet-of-Things. In International Conference
on Internet-of-Things Design and Implementation (IoTDI ’19), April 15–18,
2019, Montreal, QC, Canada. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3302505.3310066

1 INTRODUCTION
In Internet of Things there is a common constraint that before
a command can execute on an IoT device, certain conditions (on
possibly other devices) must be satisfied. Such a condition is called
a precondition, and it exists for reasons including but not limited
to: 1) safety. E.g., before a fire sprinkler sprinkles water, the out-
lets within its spraying range should be powered down to prevent
electric shocks; also, before a fireplace is turned on, the presence
and condition of a smoke detector in the same room should be
checked to ensure fire monitoring; 2) correctness. E.g., a home

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6283-2/19/04. . . $15.00
https://doi.org/10.1145/3302505.3310066

theater should be wakened before being told to play a movie; or
to store water in a kitchen sink, the sink valve needs to be closed
before the tap is turned on; 3) efficiency. E.g., an air conditioner
may be set to work after all the doors and windows in the room are
closed, for efficient cooling.

Unfortunately, there is no formal effort to address this automatic
precondition execution problem in IoT. Users have to manually
track and execute the commands making those preconditions true,
which is a great burden and error prone. It leads to inconvenience
and safety risks or inefficiency.

Precondition execution faces several challenges. First, a com-
mand can havemultiple preconditions inmultiple levels. E.g., before
a sprinkler sprays, the alarm should be sounded besides of outlet
power cut; and before the power cut, all the computers powered by
the outlets should save their data and safely shut down.

Second, IoT is a multi-user environment where interleaving of
commands from different users can happen, leading to faulty conse-
quences. E.g., a user’s commands closed a window and are about to
turn on the air conditioner when others’ commands arrive, opening
the window thus destroying the former’s precondition.

Third, execution failures are common in IoT, especially enterprise
IoT, due to message losses, resource contention, actuator malfunc-
tions, etc. If any execution failure occurs, causing partial execution,
it is left to the user to cumbersomely undo the commands that have
executed, to roll the system back to its initial state.

There are home automation solutions such as Logitech Harmony
Smart Control [17], Apple Home [1] and IFTTT [14]. The first two
allow a user to make her smartphone a universal remote control,
and use one tap to trigger a preconfigured activity that operates
one or multiple devices. IFTTT creates chains of simple conditional
statements such that one action triggers another. These solutions
solve problems which differ fundamentally from the automatic
precondition execution one in IoT. i) They either simultaneously
trigger multiple executions which are independent and thus can
be done in parallel, or use an action as the beginning to trigger
subsequent post-actions. Precondition execution is different—a user
command is the end: it causes pre-actions to be performed to make
its execution environment prepared, and itself is the last to exe-
cute. ii) They are mostly handling small amounts of home devices
(e.g., up to 8 in Logitech) or web/app based services owned by one
account, and they have no concern about multi-user contention
which however is common in enterprise-scale IoT. iii) They do
not consider recovery from partial execution. More details about
existing work are presented in Section 10.

In this paper we propose APEX, an Automatic Precondition
EXecution system which recursively discovers all the precondi-
tions of a command issued by the user, and automatically generates,

https://doi.org/10.1145/3302505.3310066
https://doi.org/10.1145/3302505.3310066
https://doi.org/10.1145/3302505.3310066

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Qian Zhou and Fan Ye

executes commands to make the preconditions satisfied. Our solu-
tion borrows concepts and principles from database transactions.
However, the context of large scale IoT (wireless distributed system,
frequent expensive actuations, etc.) gives rise to new challenges
not existing in database environments, and transaction techniques
cannot be trivially applied as is. To the best of our knowledge,
we are the first to define this automatic precondition execution
problem, and propose a solution applying isolation and atomicity
properties [9, 10] of database transactions to solve it. In this so-
lution, we identify new issues in IoT contexts, and adapt/extend
database techniques to address them. Specifically,

• We formally define the problem of precondition execution
in large scale IoT systems, and describe how preconditions
may be set by vendors/users/admin.
• A mechanism of precondition execution piece/graph is pro-
posed to generically represent preconditions, and a solution
is devised to acquire the graph for running a user command.
• We design two execution strategies (conservative and ag-
gressive) with mechanisms for deadlock prevention [6, 12],
operation isolation and atomicity suitable for IoT contexts.
• We implement the two strategies and conduct experiments
on a 20-node testbed in realistic enterprise environments.
We find that conservative strategy sustains high execution
success rates despite resource contention, while aggressive
strategy executes faster, saving up to 7s and reducing about
46% of conservative strategy’s time cost.

2 MODELS AND ASSUMPTIONS
Node Types. IoT nodes fall into three types: the backend, subject
devices, objects. The backend is a cloud server at which a new
subject/object gets registered for joining the system. It maintains the
attribute profiles of registered nodes. It also stores, updates access
rights of what functions a subject can invoke on an object. A subject
is a user who uses a subject device (e.g., smartphone) to operate
objects, i.e., IoT devices or “Things”. Subject devices and objects
constitute a ground network, wherewe assume network connectivity
exists among the nodes and multi-hop routing is available.

Condition. Each object owns some state variables, e.g., an air
conditioner has its target temperature, a window has its opening
degree. A condition is a predicate on a state variable, denoted as a 4-
tuple ⟨obj : variable opr value⟩. obj is an object’s unique identifier;
operator opr may be but not limited to =, >, ≤, ∈ and their nega-
tion operators. Some condition examples are: ⟨air_conditoner_1 :
tarдet_temp < 70⟩; ⟨window_2 : status = ‘closed’⟩.

Command. A (write) command alters a variable after reach-
ing the object and being executed, making the corresponding con-
dition met. E.g., command [window_2 : open()] sets condition
⟨window_2 : status = ‘open’⟩ true. We assume a conversion mech-
anism (e.g., by enforcing certain naming conventions [24]) exists to
map a command to the corresponding condition and vice versa. Also,
note that some IoT commands write variables while others only
read (e.g., get the current temperature). Read commands change no
condition or precondition, and are less relevant to APEX system.
Thus, in this paper most commands are write commands. And in
reality, the IoT objects handling write commands usually have actu-
ators (e.g., doors have mechanical actuators, air conditioners have

mechanical and thermal ones). They are mostly wall-powered and
assumed to have sufficient energy for operations.

Precondition. If condition A must be true before a command
can execute to set condition B true, then A is B’s precondition.We
denote this relationship as A ⇒ B, e.g., ⟨outlet : status = ‘o f f ’⟩
⇒ ⟨sprinkler : status = ‘spray’⟩ means the sprinkler should not
sprinkle water before the outlet is off. There is a transitive law: If
A is B’s precondition and B is C’s precondition, then A is also C’s
precondition. We assume the backend stores, updates precondition
rules (like access rights), and a mechanism is available to generate
preconditions for a condition based on those rules.

A condition may have zero, one or more preconditions. When
there are multiple, they can be combined in logic AND, OR. Par-
ticularly, AND—all preconditions should be met—is the simplest
but suffices most cases in reality. Our design supports it. OR can be
translated into AND using De Morgan’s laws [13].

A precondition itself is a condition, thus may have its own pre-
conditions, leading to multi-level, recursive preconditions. We call
a precondition generated based on a precondition rule direct pre-
condition while one deduced from the transitive law indirect.

A command which makes a precondition true is a precondition
command. Due to recursive preconditions, a series of precondition
commands may need to be deduced, executed before executing the
command issued by the subject. A subject command together with
all of its precondition commands form a combo.

Consistency.Different from database transactions, “consistency”
in our context is redefined as: if initially no precondition rule is vi-
olated in the ground network, after a combo executes, there should
still be no violation. E.g., assume there is a precondition rule corre-
sponding toA ⇒ B, then the coexistence of {!A,B} is inconsistent
(! for logic NOT), while {!A, !B}, {A, !B}, {A,B} are consistent.

2.1 Properties of Internet-of-Things
We notice that a combo is similar to a database transaction to
some extent, with a command in the former similar to a statement
in the latter. This makes it natural to explore the adaptation of
existing transaction techniques (e.g., ACID properties [10]) to IoT
precondition execution. However, large scale IoT environments
differ fundamentally from the database context:

1)Wireless Distributed System.Unlike a database system, the
variables in IoT are distributed among objects. Combo execution
needsmultiple scattered objects to receive wireless messages. In this
context: i) Message losses are common, and transmission latency is
not negligible; ii) In database systems a locking-based strategy [3]
is commonly used for concurrency-control, but here a centralized
lock manager would incur long latency.

2) Frequent Expensive Actuations. After a variable is modi-
fied, the corresponding actuator brings the new value into effect,
and this process is an actuation. E.g., a window’s opening degree
variable was 0 and now set to 5, then its motor spins till the de-
gree gets to 5. IoT is quite different from database systems due to
actuations: i) IoT actuations frequently incur expensive (in terms
of time, energy cost, etc.) physical (e.g., open/close the window) or
electronic (e.g., turn on/off the AC) operations. Database transac-
tions may lead to observable external writes (e.g., a printer prints
transaction records, or an ATM dispenses cash), which share some

APEX: Automatic Precondition Execution with Isolation and Atomicity in IoT IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

similarities with IoT actuations but usually have much less expense
and frequency; mostly merely inexpensive internal reads/writes are
involved. ii) Actuation failures can be common in IoT, e.g., a stuck
pulley stops the window reaching the desired opening degree.

3) LowerRequirement onThroughput despiteConcurrent
Commands.Database pursues both isolation and high throughput,
but IoT needs only much lower throughput: 1) It is impossible and
makes no sense to let objects with slow actuations (e.g., doors) react
to multiple users’ different commands within a very short time; 2)
Even for a lamp (with quicker actuations in changing its brightness),
it does not need to take, say, > 10 commands per second.

2.2 Failure Causes
Execution Failures. A command execution may fail mainly be-
cause of: 1) transmission/object failures. Due to message losses,
a command cannot arrive at the object; or the object encounters
hardware or software malfunctions/bugs stopping it taking the
command. In either case the variable is unaltered. 2) resource
contention. In this paper “variable” and “resource” are used in-
terchangeably. Variables are read or written by commands. In IoT,
multiple commands from different subjects may attempt writing
the same variable simultaneously, then contention occurs. 3) ac-
tuation failures. As mentioned, for most IoT write commands,
execution is not over when the variable is altered. An actuation (by
mechanical/electrical/thermal/optical components) bringing the
altered variable into effect is needed, otherwise a failure may occur.

System Crashes, Disk Failures. Some hardware or software
malfunctions/bugs cause loss of the content in main memory; a
disk may also lose its content. They are out of this paper’s scope.

3 DESIGN GOALS
Precondition Auto-Completion. When a subject issues a com-
mand, the system should automatically find out all its preconditions
recursively, deduce the precondition commands, and execute those
commands in the correct order before executing the subject one.

Isolation. Isolation ensures consistency despite concurrent com-
mands from different subjects targeting the same variable. Specifi-
cally, two combos should be prevented from interleaving such that
they do not destroy each other’s preconditions. An example of in-
terleaving is: a user’s commands closed a window and are about to
turn on the air conditioner when others’ commands arrive, opening
the window thus destroying the former’s precondition.

Atomicity. Atomicity means combo execution appears atomic
that either all its commands execute successfully or none does. It
prevents the system from ending up with intermediate states or
partial execution. A mechanism is needed to roll the system back to
its initial state upon an execution failure. Note that rollback may not
always be performed; we offer the solution and it can be partially,
fully enabled or disabled based on the needs of the scenarios.

Robustness.Message losses should be detected and remedied.
Execution failures (Section 2.2) due to transmission, object, con-
tention or actuation failures should be announced to the backend
and the subject, such that rollback may be conducted.

Non-Goals. 1) A full solution of command-to-condition conver-
sion (and vice versa), precondition rule making and precondition
generation according to the rules is out of the scope. 2) The system

enforces commands to execute in the correct order and tries to
achieve low latency, but there is no hard time guarantee. 3) Recov-
ery from a system crash or disk failure, and achieving a property
similar to “durability” in ACID are out of the scope. 4) We do not
consider security attacks or privacy issues in this paper.

4 SYSTEM OVERVIEW
There are three steps in the system as follows:

A

B C

PEP 1

B

D

PEP 2

E

PEP 3Admin

Subject
A

B C

D

PEG

❶ Setup

PEP 1 and 2

❷ Precondition
Acquisition

❸ Precondition
Execution

A

B

C

D

PEG

❶ Setup

Figure 1: Vendor/subject/admin configures precondition
rules, based on which PEP 1, 2, 3 are generated on the back-
end. The subject asks for her token to invoke a function on
A, and receives from the backend the PEG generated from
PEP 1 and PEP 2. When operating A, her device automati-
cally deduces, executes precondition commands on D, C, B
first according to the order specified by the PEG.

1) Precondition Setup. Precondition rules are offered by object
vendors/subjects/admin and imported into the backend at registra-
tion. A condition’s direct preconditions are generated based on the
rules, represented as precondition execution pieces (PEP).

2) PreconditionAcquisition.When a subject asks the backend
for a token [30] of invoking a command, the relevant PEPs are
assembled to a precondition execution graph (PEG) where a vertex
is a precondition of the subject command and an edge specifies the
order. The PEG is sent to the subject. When she issues a command,
the precondition commands are deduced, forming a combo.

3) Precondition Execution. The subject device monitors and
operates the relevant objects, ensuring that precondition commands
execute in the order described by the PEG, and it executes the
subject command when all the precondition commands are done.

Precondition Examples. PEG depth is defined as the number of
vertices in its longest path. We show several real PEGs with various
depths in Fig. 2. E.g., the depth 5 PEG means before a sprinkler
sprays water, the alarm should be turned on and the outlets (in the
same room) should be turned off, before which all the computers
(powered by the outlets) should be turned off, before which the
stable storages should be checked to ensure that the computers’
important data are archived. The depth 3 PEG is the one in Fig. 1.

5 PRECONDITION SETUP
Here we describe how we think preconditions can be configured,
while a full set of precondition rule syntax is left to future work.

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Qian Zhou and Fan Ye

fireplace
on

detector
checked

window
closed

door
closed

curtain
closed

air cond
on

PEG with Depth 2 PEG with Depth 3 PEG with Depth 5

outlet
off

alarm
on

sprinkler
spray

computer
off

data
checked

computer
save data

Figure 2: Examples of PEGs with different depths.

Precondition rules are made by IoT object vendors, subjects, admin,
based on which the backend generates direct preconditions for a
condition. Vendors do that to ensure their products are used in a
safe or correct way, and the rules come with the products, and get
imported into the backend at object registration. Subjects may set
rules for personalized needs. The admin usually sets rules based on
vendor rules with additional customized adjustments.

5.1 Ease of Rule Setup
Precondition setup can be challenging, so we use the following
techniques to make it easy to conduct.

First, a condition can have multiple levels of preconditions and
multiple preconditions per level. It is hard for a rule setter to handle
all of them correctly. To solve this problem, we require each rule
only to specify a condition’s direct preconditions. E.g., in Fig. 2,
the sprinkler vendor only requests that the outlets should be pow-
ered down before the sprinkler sprays water, and it is others’ duty
(e.g., subjects’) to request the computers to safely shut down before
the outlets are off. In this way, every rule setter only cares about the
preconditions in the immediate previous step, even though multiple
recursive preconditions exist.

Second, vendors face extra challenges because they do not have
priori knowledge about which exact objects will be installed around
theirs, thus they cannot directly refer to the exact IDs of those
objects in requirements. E.g., a sprinkler vendor does not know
the IDs of the outlets to be installed around her products. We use
attribute-based rules using predicates to specify a category of
objects sharing certain characteristics, regardless of the number
of objects and their concrete IDs. E.g., ⟨type = ‘window’ ∧ Room =
X : status = ‘closed’⟩ ⇒ ⟨type = ‘air_cond’∧Room = X : status =
‘on’⟩, i.e., close the window(s) in Room X before turning on the AC
in Room X. Later the backend will find out which exact objects
match the predicates (because objects’ profiles containing device
types and installation sites were registered).

5.2 Precondition Execution Piece
A precondition execution piece (PEP) states all the direct precondi-
tions of one condition. It is expressed as {prec} ⇒ cond , with cond
specifying the condition and {prec} a set of preconditions combined

in AND. When a subject requests a token [29] to invoke certain
functions, the backend will:

1) Deduce Possible Subject Conditions. Subject condition,
i.e. the condition that will be set true by subject command, is ob-
tained first. E.g., command [air_cond : set_temp (75)] has condi-
tion ⟨air_cond : tarдet_temp = 75⟩. A token may allow a subject
to invoke a function with parameters in a range, then the possi-
ble subject condition is a range, e.g., ⟨air_cond : tarдet_temp >
70 ∧ tarдet_temp < 80⟩.

2) Find Relevant PEPs. The backend searches PEPs for the
subject condition, i.e., those whose cond have intersection with the
subject one (e.g., the PEP with cond ⟨air_cond : tarдet_temp > 75⟩
is relevant to the last subject condition example in Step 1). Next,
it searches PEPs for each prec of the PEPs found, and does this
recursively till all the relevant ones are found out.

Example. In Fig. 1, the subject requests a token for command
[air_cond : set_status (on)], the backend deduces its condition
⟨air_cond : status = ‘on’⟩, which is PEP 1’s cond . PEP 1 has
{prec} = {⟨window : status = ‘closed’⟩, ⟨door : status = ‘closed’⟩}.
PEP 1’s first prec is PEP 2’s cond , so PEP 2 is also relevant. PEP 2
has {prec} = {⟨curtain : status = ‘closed’⟩}. curtain and door have
no preconditions. Totally, PEP 1 and PEP 2 are found relevant.

6 PRECONDITION ACQUISITION
The backend assembles the PEPs to a precondition execution graph
(PEG) and sends it to the subject. When the subject issues the
command, the PEG’s precondition commands are deduced.

Algorithm 1 PEPs to PEG
1: V ← {subject_condition}
2: E ← ∅
3: queue ← v
4: while queue , ∅ do
5: cond ← queue .pop ()
6: prec_set ← cond .дet_direct_precs_f rom_PEPs ()
7: for each prec in prec_set do
8: if prec < V then
9: V .insert (prec)
10: E.insert (IDprec , IDcond)
11: queue .push(prec)
12: else if ∃v ∈ V and is compatible with prec then
13: v ← v ∩ prec
14: E.insert (IDv , IDcond)
15: else if ∃v ∈ V and is incompatible with prec then
16: print error
17: return {∅,∅}
18: end if
19: end for
20: end while
21: return {V ,E}

6.1 Generate PEG
A PEG is represented by a Directed Acyclic Graph {V ,E} (for vertex
and edge set respectively) in which a vertex is a condition and an
edge specifies the precondition relationship: (A,B) in E is an edge

APEX: Automatic Precondition Execution with Isolation and Atomicity in IoT IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

from A to B, which means A ⇒ B. Notice that the destination
vertex is the subject condition and the others are preconditions.

We give a simple algorithm which incrementally builds a PEG.
There are three possible cases when handling a precondition prec:
1) prec is new toV , which means its obj : variable is different from
that of any condition in V , thus prec can be simply added to V . 2)
prec is compatible with an existing condition v in V , this happens
when prec and v have the same obj : variable and their predicates
have intersection. E.g., for prec ⟨air_cond : tarдet_temp < 75⟩ and
v ⟨air_cond : tarдet_temp < 80⟩, prec ∩ v = prec , ∅. In this
case no vertex is added to V but v is updated to prec ∩v . 3) prec is
incompatible with an existing condition v in V , this happens when
prec andv have the same obj : variable but their predicates have no
intersection. In this case prec and v cannot be met simultaneously,
and an error for conflicting precondition rules is reported.

The algorithm ensures no two conditions in a PEG have the same
(obj : variable), thus no variable will be accessed more than once
by a combo. By eliminating this redundancy, message overhead and
latency in later execution can be reduced. In the example in Fig. 1,
PEP 1 and PEP 2 are fed into the algorithm and the PEG is obtained.

6.2 Deduce Subject Condition & Precondition
Commands

When the subject issues a command, her device uses the same
command-to-condition mechanism as the backend does to convert
the command to the subject condition, and based on that which
PEG to use becomes known.

Now the PEG is known, the subject device converts each pre-
condition in it to a precondition command. Those commands to-
gether with the subject command form the combo. E.g., condi-
tion ⟨air_cond : tarдet_temp = 65⟩ is converted to command
[air_cond : set_tarдet_temp (65)]. One covering a set (e.g., ∈) or an
interval (e.g., >) usually has multiple possible precondition com-
mands. E.g., ⟨air_cond : tarдet_temp ≥ 70⟩ can bemet by executing
[air_cond : set_tarдet_temp (x)] for any x ≥ 70. Which x to use
belongs to policy making by the admin and is out of the scope.

Example. In Fig. 1, the precondition commands are: D: [curtain :
close ()]; C: [door : close ()]; B: [window : close ()].

7 PRECONDITION EXECUTION
In this step the subject device acts as a pivot to monitor and control
all the relevant objects, ensuring precondition commands execute
in the PEG order. We adopt two-phase locking (2PL) for isolation of
interleaving but make its lock management distributed for fitting
IoT contexts. Also, our system remedies message losses, and can
detect execution failures listed in Section 2.2. Besides, it can recover
the system to the initial state when an execution failure occurs.

We propose two execution strategies preferred in different situ-
ations: conservative strategy reserves all the variables in a combo
before altering any of them, and has higher execution success rates
and lower rollback cost; aggressive strategy starts execution on some
variables before others are reserved, and runs faster.

7.1 Conservative Strategy
Conservative strategy enforces a rule: once a combo starts executing
any command, it will not encounter a contention failure. This is for

achieving high execution success rates and low rollback cost despite
contention. We adopt conservative strict 2PL: the pivot reserves
all the variables in the combo first, and then sends out commands
to execute, and releases all the variables at once when all the com-
mands execute successfully. During reservation, preemption [12] is
used to prevent deadlocks: the pivot starting later gives way to the
one starting earlier.

C_Reserv
ed1/RES

C_Reserv
ed2

C_Execut
ing/RESs

C_Execut
ed/RES

Released
/RES

1. CR1 2. CR2 3. CE
execution

completion

6. RELE 5. CE
4. CE

8. RELE

7. RELE

Where Contention Failures may Happen

Figure 3: Conservative strategy’s Moore state machine for
an object. The input for transition 1–8 is the reception of a
control message (CR1, CR2, CE or RELE) from the pivot, and
the output is sending a response (RES) back to the pivot.

In Fig. 3, message 1, 2, 3 are for reservation and execution; 4,
5 rollback (Section 7.4); 6, 7, 8 release (Section 7.5). We introduce
reservation and execution in this section.

Figure 4: Subject sends a control message to object and re-
ceives a response.

Message Formats. In Fig. 4, Subject S (the pivot) sends a control
message to Object O , including: 1) IDMSG , IDS , IDO : message ID,
subject ID, object ID; 2) Var : the variable to operate; 3) Ctl : the
control type, it can be CR1, CR2, CE or RELE; 4) T : a timestamp of
the pivot’s start moment—when it sends the first message for the
combo.O sends a response (RES) back, where Code is a status code
telling execution success or failure/cause. Valinit is Var ’s initial
value before being modified, Valcurr is its current value.

Procedures (when no contention occurs):
1) Reservation Stage. (Fig. 5) Initially the pivot S is in this stage,

and sends Conservative Reservation 1 (CR1) messages to all vari-
ables in the PEG to reserve them. After receiving a CR1, a vari-
able (IDO : Var) in state Released (unlocked) updates its state
to C_Reserved1 , its holder ID to IDS , its holder timestamp to T
(see symbols in Fig. 4), and sends a CR1_RES back. The pivot waits
till all the RESs arrive, and if each of them announces a success, it
moves on to Conservative Execution Stage.

2) Conservative Execution Stage. (Fig. 5) In this stage the pivot
executes commands on variables according to the PEG order. It
sends Conservative Execution (CE) messages along with commands
to the variables valid for execution, triggering execution on them.
The variables valid for execution have either no preconditions or
preconditions which are all true, and originally they are the former.
E.g., in Fig. 1, Variable D and C are valid and receive CEs first.

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Qian Zhou and Fan Ye

Also, the pivot sends Conservative Reservation 2 (CR2) messages
to all the variables invalid for execution (i.e. those whose precondi-
tions are not yet true), informing them that it is in Conservative
Execution Stage such that they can reject reservation requests from
any other pivot while waiting for CEs. This is for meeting the rule
of conservative strategy that once a combo starts executing any
command, it will not lose in contention (Section 7.1.1).

Specifically (Fig. 3), a CR2makes a variable in stateC_Reserved1
switch to C_Reserved2 if the CR2’s IDS equals the variable’s
holder ID; a CE makes a variable in state C_Reserved2 switch
to C_Executing if the CE’s IDS equals its holder ID, and start
execution. Note that we require all variables to switch in order
C_Reserved1→ C_Reserved2→ C_Executing for a consistent
style, though variables like D and C are valid from the very begin-
ning and do not really need CR2s. For such cases we merge CR2 into
CE (i.e., CR2+CE, Fig. 5), using one message to switch a variable to
C_Reserved2 and then immediately to C_Executing .

When execution is done, C_Executing goes to C_Executed .
A CE_RES announcing execution completion is back. The pivot
checks if this execution completion makes any variable which was
invalid for execution now valid. If so, it sends a CR2+CE to the
variable (CR2 is with CE in case that the last CR2 is lost or delayed).
E.g., in Fig. 1, when the RES of Variable D is back, B becomes valid
for execution. The pivot repeats this process until all variables in
the PEG finish execution, then the combo execution is done.

VarD,C:
Released

VarB:
Released

VarA:
Released

Pivot

CR1

CR1

CR1

VarD,C:
C_Reserv
ed1

VarB:
C_Reserv
ed1

VarA:
C_Reserv
ed1

CR2

CR2

VarD,C:
C_Execut
ed

VarB:
C_Reserv
ed2

VarA:
C_Reserv
ed2

Reservation Stage Conservative Execution Stage

CR2
+CE

Pivot Pivot

CR2+CE

Figure 5: The pivot reserves the variables and executes com-
mands according to the PEG in Fig. 1, using conservative
strategy. The diagram of execution on VarA is omitted here.

Example. In Fig. 1 and Fig. 5, the pivot sends CR1s to reserve
the 4 variables (A, B, C, D), after which is done it starts execution.
D: [curtain : close ()] and C: [door : close ()] have no precondition
commands, and are executed first; when D is finished, B: [window :
close ()] executes; after B and C are both completed, A: [air_cond :
set_status (on)] executes.

7.1.1 Distributed Lock Management. Two pivots may try accessing
the same variable and encounter contention. In database systems a
centralized lock manager is commonly used to decide which trans-
action can access a variable. Even in IoT, it is still possible to use
a centralized manager, e.g., the backend, but that incurs signifi-
cantly worse availability and longer latency (see IoT Property 1 in
Section 2.1). Here we propose a distributed lock management mech-
anism making pivots and objects both participate in management,
achieving better availability and responsiveness.

Initially a variable is in state Released and unlocked, and it
will be locked by any pivot requesting to reserve it, then the pivot

becomes its holder. When a locked variable receives a reservation
message (called challenge message, CR1 or AR (AR will be intro-
duced in Section 7.2)) from a pivot which is not its holder (called
challenger), contention begins. Arbitration is performed to make
one pivot (between its holder and the challenger) win the con-
tention and the other lose. It is a preemption process for preventing
deadlocks. The arbitration principle is: 1) If neither pivot is in Con-
servative Execution Stage, the one which started earlier wins (based
on a wound-wait timestamp-based preemption scheme); 2) Otherwise
the one in Conservative Execution Stage wins (due to conservative
strategy’s rule). Specifically,

1) If the variable is in C_Reserved1 (when it is unsure whether
its holder has entered Conservative Execution Stage): i) A challenge
message with a timestamp newer than the holder’s is rejected by
the variable’s object, a failure RES is sent to the challenger. The
challenger loses and will wait or abort; ii) A challenge message with
a timestamp older is forwarded to the holder, and the holder: a) loses
if it is in Reservation Stage, will abort; b) wins if in Conservative
Execution Stage, and a failure RES is sent to the challenger.

2) If the variable is inC_Reserved2 orC_Executing/ed (at this
time it is sure that its holder is in Conservative Execution Stage), a
challenge message is always rejected by the variable’s object, and a
failure RES is sent to the challenger.

We justify the three mechanisms used in our distributed lock
management method as follows:

1) Objects as Semi-Autonomous Managers. In our system a
variable’s holder (pivot) and owner (object) both arbitrate when
facing contention. A natural way is to let two pivots negotiate who
should give up the variable. However, in IoT the variable’s object
first receives challenge messages. Of course it can always relay
the messages to the holder for arbitration, but that would incur
additional traffic, message losses and latency. To reduce traffic and
improve responsiveness, wemake objects assist pivots in contention
arbitration, as introduced above.

2) Conservative Strict 2PL. Conservative strategy adopts the
2PL variant which is conservative (C2PL) and strict (S2PL) [4, 21].
C2PL, when used in database systems, ensures that a transaction
will not block waiting for other resources once it starts execution.
But it is not frequently used due to its requirement on global knowl-
edge of all resources needed at the beginning and its lower concur-
rency. In our context, however, it can be a good choice. 1) We have
PEG, which is the global knowledge. 2) In many cases IoT allows for
lower throughput due to its slow actuations (see IoT Property 3 in
Section 2.1). Because of the long actuation time, conservative 2PL’s
extra latency (compared with non-conservative 2PL) becomes less
a problem. 3) C2PL helps reduce the expensive rollback of actua-
tions (see IoT Property 2): a pivot will not start execution/actuation
before it holds all the variables needed, and will not lose in con-
tention during execution, thus has a smaller chance to abort and
roll back the actuations performed. Considering that IoT actuations
are usually expensive (time-consuming, energy intensive, etc.), this
conservative strategy is especially meaningful.

In certain cases conservative 2PL’s longer latency may become
significant, deteriorating the system responsiveness. E.g., in enter-
prise environments the network can be very congested during office
hours, which makes C2PL take unacceptably long (Section 9.4). A
non-conservative strategy may become preferred then (Section 7.2).

APEX: Automatic Precondition Execution with Isolation and Atomicity in IoT IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

S2PL is widely used in databases because it prevents cascading
abort and rollback [3]. In our context it is additionally important
for isolation of interleaving and easier rollback: 1) If a pivot releases
variables gradually before all commands in the combo are finished,
other pivots will get a chance to access the released precondition
variables, breaking the preconditions while it is still executing. S2PL
stops this. 2) S2PL does not release a variable until the end, thus
not need to re-reserve the variables when rollback is needed.

3) Preemption for Deadlock Prevention. Deadlocks may oc-
cur in Reservation Stage, when multiple pivots hold the resources
others are reserving and reserve the resources others are holding.

Deadlocks can happen only if the four conditions are met [6, 12]:
1) mutual-exclusion 2) hold-and-wait 3) no-preemption 4) circular
wait. We break the third condition in arbitration. Breaking any of
the other three is less appealing. 1) Breaking “mutual-exclusion”
condition is impossible in our context because a variable cannot
be set to two values simultaneously. 2) Breaking “hold-and-wait”
condition is possible: a pivot in Reservation Stage releases the vari-
ables it holds if there is any that it cannot get, and retries reserving
all variables later. It prevents deadlocks, but the system may en-
counter starvation [25] that pivots keep getting partial resources
and releasing them, making no progress. 3) Breaking “circular wait”
condition also works. One way is to give each variable a global
identity, and a pivot is required to reserve variables in the order of
their identities. E.g., a pivot cannot reserve a larger ID variable if it
fails in reserving a smaller ID one, thus it will not hold the variables
wanted by the pivot beating it. This, however, requires a pivot to
grab variables one by one. Our strategy sends out all CR1s at once,
without blocking at any single RES, saving significant time.

7.2 Aggressive Strategy
Aggressive strategy adopts non-conservative strict 2PL: it does not
wait for all the variables to be reserved before starting execution
on some, hopefully one which is now locked by others will later be
available when it is the time to use it. It has no reservation stage
as in conservative strategy but has a similar execution stage. It has
shorter latency but a higher chance of abort and rollback.

A_Execut
ed/RES

A_Reserv
ed

A_Execut
ing/RESs

2. AE

4. AE
3. AE

6. RELE

Released
/RES

1. AR

5. RELE

execution
completion

Where Contention Failures may Happen

Figure 6: Aggressive strategy’s Moore state machine for an
object. The input for transition 1–6 is the reception of a con-
trol message (AR, AE or RELE) from the pivot, and the out-
put is sending a response (RES) back to the pivot.

In Fig. 6, message 1, 2 are for reservation and execution; 3, 4
for rollback (Section 7.4); 5, 6 for release (Section 7.5). Aggressive
and conservative strategies share the control message and response
formats (Fig. 4), except that the Ctl here is AR, AE or RELE.

Procedures (when no contention occurs):

Aggressive Execution Stage. (Fig. 7) This is the only stage in ag-
gressive strategy. The pivot S sends Aggressive Reservation (AR)
and Aggressive Execution (AE) messages along with the commands
to the variables valid for execution, reserving them and triggering
execution on them. Also, it sends ARs to all the variables invalid
for execution to reserve them, for later execution.

To be specific (Fig. 6), after receiving an AR, a variable in state
Released updates its state to A_Reserved , its holder ID to IDS ,
its holder timestamp to T (see symbols in Fig. 4); an AE changes
a variable in state A_Reserved to A_Executing if the AE’s IDS
equals the variable’s holder ID.

When execution is done, A_Executing goes to A_Executed .
An AE_RES announcing execution completion is back. Similar to
conservative strategy, the pivot checks which variables are now
valid for execution, and send AR+AE to them. AR is with AE in
case that the last AR is lost or delayed.

VarD,C:
Released

VarB:
Released

VarA:
Released

Pivot

AR+AE

AR

AR

VarD,C:
A_Execut
ed

VarB:
A_Reserv
ed

VarA:
A_Reserv
ed

VarD,C:
A_Execut
ed

VarB:
A_Execut
ed

VarA:
A_Reserv
ed

Aggressive Execution Stage

Pivot Pivot
AR+
AE

AR+AE

Figure 7: The pivot executes commands according to thePEG
in Fig. 1, using aggressive strategy.

Distributed Lock Management. Aggressive and conservative
strategies use the identical lock management method and arbi-
tration principle, thus the system allows some pivots to perform
aggressive execution and in the meanwhile others execute conser-
vatively. Still, a challenge message is a CR1 or AR.

Since it has no Conservative Execution Stage which is exempted
from contention failures, the pivot’s timestamps are the only pre-
emption criterion: no matter the variable is in stateA_Reserved or
A_Executing/ed : i) A challenge message with a timestamp newer
than the holder’s will be rejected by the variable’s object, a RES
announcing failure is sent to the challenger, the challenger loses
and will wait or abort; ii) A challenge message with a timestamp
older is forwarded to the holder, the holder loses and will abort.

Non-Conservative Strict 2PL. Aggressive strategy uses the
2PL variant which is non-conservative (non-C2PL) and strict (S2PL).
S2PL is chosen for the same reasons as shown in conservative
strategy. Non-C2PL eliminates conservative strategy’s Reservation
Stage. It reduces time cost at the expense of lower execution success
rates and higher recovery cost, because now a contention failure
can make the combo abort and roll back.

7.3 Execution Failure Detection
APEX detects main causes failing an execution: 1) The command is
lost/omitted (transmission/object failures); 2) It arrives at the object
but cannot access the variable (contention failures); 3) It modifies
the variable which however cannot take effect (actuation failures).

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Qian Zhou and Fan Ye

Also, the system tries to remedy message losses. Contention failures
were discussed in Section 7.1.1, here we focus on the others.

The pivot starts a timer for every control message sent out. A RES
coming back before timeout cancels the timer, otherwise a “message
loss” is detected and the message is retransmitted for remedy. If a
message is still not delivered successfully when the retry attempts
are exhausted, a “transmission failure” is detected, which results
from either a bad network condition or “object failure”.

Executing states (C_Executing or A_Executing) in IoT may
last relatively long due to time-consuming actuations, e.g., opening
curtains, lifting up a garage door, booting a PC. We use periodic
RESs streamed to the pivot for keeping it updated. By checking
Valcurr in RESs the pivot gains knowledge of execution progress.
If no enough progress has been made beyond a time limit (e.g.,
Valcurr does not change), an “actuator failure” is announced.

7.4 Rollback
We provide a rollback mechanism for atomicity, which can be en-
abled and disabled as needed. It applies to reversible, erasable com-
mands (e.g., not including dropping food in a fish tank). When it is
enabled and a command in a combo failing in executing, the pivot
should undo every executed command.

To realize this, it executes a second command on the variable,
setting it to its initial condition. Message 5 in Fig. 3 shows a CE
switches a variable in state C_Executed back to C_Executing
, executing a second command for rollback. It also works if the
variable is inC_Executing , making it abort the command running
and execute a new one. Commands should be undone in reverse
order of execution (reverse order is obtained from the PEG). The
situation for aggressive strategy (message 3, 4 in Fig. 6) is the same.
After rollback is finished, the variable stays in an executed state.

7.5 Release
After a combo succeeds in execution, or it fails and the rollback is
finished, every variable the pivot holds is either in a reserved or
executed state. The pivot releases them in reverse order of execution
with Release (RELE) messages (message 6, 7, 8 in Fig. 3; 5, 6 in Fig. 6).

8 SUCCESS RATE AND ROLLBACK COST
Rollback of time-consuming, energy-intensive actuations (e.g., by
mechanical components) is expensive. To compare the two strate-
gies’s rollback cost, we ignore the variables unrelated to expensive
actuations, and assume the remaining have similar expenses, then
the cost is assessed in terms of the number of execution failures.

A command will succeed in execution stage only if it encounters
no transmission, object, contention or actuation failure. Assume
each command has independent failure probability ft , fo , fc , fa for
the four causes respectively, and the probability that it succeeds
is s = (1 − ft) (1 − fo) (1 − fc) (1 − fa). Conservative strategy has
fc = 0 in execution stage, thus a higher chance to succeed and a
lower chance of rollback than aggressive strategy.

The number of objects also affects rollback cost. Assume the
PEG has a grid shape (Fig. 9 (a)) with d rows (PEG depth) and w
columns (PEGwidth) of objects, each relating to expensive actuation.
Variables of objects in Row i are the direct precondition variables
of those in Row (i + 1), thus the former should execute before the

latter. Variables of objects in the same row execute concurrently.
The probability that a whole row succeeds in execution stage is
sw , and the combo (i.e., the whole PEG) success rate in execution
stage is Succ = sdw . i rows (iw variables) are to be recovered
if and only if the first i rows execute successfully and (i + 1)th
fails. Thus the normalized expected value of rollback cost is Cost =(d−1∑
i=1

iw (sw)i (1−sw)
)
/dw . Note that i can be atmost (d−1), because

if all d rows succeed, the whole combo succeeds and no rollback
is needed. Simulation shows that when f c = 0.01, ft = 0.001, fo =
fa = 0, conservative strategy’s Succ decreases roughly linearly
with PEG depth and width, being 98% for the 5 by 4 PEG; Cost
increases roughly linearly, being 1%. Aggressive strategy has the
same pattern, with Succ being 80% and Cost being 8%.

0 0.02 0.04 0.06 0.08 0.1

f
c

0

20

40

60

80

100
Succ

Con

Succ
Agg

Cost
Con

Cost
Agg

(a) Impact of contention failures

0 0.002 0.004 0.006 0.008 0.01

f
t

0

20

40

60

80

100
Succ

Con

Succ
Agg

Cost
Con

Cost
Agg

(b) Impact of transmission failures

Figure 8: Conservative strategy has higher success rates in
execution stage, lower rollback cost than aggressive one.

Simulation in Fig. 8 (a) uses ft = 0.001, fo = fa = 0 and the 5 by
4 PEG. As is seen, conservative strategy’s Succ andCost do not vary
with fc , staying at 98% and 1%, while aggressive strategy’s Succ
drops to 35% at fc = 0.05, meanwhile rollback cost rises to 21%.
In Fig. 8 (b), fc = 0.01, as ft increases, both strategies get lower
Succ and higher Cost . Still, conservative strategy performs better:
its Succ and Cost are 82% and 7% when ft = 0.01, while aggressive
strategy’s are 67% and 12%. As a result, conservative strategy shows
its advantage in higher execution success rates and lower rollback
cost, which becomes more remarkable under condition of high
subject density and thus severe resource contention.

9 EXPERIMENTAL EVALUATION
We implement both the conservative and aggressive strategies, and
conduct experiments on a testbed consisting of 20 objects, with
each emulated by a Raspberry Pi 3. WiFi ad-hoc mode is used in
the testbed for communication between objects.

The 20 objects are deployed in one room, while the PEG and
network topology are software configurable. Particularly, the PEG
we test has a grid shape and we change its size for different tests, by
activating different numbers of rows and columns. Fig. 9 (a) shows
a 4 by 3 (depth 4, width 3) PEG.

The network topology is configurable: we use application filters
to filter out any packet from a non-neighbor node. We use two
topologies in our tests: 1) a star topology in which every object is a
neighbor of the pivot; 2) a linear topology (Fig. 9 (b)) where objects
are chained, and there may be up to 4 lines connected to the pivot.

APEX: Automatic Precondition Execution with Isolation and Atomicity in IoT IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

17 18 19 20

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

Pivot

R1

R2

R3

R4

R5

Depth

Width
Active

Objects

(a) PEG structure

Pivot

R1

R2

R3

R4

R5 17 18 19 20

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

(b) Linear topology

Figure 9: Configurable PEG and network topology.

9.1 Rationality of Our Testbed
Wemake conscious efforts in the testbed design such that the results
produced can reflect the performance in large scale IoT systems.

1) Identical Pis with Homogenous Communications. IoT
can be heterogeneous in many ways: the objects can have different
power sources (battery-powered, wall-powered), manufacturers,
computing performances, storages, etc. We argue that using 20
Pis communicating via WiFi can emulate networking and power
aspects well, which are much more relevant to APEX performance
than computing and storage capacities.

First, as mentioned, in this paper we focus onwrite commands
because they alter variables, cause condition/precondition changes
and also actuations, instead of commands merely reading variables.
Objects which most of the time are read from but not written to are
usually sensing nodes (e.g., temperature, smoke, motion sensors)
and they are usually battery-powered. Our target—the objects with
frequent write operations and actuations (e.g., door locks, lights,
air conditioners)—require much more energy and are mostly wall-
powered. It is reasonable to emulate them with wall-powered Pis.

Second, in real IoT, different radios (WiFi, Bluetooth, ZigBee,
etc.) may co-exist. However, the exact percentage of each radio in
the mixture would be hard to determine. We believe it is hard, if not
impossible, to find universal proportions of heterogeneous radios
from a “typical” IoT network. Thus our testbed uses WiFi only, so
the results should not be interpreted literally. Even so, it is valuable
in revealing the variation trends under different factor changes.

2) Star or Linear Topology of PEGs. We think PEGs with a
star or linear topology make reasonable experimental setting. First,
as shown in Section 4, real precondition examples with PEG depth
2–5 exist. We believe such depths are common in large scale IoT
environments, and depth 5 (the largest depth we test) suffices most
realistic cases. About PEG width, usually there are one to several
objects in the same row, thus we use a width up to 4 as approxi-
mation. E.g., for the depth 5 PEG in Fig. 2, the first row R1 may
be 2 sprinklers, R2: 4 outlets, R3: 6 computers, R4: 2 safe storages.
Second, as for topology, in IoT, subjects are likely to interact with
the objects nearby (e.g., control the air conditioners in their current
rooms), and the objects involved in preconditions are probably also
nearby (windows, curtains in those rooms). Those objects and the
subject device (i.e. the pivot) are usually within 1 hop, given the
transmission range (e.g., about tens of meters) of common wireless
radios (e.g., WiFi, Bluetooth, ZigBee). Thus a star topology would be
common. We also test linear topology, which we believe is harsher

than common situations. Such results will give us a sense of how
an occasional, worse case can be.

9.2 Impact of PEG Size on Latency
We test the latency from the pivot’s transmission of the first reser-
vation (CR1 or AR) message in a command combo to the reception
of the last execution response, under different PEG sizes (depth: 2–5,
width: 1–4). Star topology is used here for excluding the impact of
hops. The experiments were conducted on weekends when most
other adjacent offices/labs were closed, to avoid the interference
of dynamic background traffic. The influences of hops and back-
ground traffic will be presented in next sections. We find that in
this single-hop, silent environment, conservative and aggressive
strategies cost 1.34 s and 1.01 s respectively to execute commands
on 20 objects. Both are acceptably fast and the time saved by ag-
gressive strategy is not remarkable. Conservative strategy might
be preferred for its extra advantages, e.g., lower rollback cost.

2 3 4 5

PEG Depth

0

300

600

900

1200

1500

C
o

n
 O

v
e

ra
ll

 T
im

e
 T

c
 (

m
s
)

Width = 1

Width = 2

Width = 3

Width = 4

(a) Latency, conservative strategy

2 3 4 5

PEG Depth

0

300

600

900

1200

1500

A
g

g
 O

v
e
ra

ll
 T

im
e
 T

a
 (

m
s
)

Width = 1

Width = 2

Width = 3

Width = 4

(b) Latency, aggressive strategy

2 3 4 5

PEG Depth

100

150

200

250

300

350

T
im

e
 D

if
f

(T
c
-T

a
)

(m
s
)

Width = 1

Width = 2

Width = 3

Width = 4

(c) Latency difference

0 1000 2000 3000

Actuation Time Tn (ms)

0

10

20

30

40

50

(T
c
-T

a
)

/
(T

c
+

T
n

)
(%

) 2 by 1 PEG

4 by 3 PEG

5 by 4 PEG

(d) Latency difference ratio

Figure 10: Latency under different PEG sizes.

Conservative strategy’s latency Tc (Fig. 10 (a)) increases with
PEG depth roughly linearly, because one more depth level brings in
one more precondition and precondition commands must execute
successively. Also, PEG width increase leads to Tc growth which
is slower than linear, because objects in the same row execute
concurrently. Besides, when the number of objects is relatively
large (e.g., 5 by 4 PEG, 20 objects), the latency may grow a little
faster than linearly, due to more severe congestion. In Fig. 10 (b),
aggressive strategy’s latencyTa shows similar trends, but is smaller
than Tc under the same condition. E.g., for 20 objects, conservative
strategy costs 1.34 s; aggressive strategy costs 1.01 s, saving 0.33 s.

Fig. 10 (c) shows that the latency difference between conservative
and aggressive strategies increases with PEG size, from 0.2 s to
0.33 s. Aggressive strategy saves time mainly because it has no
reservation stage as in conservative strategy. As for the ratio of the

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Qian Zhou and Fan Ye

difference to conservative strategy’s overall latency (Fig. 10 (d)), it
mostly decreases with PEG size: since the difference is similar, a
larger PEG size corresponds to longer overall latency, decreasing
the percentage of the difference. E.g., for the 2 by 1 PEG, aggressive
strategy saves 48% time, while for the 5 by 4 PEG, it saves 25%.

Actuation Time. For executions with time-consuming actu-
ations (e.g., opening a window), execution time can remarkably
increase, making overall latency much longer and the time saved by
aggressive strategy less significant. Fig. 10 (d) presents the results
for three PEGs, and all their latency difference ratios fall to 20% if
actuation timeTn is around 0.5 s, and under 10% whenTn > 2 s. As
a result, in situations with long actuation time, the time saved by
aggressive strategy may become even negligible.

9.3 Impact of Hops on Latency
We evaluate the influence of hops by applying the linear topology
in Fig. 9 (b) to the testbed. With this topology, an object in Row i is
i hops away from the pivot, forming a typical multi-hop situation.
E.g., Object 1–4 are 1 hop away, and Object 17-20 5 hops. PEG
size is fixed at 5 by 4, and the network is largely silent to avoid
the impact from background traffic. We find that in this multi-hop
environment, conservative and aggressive strategies cost 2.26 s and
1.53 s respectively. Both are still responsive, and aggressive strategy
now saves remarkably more time (0.73 s).

1 5 9 13 17 20

Object ID

0

600

1200

1800

2400

3000

C
o

n
 T

im
e
 C

o
s

t
(m

s
) Star,Reserve

Star,Overall

Linear,Reserve

Linear,Overall

(a) Latency, conservative

1 5 9 13 17 20

Object ID

0

600

1200

1800

2400

3000

A
g

g
 T

im
e
 C

o
s
t

(m
s
) Star,Overall

Linear,Overall

(b) Latency, aggressive

Figure 11: Latency in multi-hop situations.

Fig. 11 shows reservation latency (till reservation is done, applied
to conservative strategy only) and overall latency (till execution is
done). In Fig. 11 (a), linear topology where an object is 1–5 hops
leads to higher latency in finishing reservation and execution than
star topology where every object is 1 hop from the pivot. Object
20 is reserved at 0.6 s, about 0.38 s slower than star topology; it
finishes execution at 2.26 s, about 0.92 s slower. Aggressive strategy
(Fig. 11 (b)) costs 1.53 s before Object 20 finishes execution, about
0.52 s longer than star topology. Also, the time difference between
conservative and aggressive strategies increases to 0.73 s under
linear topology, which is 0.4 s larger than that under star topology.

9.4 Impact of Background Traffic on Latency
We run the testbed continuously in our lab surrounded by other
offices/labs during weekdays to record the effect of background
traffic at different times of the day on latency. The network is
very congested (slow rate with large variance) in the daytime of
weekdays due to large amounts of traffic from other companies and

labs.We find that aggressive strategy saves significant time (> 7s) in
this realistic environment with much background traffic, and might
be preferred to conservative strategy for its better responsiveness.

0 2 4 6 8 10 12 14 16 18 20 22
0

25

50

75

100

C
o

m
p

le
ti

o
n

R
a

te
 (

%
)

Con
Agg

0 2 4 6 8 10 12 14 16 18 20 22

Time of a Day (o'clcok)

0

5

10

15

20

T
im

e
C

o
s

t
(s

)

Con
Agg

office hours closing time

Figure 12: Latency at different times of the day.

Fig. 12 shows the completion rates (a combo is regarded as com-
pleted if all the 20 objects finish execution and respondwithin 20 sec-
onds) and the latencies. From 6 PM to 8AM, conservative/aggressive
strategies have ∼ 100% completion rates, and cost stably around
3.18/2.21 s respectively, with the latter saving 0.97 s.

In the daytime the completion rates drop, and there are three
hours (12–1, 2–4 PM) when both strategies have rates below 50%.
Through channel monitoring we find during those hours the traf-
fic from adjacent companies/labs was at peak, and the network
was saturated. Even 1 hop transmission frequently failed, let alone
APEX’s controlling 20 multi-hop objects. The countermeasures are
orthogonal to APEX design, and are discussed in Section 11.

The daytime combos that finish execution have higher and more
fluctuating latencies than the night ones. Also, most of the time,
aggressive strategy has higher completion rates and shorter latency
than conservative: it saves up to 7.76 s, 46% of conservative strat-
egy’s time. Note that the completion rate here is different from Succ
in Section 8: Succ is the completion rate in execution stage; con-
servative strategy has higher completion rates in execution stage
due to no contention failures, while it has lower overall completion
rates because of one more stage (Reservation Stage) than aggres-
sive strategy. Reservation is harder to finish and costs longer in a
congested network.

9.5 Message Overhead
Message overhead is the number of messages sent by the pivot
and objects, evaluated under the same conditions in Section 9.2, i.e.
star topology in quiet environments. Retransmission occurs for any
message whose ACK does not return within 200 ms.

Conservative strategy needs the pivot to send n CR1s, (n −w)
CR2s, n CEs, and the objects to send n CR1_RESs, n CE_RESs. Ag-
gressive strategy needs (n −w) ARs, n AEs from the pivot, and n
AE_RESs from the objects. No individual CR2s/ARs are needed for
the first row’sw objects because they are merged into the CEs/AEs.
Aggressive strategy needs 2n fewer messages. When using the 5
by 4 PEG, ideally conservative strategy needs 96 messages, and
aggressive strategy needs 56 messages.

APEX: Automatic Precondition Execution with Isolation and Atomicity in IoT IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

Table 1: Number of messages. n: # of objects in the PEG;w : #
of objects in the first PEG row.

Num of Msgs Pivot Object Total

Conservative 3n −w 2n 5n −w
Aggressive 2n −w n 3n −w

CR1 CR1
RES

CR2 AR CE AE CE
RES

AE
RES

Message Type

0

5

10

15

R
e

tx
 R

a
te

 (
%

)

Figure 13: Retransmission rates of different message types.

The realistic message overhead is a little more expensive than
the ideal case due to massage losses. Fig. 13 shows that our imple-
mentation has acceptably low retransmission rates for all of the
message types: they are around or below 10%.

9.6 Summary on Strategies’ Suitable Scenarios
According to the experiment results, we find that:

1) Conservative strategy has slightly longer latency than aggres-
sive strategy when background traffic is moderate. Even for 20
objets in linear multi-hop topology, the difference is less than 1s.
It might be preferred to aggressive strategy for its advantage in
smaller rollback cost at the expense of a little extra latency.

2) When the network is severely congested, which can happen
during office hours in enterprise environments, aggressive strategy
may save remarkable time (up to 7s in our experiments). It might
be more suitable because this latency reduction leads to noticeable
responsiveness improvement to users.

10 RELATED WORK
SimultaneousCommands. LogitechHarmony Smart Control [17]
allows a user to make her smartphone a one-touch universal remote
control to operate up to 8 home entertainment devices (e.g., TV, PC,
Xbox). The user connects the devices to a smart hub and predefines
actions, e.g., switch to her favorite TV channel, and later uses one
tap from smartphone to trigger it. Apple Home [1] allows a user
to create a “scene” and predefine multiple actions inside. Then she
uses one tap to trigger all the actions. E.g., a scene called “good
morning” has actions including warming up the house, opening
the blinds, and firing up the coffee maker. The objects and their
commands in both cases must be independent such that they can
safely execute simultaneously. APEX considers the constraints on
execution orders among commands, and enforces such orders.

IFTTT. IFTTT [14] (If This Then That) creates chains of simple
conditional statements such that one action triggers another. The
actions are mostly on app or web based services. E.g., if a weather
web shows it will snow tomorrow, then a mobile notification will
be generated. Recently IFTTT has moved into home automation,
e.g., Belkin [2] uses it for actions on smart home devices (WeMo).
E.g., if the sun sets, then the WeMo switch will be turned on.

APEX is significantly different with existing work like IFTTT.
i) It regards the user command as the end and searches condi-
tions “backward”, fulfills and holds them before the user command
executes. To the contrary, IFTTT performs intuitive “forward” con-
dition chaining and command execution. Note that APEX does not
aim at replacing work like IFTTT, because “backward” and “for-
ward” are complementary. ii) APEX uses a more generic model that
each command has possibly multiple, recursive preconditions, and
uses a DAG-like structure to represent them. It is more powerful
than a model with one condition-command pair or multiple such
pairs simply chained in a linear fashion. iii) APEX addresses more
issues, including atomicity and isolation, specifically in large scale
enterprise IoT contexts where large numbers of devices and com-
plicated dependency relationships exist. We solve the issues arising
from this new problem context.

Policy Expression &Conflict Detection.DepSys [19] detects
the conflicts in a home setting, among multiple applications sharing
physical world entities. SIFS [16] also checks the conflicts or policy
violations between apps. Additionally, it simplifies user program-
ming by allowing them to express high-level intent, and the system
decides which operations to perform for satisfying the intent. Liang
et al. [15] propose a solution to verify if the user specified IFTTT-
style program logic violates their expectations—policies expressed
as conditions in conjunction, and take a step in automated debug-
ging for the violation to ease non-expert debugging. Dar et al. [7]
exploit the concept of virtualized IoT services, and achieve a declar-
ative way to specify applications’ dependability requirements on
devices (e.g., an assisted living application needs the data accuracy
and availability of motion sensors to be highly dependable). Unlike
the work on policy expression or conflict detection, APEX addresses
problems in (precondition related) policy enforcement.

Policy Enforcement. CoMPES [11] is a cloud-based system
composed of a set of virtual machines (VM). VMs have predefined
policies of what commands should be executed under what condi-
tions; they receive the telemetry from IoT devices on the ground to
determine the current condition, and send the corresponding com-
mands back, to enforce the policies. CityGuard [18] is a centralized
smart city safety watchdog, to which the city services send requests
of taking certain actions. The watchdog checks if an action would
lead to device or environment conflicts (e.g., CO release above the
threshold) based on predefined safety or performance policies, and
only executes safe actions. APEX is quite different: i) It focuses on
the enforcement of precondition rules, which has not been well
addressed before; ii) Its execution is performed locally by subject
devices, not via a centralized entity, and has resistance to a single
point of failure, and shorter latency.

Concurrency-Control. Concurrency control for database, op-
erating systems [3, 26] aims at faster processing for concurrent
operations on the premise of correctness. ACID (Atomicity, Con-
sistency, Isolation, Durability) [9, 10] is a set of database transac-
tion properties for guaranteeing validity despite errors, failures,
crashes, etc. Two-Phase Locking (2PL) [3, 27] achieves isolation.
Strict 2PL [4, 21] which releases no write lock until the end of a
transaction prevents cascading abort. Rigorous 2PL does not release
any read or write lock until the end. APEX borrows the isolation,
atomicity concepts, and adapts 2PL to realize isolation in a vastly
different context of large scale IoT systems.

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Qian Zhou and Fan Ye

Deadlocks. According to the work of Coffman et al. [6] and
Havender [12], if any of the four conditions (i.e., mutual-exclusion,
hold-and-wait, no-preemption, circular wait) is not satisfied, it is
impossible for a deadlock to happen. APEX prevents deadlocks
during precondition execution using preemption.

11 DISCUSSION
Rule Syntax Standard. Different vendors may follow the same
syntax standard whenmaking rules, such that precondition relevant
objects (e.g., air conditioners and windows) will work in harmony.
Otherwise (e.g., air conditioner vendors mention window as “win”
while window vendors use “window”), it is left to the admin to
unify them when importing them into database.

Low Power Consumption. In this paper we focus more on
the common IoT operations with expensive actuations (e.g., by
mechanical, electrical components), and propose a conservative
strategy to reduce the cost of rollback from aborted actuations.
Those objects (e.g., doors, air conditioners) are wall-powered and
have less concern about energy. However, for battery-powered
objects, energy-saving solutions [20, 28] are necessary. We leave
low-power automatic precondition execution as future work.

Transmission Failures. Severe transmission failures in con-
gested networks lead to low completion rates of APEX. Possible
countermeasures are: retry when the traffic is less intensive, or
switch to other radios not interfered by WiFi traffic. In essence,
this problem is on communication reliability, orthogonal to and
interdependent from precondition enforcement.

Rollback Cost Metric. During analysis of rollback cost we sim-
plify the case by assuming every object has the same expense. To be
more accurate, a cost metric should first be defined, e.g., using time
cost, energy, or weighted multiple factors. This relates to policy
authoring or user preference that we do not address in this work.

Security.We consider benign subjects and objects only: a sub-
ject device strictly follows the PEGs obtained from the backend
to control the process of precondition execution; and an object
faithfully, correctly reacts to every received message (reservation,
execution, rollback, release). An adversary who does not follow the
PEGs or who has compromised objects can easily destroy benign
combos’ preconditions. IoT security [22, 23] and privacy [5, 8] are
worthy topics which we plan to explore to reinforce APEX.

12 CONCLUSION
In this paper, we describe the design and evaluation of APEX, which
automatically discovers the preconditions of a subject command,
generates and executes commands to make those preconditions
true. Also, it is able to prevent concurrent commands from interleav-
ing, and roll the system back upon execution failures. We propose
two execution strategies suitable under different scenarios, and
our evaluation proves conservative strategy sustains higher execu-
tion success rates, lower rollback cost, while aggressive strategy
executes faster, saving up to 7s, 46% of conservative strategy’s time.

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation
under grant number CCF 1652276.

REFERENCES
[1] Apple. [n. d.]. HomeKit. https://developer.apple.com/homekit/.
[2] Belkin. [n. d.]. Using IFTTTwithWeMo. https://www.belkin.com/us/wemo/ifttt/.
[3] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency

control and recovery in database systems. (1987).
[4] Yuri Breitbart, Dimitrios Georgakopoulos, Marek Rusinkiewicz, and Abraham

Silberschatz. 1991. On rigorous transaction scheduling. IEEE Transactions on
Software Engineering 17, 9 (1991), 954–960.

[5] Alan Chamberlain, Andy Crabtree, Hamed Haddadi, and Richard Mortier. 2018.
Special theme on privacy and the Internet of things. Personal and Ubiquitous
Computing 22, 2 (2018), 289–292.

[6] Edward G Coffman, Melanie Elphick, and Arie Shoshani. 1971. System deadlocks.
ACM Computing Surveys (CSUR) 3, 2 (1971), 67–78.

[7] Kashif Sana Dar, Amir Taherkordi, and Frank Eliassen. 2016. Enhancing depend-
ability of cloud-based IoT services through virtualization. In Internet-of-Things
Design and Implementation (IoTDI), 2016 IEEE First International Conference on.
IEEE, 106–116.

[8] Chuhan Gao, Varun Chandrasekaran, Kassem Fawaz, and Suman Banerjee. 2018.
Traversing the Quagmire that is Privacy in your Smart Home. (2018).

[9] Jim Gray et al. 1981. The transaction concept: Virtues and limitations. In VLDB,
Vol. 81. Citeseer, 144–154.

[10] Theo Haerder and Andreas Reuter. 1983. Principles of transaction-oriented
database recovery. ACM Computing Surveys (CSUR) 15, 4 (1983), 287–317.

[11] Jared Hall and Razib Iqbal. 2017. CoMPES: A Command Messaging Service for
IoT Policy Enforcement in a Heterogeneous Network. In Proceedings of the Second
International Conference on Internet-of-Things Design and Implementation. ACM,
37–43.

[12] James W. Havender. 1968. Avoiding deadlock in multitasking systems. IBM
systems journal 7, 2 (1968), 74–84.

[13] Patrick Hurley. 2014. A concise introduction to logic. Nelson Education.
[14] IFTTT. [n. d.]. IFTTT. https://ifttt.com/discover.
[15] Chieh-Jan Mike Liang, Lei Bu, Zhao Li, Junbei Zhang, Shi Han, Börje F Karlsson,

Dongmei Zhang, and Feng Zhao. 2016. Systematically debugging IoT control
system correctness for building automation. In Proceedings of the 3rd ACM In-
ternational Conference on Systems for Energy-Efficient Built Environments. ACM,
133–142.

[16] Chieh-Jan Mike Liang, Börje F Karlsson, Nicholas D Lane, Feng Zhao, Junbei
Zhang, Zheyi Pan, Zhao Li, and Yong Yu. 2015. SIFT: building an internet of
safe things. In Proceedings of the 14th International Conference on Information
Processing in Sensor Networks. ACM, 298–309.

[17] Logitech. [n. d.]. Logitech Harmony Smart Control. https://www.logitech.com/
en-us/harmony-universal-remotes.

[18] Meiyi Ma, Sarah Masud Preum, and John A Stankovic. 2017. Cityguard: A
watchdog for safety-aware conflict detection in smart cities. In Proceedings of the
Second International Conference on Internet-of-Things Design and Implementation.
ACM, 259–270.

[19] Sirajum Munir and John A Stankovic. 2014. Depsys: Dependency aware inte-
gration of cyber-physical systems for smart homes. In Cyber-Physical Systems
(ICCPS), 2014 ACM/IEEE International Conference on. IEEE, 127–138.

[20] Aaron N Parks, Alanson P Sample, Yi Zhao, and Joshua R Smith. 2013. A wireless
sensing platform utilizing ambient RF energy. In Power Amplifiers for Wireless
and Radio Applications (PAWR), 2013 IEEE Topical Conference on. IEEE, 160–162.

[21] Yoav Raz. 1992. The principle of commitment ordering, or guaranteeing seri-
alizability in a heterogeneous environment of multiple autonomous resource
managers using atomic commitment. In VLDB, Vol. 92. 292–312.

[22] Francesco Restuccia, Salvatore D?Oro, and Tommaso Melodia. 2018. Securing
the Internet of Things in the Age of Machine Learning and Software-defined
Networking. IEEE Internet of Things Journal (2018).

[23] Cong Shi, Jian Liu, Hongbo Liu, and Yingying Chen. 2017. Smart user authen-
tication through actuation of daily activities leveraging WiFi-enabled IoT. In
Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Network-
ing and Computing. ACM, 5.

[24] Charles Simonyi. 1999. Hungarian notation. MSDN Library, November (1999).
[25] Andrew S Tanenbaum. 2009. Modern operating system. Pearson Education, Inc.
[26] Andrew S Tanenbaum and Albert S Woodhull. 1987. Operating systems: design

and implementation. Vol. 2. Prentice-Hall Englewood Cliffs, NJ.
[27] Gerhard Weikum and Gottfried Vossen. 2001. Transactional information systems:

theory, algorithms, and the practice of concurrency control and recovery. Elsevier.
[28] Pengyu Zhang. [n. d.]. Enabling Low-power Communication, Sensing, and

Computation on Internet-of-Things. ([n. d.]).
[29] Qian Zhou, Mohammed Elbadry, Fan Ye, and Yuanyuan Yang. 2017. Flexible,

Fine Grained Access Control for Internet of Things. In Proceedings of the Second
International Conference on Internet-of-Things Design and Implementation. ACM,
333–334.

[30] Qian Zhou, Mohammed Elbadry, Fan Ye, and Yuanyuan Yang. 2018. Heracles:
Scalable, Fine-Grained Access Control for Internet-of-Things in Enterprise Envi-
ronments. IEEE INFOCOM 2018 (2018).

https://developer.apple.com/homekit/
https://www.belkin.com/us/wemo/ifttt/
https://ifttt.com/discover
https://www.logitech.com/en-us/harmony-universal-remotes
https://www.logitech.com/en-us/harmony-universal-remotes

	Abstract
	1 Introduction
	2 Models and Assumptions
	2.1 Properties of Internet-of-Things
	2.2 Failure Causes

	3 Design Goals
	4 System Overview
	5 Precondition Setup
	5.1 Ease of Rule Setup
	5.2 Precondition Execution Piece

	6 Precondition Acquisition
	6.1 Generate PEG
	6.2 Deduce Subject Condition & Precondition Commands

	7 Precondition Execution
	7.1 Conservative Strategy
	7.2 Aggressive Strategy
	7.3 Execution Failure Detection
	7.4 Rollback
	7.5 Release

	8 Success Rate and Rollback Cost
	9 Experimental Evaluation
	9.1 Rationality of Our Testbed
	9.2 Impact of PEG Size on Latency
	9.3 Impact of Hops on Latency
	9.4 Impact of Background Traffic on Latency
	9.5 Message Overhead
	9.6 Summary on Strategies' Suitable Scenarios

	10 Related Work
	11 Discussion
	12 Conclusion
	Acknowledgments
	References

