Poster Abstract: Flexible, Fine Grained Access Control for
Internet of Things

Qian Zhou
Stony Brook University
Department of Electrical and Computer Engineering
gian.zhou@stonybrook.edu

Fan Ye
Stony Brook University
Department of Electrical and Computer Engineering
fan.ye@stonybrook.edu

ABSTRACT

Existing access control strategies for Internet of Things cannot pro-
vide good flexibility, robustness or quick response. We propose an
access control approach of finer granularity and techniques support-
ing bulk operation to make interaction in IoT more flexible. Also, a
decentralized strategy and data centric network techniques are used
to enhance the system robustness and swiftness. We implement
our design and conduct evaluation on security and performance.

CCS CONCEPTS

+Networks —Security protocols;

KEYWORDS

Access Control, Security, Internet of Things

ACM Reference format:

Qian Zhou, Mohammed Elbadry, Fan Ye, and Yuanyuan Yang. 2017. Poster
Abstract: Flexible, Fine Grained Access Control for Internet of Things. In
Proceedings of ACM/IEEE IOTD], Pittsburgh, PA, USA, April 18-21, 2017 (IoTDI
’17), 2 pages.

DOI: http://dx.doiorg/lo.l145/3054977.3057308

1 INTRODUCTION

The Internet of Things aims at bringing us a fantastic world in
which many more things than traditional computing nodes such
as computers and smartphones are connected in the network and
operated by humans. However, a solution is currently lacking
which allows subjects (i.e., the devices interacting directly with
humans, e.g., smartphones) to access to objects (i.e., things in IoT
such as door locks and lights) in a flexible, robust and swift way.
A typical existing solution gives inflexible access control by
granting a person either full or none authority to an object [2],
while in a realistic scenario control of finer granularity is necessary.
For example, a cleaner must have authority to open an office door to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IoTDI ’17, Pittsburgh, PA, USA

© 2017 ACM. 978-1-4503-4966-6/17/04...$15.00

DOI: http://dx.doi.org/10.1145/3054977.3057308

Mohammed Elbadry
Stony Brook University
Department of Computer Science
mohammed.salah@stonybrook.edu

Yuanyuan Yang
Stony Brook University
Department of Electrical and Computer Engineering
yuanyuan.yang@stonybrook.edu

do his job, but that access should be limited to before, say, 9 AM to
stagger his working hours with those of clerks such that the latter
will not be disturbed. Also, bulk operation using a single command
to operate multiple objects is wanted but not yet supported.

Also, many existing solutions use a centralized strategy [1, 3] to
achieve easy security control at the expense of weaker robustness
and longer latency. To control an object, a subject sends a command
to the cloud first, and the cloud will validate that command and
have the object execute it only if the command is legitimate. This
approach requires the cloud to be always available to subjects,
which is not practical. Additionally, the command’s long detour of
travelling up to the cloud and then down to the object can bring in
latency which is too long to be negligible.

Furthermore, the heterogeneity of off-the-shelves makes it hard
to add them into IoT as objects easily. Off-the-shelves like lights
and temperature sensors can be heterogeneous in aspects of both
communication interfaces and computing performances, thus they
may be unable to interact with subjects directly or respond quickly
to humans.

We design and implement an approach with good enough se-
curity but better flexibility, robustness and speed. We claim our
four main contributions as follows: i) An access control approach
of finer granularity and techniques supporting bulk operation are
proposed to make interaction with objects in IoT more flexible; ii)
A decentralized strategy is offered to bring better robustness and
faster response speed than existing centralized solutions; iii) Data
centric network techniques are used to decouple data from their
producers to further enhance the robustness; iv) We have imple-
mented our design and conducted real experiments, and evaluation
on both security and performance is performed.

2 DESIGN
2.1 Bootstrapping

To join in a network, no matter a person or an object first needs
to get registered at the administrator of that network. Upon regis-
tration is done, a person will have his ID, private key, public key
certificate (signed by the administrator) and the administrator’s
public key stored in his devices (e.g., smartphone). For an object,
its profile (also signed by the administrator) will additionally be
given and stored which describes the object by telling what it is
(category, model version, etc.) and what functions it offers.

10TDI *17, April 18-21, 2017, Pittsburgh, PA, USA

2.2 Administrator

The administrator is a server on behalf of a human administrator. It
stores information of all registered persons and objects, and access
control policies according to person attributes and object attributes.
A subject, on behalf of its owner, requests his authorities to certain
objects, and the administrator responds with a “ticket”. Note that
the administrator is only needed for updating policies and issuing
tickets, and subjects then use tickets to operate objects, with no
more participation from the administrator needed.

The authority of a person to an object in our design is finer
grained than other works. Instead of just telling if a person can
access to an object, we add constraints to describe what the allowed
parameter range and operation time range are, and how many times
a certain function is allowed to be used.

The format of a request is: s, o, f, c, timestamp, signatures. The
symbols respectively denote subject ID, object IDs or attributes,
functions, constraints, the moment when the request was gener-
ated, and they are together signed by the subject. The format of
a ticket is: tid, s, o, f, ¢, lifetime, signature g, tid is ticket ID
and lifetime is the moment when the ticket will expire.

2.3 Managers and Objects

Facing the heterogeneity of objects’ interfaces and performances,
we propose an approach that each low-end object needs to find a
high-end one nearby as its manager. A manager has high-end hard-
ware and thus advantage in communication interfaces, computing
performances and other resources such as storage and power. A
manager takes over work related to asymmetric cryptography from
its member objects.

The network made up of managers leverages data centric net-
work techniques to do data discovery and command routing, and it
is more robust than one using IP-based solutions.

2.4 Command

To operate an object, a subject needs to send a command, of which
the format is: ticket, ao, af, ap, count, signatures. In ticket part,
either the whole ticket is transmitted directly or only tid is included
as reference. ao is the actual object that the person wants to operate,
af and ap stand for actual function and actual parameter, namely
the function to call and the parameter to feed in. count is the
current value of a monotonic increasing counter and is included
for anti-replay. All these are signed by the subject.

A manager that receives the command will check its legitimacy
and route it to the destination if it is legitimate. Finally the command
arrives at the manager of the target object. Besides the checks
done by other managers along the routing path, this manager can
additionally check the freshness of the command because it keeps a
counter for each of its member object, and increments the counter
value of an member object each time a command targeting that
object is accepted.

If all checks pass, the manager will have its object execute the
command by sending to it: af, ap, count, HMAC. count here is the
value of another counter kept by the manager and its member object
for anti-replay. And this time a symmetric signature (i.e., HMAC)
is used to protect integrity because an asymmetric one is too heavy
for a low-end object to generate or verify.

Q. Zhou et al.

3 SECURITY ANALYSIS

We analyze the security of our design by presenting its resistance
to different attacks. We classify a possible attack based on the mali-
cious node’s source, role and the security property it attempts to
attack. About its source, a malicious node can be brought in IoT
from external, or an internal one which gets compromised. About
the role, a malicious node can choose to behave as a subject, a
manager, or an object. And the possible security properties to harm
include integrity, freshness and availability. Note that confiden-
tiality is not covered in our this work because currently we aim
at offering a solution for places like home, campus and company,
where it is okay if others know what operations we do.

If an external node behaves as a subject and tries to send com-
mands to control objects it is not authorized to, namely harming
the integrity, because of lack of registration at the administrator
and thus no validate public key certificate or private key, none
of its commands will have a validate signature, and will thus be
detected as invalid and discarded by the first benign manager along
the routing path towards the destination. Second, if it tries to harm
the freshness by replaying validate commands, because the target
manager keeps a monotonic increasing counter and increments
its value each time a validate command is accepted, the replayed
one will be detected for its obsolete counter value and rejected.
Third, it can also keep sending commands with wrong signatures
to harm the availability, but benign managers will not help forward
those commands after finding them wrong, thus only the one-hop
neighbors will be kept busy.

If an external node behaves as a manager, it can first try to cajole
objects into choosing it as their manager. But this is not going to
work because it lacks a valid public key certificate and a private
key, and once an object finds this out, it will abort its symmetric
key establishment process with this malicious manager. Second, it
can also send commands to objects around, but without knowing a
correct symmetric key, a wrong HMAC will be generated, which
makes objects ignore its commands. Third, it can replay commands,
but similarly, an object also keeps a monotonic increasing counter
and will discard any command containing an obsolete counter value.
As for DoS attack, a malicious manager can keep sending messages
to one-hop objects to make them busy.

An external node can also behave as an object. All it can do is
keep sending messages to managers around and pretend to want
to choose them as its managers, making them busy.

If a malicious node comes from compromising a benign one and
is able to authenticate itself as a valid node, which has small proba-
bilities to happen, then it can do more harm targeting integrity than
an external one. First, if it behaves as a subject, the commands it
gives will be accepted. Facing this, using tickets of smaller sizes and
shorter lifetime can decrease the damage to some degree. Second,
if a manager is compromised, then all of its member objects will be
indirectly compromised and act as the attacker wants. Third, if an
object is compromised, the harm will be limited to itself only.

REFERENCES

[1] Amazon. 2017. AWS IoT. https://aws.amazon.com/iot/. (2017).

[2] Sergio Gusmeroli, Salvatore Piccione, and Domenico Rotondi. 2013. A capability-
based security approach to manage access control in the internet of things.
Mathematical and Computer Modelling 58, 5 (2013), 1189-1205.

[3] Samsung. 2017. SmartThings. https://www.smartthings.com/. (2017).

https://aws.amazon.com/iot/
https://www.smartthings.com/

	Abstract
	1 Introduction
	2 Design
	2.1 Bootstrapping
	2.2 Administrator
	2.3 Managers and Objects
	2.4 Command

	3 Security Analysis
	References

