
Heracles: Scalable, Fine-Grained Access Control for
Internet-of-Things in Enterprise Environments

Qian Zhou∗, Mohammed Elbadry†, Fan Ye∗ and Yuanyuan Yang∗
∗Department of Electrical and Computer Engineering, Stony Brook University

†Department of Computer Science, Stony Brook University
Email: {qian.zhou, mohammed.salah, fan.ye, yuanyuan.yang}@stonybrook.edu

Abstract—Scalable, fine-grained access control for Internet-of-
Things is needed in enterprise environments, where thousands of
subjects need to access possibly one to two orders of magnitude
more objects. Existing solutions offer all-or-nothing access, or
require all access to go through a cloud backend, greatly
impeding access granularity, robustness and scale. In this paper,
we propose Heracles, an IoT access control system that achieves
robust, fine-grained access control at enterprise scale. Heracles
adopts a capability-based approach using secure, unforgeable
tokens that describe the authorizations of subjects, to either
individual or collections of objects in single or bulk operations.
It has a 3-tier architecture to provide centralized policy and
distributed execution desired in enterprise environments, and
delegated operations for responsiveness of resource-constrained
objects. Extensive security analysis and performance evaluation
on a testbed prove that Heracles achieves robust, responsive, fine-
grained access control in large scale enterprise environments.

I. INTRODUCTION

Access control is a fundamental requirement on Internet-of-
Things [1], critical for not only convenience (e.g., lights), but
also safety of people and physical assets (e.g., door locks).
Most existing smart home products [2] offer coarse grained
all-or-nothing access: family members have full rights while
others have nothing. This is far from sufficient, especially in
an enterprise environment where tens of thousands of subjects
(i.e., employees) need to access one to two orders of magnitude
more smart objects (e.g., a university campus with 100+
buildings each embedded with hundreds of IoT devices).

The access control in such enterprise environments must be
fine-grained. Given the same object, different subjects may
have different access rights, even different degrees of freedom
invoking the same function of the object. The available access
rights may also depend on the context (e.g., time of the day).
Only executives may access the door lock, lights, projectors
in a VIP meeting room; managers may occupy a conference
room for up to half a day, while non-managers can use it for
at most two hours. A janitor may enter all these rooms for
cleaning before 9 AM, but no access to IT equipment.

To ease management, many existing solutions [3], [4], [5]
use a fully centralized strategy, at the expense of weaker
availability and responsiveness. To operate an object, a subject
sends a command to the cloud first. The cloud will authenticate
the subject and check that he has sufficient rights, then notify
the object to execute the command. This strategy places the
cloud in the center of the access control loop. It ensures
security since the cloud is well protected. However, upon

loss of connectivity, nothing is accessible. The back-and-forth
travel to the cloud may add significant latency, adversely
impacting responsiveness thus user experience.

What is truly desirable is centralized policy while distributed
execution. The policy regarding which subjects have what
access rights, to what degrees, under what contexts, should
be centrally managed. Thus it is convenient to add/remove
an employee by changing a few records in a database at the
(well-protected) backend, without making changes at a huge
amount of objects one by one. The access to objects, however,
should be distributed. When invoking a permitted function
on an object, a subject should be able to do so via direct
connectivity to the object, without detouring to other entities
including the backend. This will ensure both the availability
and responsiveness of command execution.

Unfortunately, such access control for enterprise environ-
ments has not been studied in existing work. In this paper,
we propose Heracles, an access control system that achieves
fine-grained access control, centralized policy, distributed ex-
ecution at enterprise scale. Heracles adopts a capability-based
approach where a subject requests secure, unforgeable tokens
depicting his access rights to certain objects from the backend.
Once the token is obtained, the access no longer involves the
backend. The subject includes the token in his commands to
the target object, which checks the token and commands, then
executes invoked functions. Our contributions are as follows:

• We design a 3-tier IoT access control architecture
for enterprise environments, consisting of the backend,
resource-rich objects and resource-constrained objects.
It supports fine-grained degrees of function invocation,
convenient centralized policy management and robust,
responsive distributed execution at enterprise scale.

• We compare with an alternative approach of ACL based
distributed execution, and prove that capability is prefer-
able in enterprise environments due to its higher effi-
ciency and stronger security.

• We offer solutions to two desirable features in enterprise
IoT: 1) an attribute-based access strategy for efficient bulk
operations which control a category of objects using one
command; 2) a delegation-based strategy to improve the
responsiveness of resource-constrained objects.

• We implement our design, conduct real experiments in a
testbed and thoroughly analyze its security to demonstrate
its efficiency, scalability and security.



II. MODELS AND ASSUMPTIONS

Node role. The network consists of three kinds of nodes:
backend servers, subject devices, and objects. The backend is
well protected and run by human administrators. It maintains
the profiles of registered subjects (possibly their devices) and
objects; it also stores and updates access rights.

A subject is a person and he uses a subject device (e.g.,
smartphone) to interact with objects. We assume the subject
device has communication interfaces (e.g., WiFi radios), In-
ternet connectivity to the backend, and reasonable comput-
ing/storage resources (e.g., 2.7 GHz CPU, tens of GBs of
storage are common among smartphones). An object is an
IoT device, or a “Thing”. Objects have different amounts of
resources: many are small ones with constrained hardware
(e.g., Mica2, Arduino class: smoke/presence/fire detectors,
light bulbs), while medium or large ones have space and power
for moderate hardware (e.g., Raspberry Pi class: surveillance
cameras, coffer makers, air conditioners, wall outlets). In the 3-
tier architecture, small ones are member objects, medium/large
ones are leader objects, and they are assigned different respon-
sibilities. Besides, a target is the object that a subject attempts
to operate, and it can be either a leader or a member one.
Subject devices and objects constitute a ground network.

We assume the backend, subject devices and objects are
roughly time synchronized (e.g., within tens of seconds). The
backend is well protected, and subject devices are reasonably
protected (e.g., with OS security mechanisms). We also as-
sume the backend, subject devices and leader objects have
enough computing resources to run public-key cryptography
algorithms, while member objects may be able to run them
only occasionally. Objects may have diverse communication
interfaces, e.g., besides WiFi, Bluetooth, many IoT devices use
ZigBee, Z-Wave, etc. We focus on security design above the
network layer, and assume network connectivity exists among
all nodes (e.g., via bridging devices with multiple radios), so
does multi-hop routing [6], [7] in the ground network.

We assume objects are largely static once installed. Thus the
topology of the ground network is stable except occasional
deployment changes such as addition/removal of objects. A
subject device is moving with its owner, thus mobile, but
the movement speed is usually slow (e.g., a person walking
around). We assume many objects, especially leaders, have
enough energy (e.g., main-powered like light bulbs, wall
outlets, surveillance cameras). We do not study energy-saving
techniques (e.g., duty cycling) in this paper, but they can be
applied orthogonally to battery-powered Things.

Network Scale. The network has an enterprise scale, which
has three properties that home environments do not have:

• Heterogeneous Node Property: the subjects/objects may
be classified into many (e.g., ∼ 102) categories due to
their different attributes thus access rights.

• Huge Node Amount Property: the subject/object amount
is large (e.g., 103 ∼ 104 subjects, 104 ∼ 105 objects).

• Huge Operation Amount Property: the operation amount
is large (e.g., 105 ∼ 106 operations per day).

Data caching & discovery. We assume a data caching and
discovery mechanism like PDS [8] exists. Independent data
entities (e.g., public key certificates) protected by public-key
signatures, are widely propagated and cached in the ground
network. Due to multiple copies of an entity cached in different
nodes, its discovery becomes faster and more robust.

III. DESIGN GOALS

Fine-grained access control. The system should be able to
specify under what contexts a subject is allowed to invoke on
an object what functions with what parameters. This comes
from Heterogeneous Node Property. Coarse grained all-or-
nothing access control works fine for homes, where family
members are granted full access rights while strangers nothing.
In enterprise environments, however, subjects are quite hetero-
geneous in positions, thus responsibilities and access rights.
This makes fine access control granularity necessary.

Three security goals should be achieved. Authenticity is to
ensure a party is indeed the claimed one. Integrity is to ensure
messages are not forged or altered by adversaries. It is critical
such that only legitimate parties can create valid messages to
operate objects. Freshness is that messages received are gen-
erated recently; this prevents replay attacks where adversaries
simply record and replay a previously transmitted legitimate
message, easy to perform in wireless networks.

Centralized management. The editing of node profile and
access right information should be conducted at a single
point, including adding/removing a subject/object, or a cat-
egory of subjects/objects sharing certain characteristics, and
adding/removing/changing an access right. This centralized
strategy makes the system easy to manage: one does not need
to make changes in a large amount of nodes one by one.

Execution availability and responsiveness. If the backend
is needed during command execution, a total loss of access can
happen upon machine/network failures in/to the backend. De-
spite dedicated maintenance, such failures still occur occasion-
ally in enterprise environments. We need distributed execution
such that access is still available upon such failures. Also, the
latency from command issuing by subjects to execution by
objects should be small for positive user experience.

Non-goals. We discuss strategies to alleviate the harm of
node compromise and denial-of-service attacks which waste
system resources by dumping many invalid messages, but
complete solutions are out of the scope. Physical level jam-
ming, attacks targeting routing or confidentiality/privacy are
not our research topics, neither is trust management.

IV. SYSTEM OVERVIEW

There are four main interactions in the system (Fig. 1). We
first present the design concerning leader objects only, and
introduce that for member objects in Section VII.

1) Commission. To join the system, a subject/object must
be registered at the backend out-of-band (e.g., manually by a
human administrator), which signs and issues it a private key,
a public key certificate (CERT) and a profile (PROF). The
subject/object makes its CERT/PROF propagated and cached
by nearby objects in the ground network.



Backend
• Subject info
• Object info
• Access rights

Subject

Admin
❶ commission

❸ request

❹ execute
❷ discover

Object 1

Object 2

Object 3

connectivity
interaction

Fig. 1. The backend run by the administrator maintains the profiles and access
rights of registered subjects and objects. A subject discovers objects around
him (e.g., within 2 hops), requests a ticket covering the needed access rights,
and sends a command to operate the target (e.g., air conditioner).

2) Discover. The subject device proactively discovers [8]
nearby objects by querying their CERTs/PROFs. PROFs con-
tain human-readable descriptions so the subject gains knowl-
edge of which objects provide what functions.

3) Request. The subject sends a signed request (REQ) to the
backend, asking for tokens he may use later to invoke certain
functions on certain objects. The backend authenticates his
REQ, examines the access right database, and issues a signed
ticket (TKT) carrying the requested capabilities.

4) Execute. The subject operates the target by sending a
command (CMD), which carries a TKT proving the autho-
rization for its operation. It may be forwarded [6], [7] towards
the target by multiple objects. The target checks that the CMD
is legitimate and executes the invoked function; otherwise it
rejects the CMD. A response (RES) is sent back to the subject.

V. INTERACTIONS AMONG NODES

Before presenting the details in the four interactions, we
comment a bit more on the backend. It maintains the profiles
stating the attributes of every registered subject/object, and
subjects’ fine-grained access rights to objects.

Fine-grained access constraints. Given the same object,
different subjects may be allowed for different functions, or
different parameters, time ranges, invocation counts, etc. for
the same function. A regular employee can set the thermostat
within a normal temperature range, but a repair technician may
set extreme temperatures for testing. A janitor may open all
locked doors before 8 AM for cleaning, but loses access during
business hours. An external UPS driver may get a one-time
access token to raise the storage door once to slip in packages.
Formally, a constraint is expressed as (type : ∪item), with
type indicating what to constrain (e.g. parameters) and a union
of items together specifying allowed values. An item here is
either a set (denoted as {x, y, ...}, e.g., parameter set {“on”,
“off”}) or an interval (denoted as [x y], e.g., time range [9 17]).

A. Commission

A subject must first register at the backend out-of-band.
Certain proofs (e.g., government/company issued IDs) may be
needed. Then the backend assigns him an ID, a private key, a
signed public key certificate (CERT), a signed profile (PROF),

together with the backend’s public key (Kpub
Admin). Also, the

backend adds the subject’s access rights to its database. After
loading such data into his devices, the subject publicizes his
CERT/PROF in the ground network so they are widely cached
and can be easily retrieved [8], [9] by other nodes.

An object follows a similar process. Its PROF describes: i)
which: information like ID, human-readable name, type (e.g.,
door lock), make/model, version, etc.; ii) where: information
about its location, e.g., “Light Engineering Building, Floor
2, Room 217” would distinguish those devices in a particu-
lar room/building; iii) functions: the allowed operations and
associated parameters. E.g., a lamp’s functions may include
“set brightness”, with an integer between 1− 100.

The content of PROF can be structured (e.g., in JSON,
XML) such that it can be queried. One option for the human-
readable name is a hierarchical one embedding the object’s
location, e.g., /UniversityX/EngBldg/Floor2/Room217/Light1.
Such names can optionally be used to route [7] a command
to the target for command execution (Section V-D).

B. Discover

The subject device discovers nearby objects by querying
their CERTs/PROFs. PROFs contain descriptions so both the
human and his device gain knowledge of which nearby objects
provide what functions. Our design does not enforce any
particular discovery mechanism, either an IP-based or a data-
centric one works. Data-centric caching and discovery [8], [9]
can be chosen for their data acquisition speed and robustness.

C. Request

The subject sends a request (REQ) to the backend, asking
for tokens he can use to invoke certain functions on certain ob-
jects. The backend authenticates his REQ, examines the access
right database to ensure he does have those rights, and issues
a signed ticket (TKT) carrying the requested capabilities.

ID-based and attribute-based ticket. Heracles offers both
ID-based TKTs and attribute-based TKTs, preferred in differ-
ent situations to achieve better flexibility or reduce message
overhead. An ID-based TKT specifies a set of objects by
enumerating their IDs, while an attribute-based one uses
attribute predicates to describe a category of objects sharing
certain characteristics (e.g., all lamps on Floor 2).

Fig. 2. Subject sends a REQ to the backend and gets a TKT.

S (Subject) sends a REQ (Fig. 2) including: 1) IDS : a
unique identity number of S; 2) O: the object(s) to which
S requests his access rights, either an object set (specified
by their identities IDO) or an object category (specified by
attribute predicates AttrO); 3) F : a set of functions on O to
which S requests his access rights; 4) C: a set of constraints
(e.g., parameters) on F ; 5) LIFE: the lifetime by which the
TKT expires; 6) T : a timestamp for REQ’s freshness.
T is included for defending against replay attacks. Given the

maximum time synchronization error e, the backend keeps the



hash codes of all REQs received in the recent time window
e. A REQ is considered fresh if the difference between T
and the backend’s local time is less than e, and its hash
code is not seen in the window. The backend has enough
computing/storage resources for that. Other anti-replay mecha-
nisms include: challenge-response, which requires a two-round
handshake thus significantly increasing the latency; monotonic
counters, which require a counter for each subject-object pair,
and are much easier to predict than nonces. Thus we choose
the combination of timestamps and hash codes for freshness.
[...]SIGX denotes a public-key signature generated by X for
content in brackets. SIGS and SIGAdmin protect the integrity
of REQ and TKT so they cannot be forged or altered.

Every TKT has an identity IDTKT such that it can be
referenced later in command execution (Section V-D) or ticket
revocation (Section V-F) – without presenting the whole TKT.
This improves efficiency and responsiveness. An access right
stored in the backend also has an identity IDAR, carried by
every TKT generated based on this access right. This ID is
required for an attribute-based TKT but not for an ID-based
one. IDAR is used for referencing and revoking all TKTs
depicting a certain access right efficiently (Section VI).

D. Execute

The subject sends a command (CMD) to the target to
invoke some function. The CMD might be relayed by multiple
objects towards the target using a routing protocol [6], [7].
The target verifies the CMD and if legitimate, it carries out
the invoked function; otherwise it rejects the CMD. In both
cases a response (RES) is sent back.

ID-based and attribute-based command. An ID-based
CMD carries an ID-based TKT and targets a set of objects,
while an attribute-based one carries an attribute-based TKT
and targets a category of objects. An attribute-based CMD is
used for a bulk operation (see details in Section VI).

Fig. 3. Subject sends a CMD to the target and gets a RES.

S (Subject) sends a CMD (Fig. 3) including: 1) IDCMD: a
random, unique identity number of this CMD; 2) O: the target,
expressed as either IDO or AttrO; 3) F , P : the functions and
parameters that S attempts to invoke on O; 4) TKT : the ticket
(Fig. 2) proving the authority of S to invoke F , P on O; 5)
T : a timestamp for CMD’s and RES’s freshness; 6) State,
Data: execution error code and return data.

When an object receives a CMD, it will find out if it is
a target by comparing its ID (if the CMD is ID-based) or
attributes (if attribute-based, and recall that an object knows
its attributes from its PROF) with the CMD’s O. The command
execution is asynchronous so a subject device does not block
on any single CMD. Here the same IDCMD is used in CMD
and RES so the subject device knows which RES corresponds
to which CMD, and may take further actions for those CMDs
getting no RESs (e.g., retransmission). The operation part

(O,F, P ) must be a subset of the access rights depicted by
TKT to pass authorization check conducted by the target.

The freshness of CMD/RES is protected in a similar way
to REQ. But here IDCMD effectively serves as a nonce and
is kept in the recent time window e, and computing a hash
value is no longer needed. As long as the time synchronization
protocol can achieve a reasonable e (e.g., tens of seconds), the
number of remembered IDCMDs will not be many. SIGS and
SIGTarget protect the integrity of CMD and RES.

E. Comparison with existing work

Distributed execution. Our design is in contrast to cloud
centric approaches [3], [4], [5] where the backend is needed
in command execution. In such systems a machine/network
failure results in total loss of access, and it has much more
serious impact in enterprise environments than homes because
of the former’s Huge Operation Amount Property. E.g., in
a university campus, even a one-hour network fault in one
building would cause thousands of access fail. We have
tickets carry the requested authorizations, thus a subject can
continue operating objects till the tickets expire (e.g., a few
hours), hopefully by then the network/server failure has been
resolved. Only the first ticket request involves back-and-forth
communication to the backend. Subsequent commands are sent
directly to objects, which greatly improves responsiveness.

Capability-based. Some existing work [10], [11] adopts
distributed execution but is based on ACL. Others [12], [13],
[14] use capability but lack insights on the tradeoffs with ACL.
Here we prove capability is preferred to ACL in enterprise en-
vironments for its higher efficiency and security. Many times,
a synchronization message must be sent to each affected object
immediately after the administrator edits the backend database.
The message may tell the object to add/remove certain access
rights in its ACL (if ACL based), or to revoke certain tickets (if
capability based), and we define sync overhead as the number
of affected objects, which should be minimized to ensure fast
convergence and compliance after such changes, otherwise
denied or compromised access may happen.

Compared with ACL, capability is able to eliminate sync
overhead in many cases, reduce overhead by one to two orders
of magnitude, or at least keep comparable overhead in other
cases. In contrast, most administrator operations lead to large
sync overhead in an ACL system. Due to space limit, we
briefly summarize that a capability one: 1) eliminates overhead
in subject/object/access right addition. E.g., upon a subject
who has access rights to N (102 ∼ 103) objects is added
to the database, all N objects in an ACL system need to
be notified immediately and update their ACLs. While in a
capability system, they do not need to do anything. The subject
will discover available objects and request only access rights
he has and is about to use on demand; 2) reduces overhead by
one to two orders of magnitude in subject/ID-based access
right removal. In ACL systems all affected objects must
remove respective ACL entries, while in capability ones, only a
small number of objects that have unexpired tickets containing
removed rights must be notified, which is usually a small



fraction (10−2 ∼ 10−1); 3) keeps comparable overhead facing
object/attribute-based access right removal.

A capability system is more efficient and secure due to
its remarkably smaller sync overhead. In most cases ACL
needs many more objects to be contacted by the backend
within a short time. This inevitably leads to more failed or
delayed updating, thus denied or compromised access: those
for addition operations make subjects’ authorized operations
rejected, and those for removal operations make subjects’
revoked operations accepted.

Local discovery. Some smart home products [15] rely on
the backend to give the subject a list of all installed objects and
provided functions. Huge Node Amount Property of enterprise
environments makes it infeasible and unnecessary to know all
the objects. Instead, the subject is interested in mostly those
around him. Caching and discovery mechanisms (especially
data-centric ones [8]) can find them out quickly and robustly.

F. Ticket Revocation
A subject may lose authorization he once had (e.g., being

discharged, moved to different positions). Thus outstanding
TKTs carrying unexpired access rights must be revoked.

To this end, the backend must keep all outstanding TKTs
it has issued before their expiration times. Given any change
in access rights, it must examine and identify those carrying
invalid but unexpired authorizations. It generates a signed
ticket revocation message (REV), which can have two forms.
The first form includes the IDs and expiration times of all
TKTs to be revoked. The REV is publicized and widely cached
among nodes. Objects will add the IDs, expiration times of
revoked TKTs to their local ticket revocation lists (TRL). Upon
expiration (actually slightly later, at least e after expiration) a
revoked TKT’s ID will be removed from the TRL. To avoid
whole-network propagation of a REV affecting only a few
TKTs and objects, the backend may send the REV to those
objects and their vicinity only. Any CMD referencing a TKT
whose ID is in the TRL will become invalid. The second form
is for attribute-based TKTs only, see details in Section VI.

Fig. 4. The backend sends a REV (the 1st form) to Object.

VI. BULK OPERATIONS

A bulk operation uses a single command (CMD) to operate a
possibly large group of objects with common characteristics. It
is common in enterprise IoT. E.g., a student uses one CMD to
turn off all devices in his lab when leaving work, or a manager
uses one CMD to trigger all alarms in his building to notify
people to evacuate, or a janitor turns off all lights on a floor
when finishing a night tour. An attribute-based CMD achieves
the goal, using two attribute predicates: 1) In the ticket (TKT)
referenced by the CMD, one predicate O specifies the object
category to which the subject has access rights; 2) In the CMD,
the other predicate O specifies the object category that the
subject attempts to operate, i.e., the targets.

A primitive predicate is a triple (attribute, operator,
value), and possible operators in our system include: =

, 6=, <,>,≤,≥,∈. A complex predicate consists of multiple
primitive ones combined in logic AND ∧, OR ∨, NOT ¬, etc.
A simple form is to use logic AND only. E.g., “all windows in
Room 217” can be expressed by {type = window ∧ room =
217}. We implement this design and the support for other
forms can be added if necessary.

A bulk operation CMD can be propagated among peer
devices directly. This is suitable when targets are within a
small or medium scope, e.g., one or a few rooms, floors. Such
a CMD is forwarded by an object to its neighbor objects, hop
by hop till the CMD reaches every possible target. This P2P
strategy does not rely on backend connectivity, and achieves
better execution robustness and responsiveness. When target
objects are spread over large areas (e.g., in another building),
hop-by-hop routing may be slow or even unavailable. Thus the
CMD can be sent via the backend directly to the destination
or its vicinity, and then propagated among peers.

Message overhead. An ID-based CMD can also be used
for bulk operation if its TKT enumerates all target IDs, but
it is short, efficient, only when including small numbers of
objects. Since its size grows linearly as more object IDs are
enumerated, the TKT may become too large, incurring large
overhead and long latency in operation. Besides, when a new
object is added, a new TKT must be requested to include its
ID. On the contrary, an attribute-based one has a fixed size
and can be used to access new, previously unknown objects.

Ticket revocation. An attribute-based TKT can be revoked
by both forms of revocation messages (REV): when the
number of TKTs to be revoked is small, we use the first
form (Section V-F) referencing IDTKT s; when an attribute-
based access right is removed from the backend, the number of
affected TKTs may be large (e..g, ∼ 103) because the access
right may have been requested by many subjects in a category,
thus enumerating IDTKT s is inefficient. In this case IDAR

is referenced to revoke all TKTs carrying the access right.

Fig. 5. The backend sends a REV (the 2nd form) to Object.

VII. LEADER AND MEMBER BINDING

Due to the abundance of medium or large objects with
sufficient power and resources in enterprise environments,
we leverage them to create a hierarchical structure where
leader objects form the “backbone” while member objects
associate with them as “leaves”. The leaders will handle those
frequent, compute or energy intensive responsibilities (e.g.,
public-key cryptography, message forwarding) on behalf of
their members. A member depends on its leader(s) to receive
and verify commands from subjects, and forward responses
back to them. This design allows us to leverage more powerful
Things to serve less capable ones. The interactions are:

Commission. A member object follows almost the same
register process at the backend as a leader one, except that its
name in the profile (PROF) may not reflect its location. The
reason is a member object, usually small and free of wired
power supply, has a higher chance of being moved. Thus it



is better not to carry its location in its PROF such that the
backend does not have to issue a new PROF often. Instead,
we obtain its location by checking which leader it is using.

Bind. Each member object must “bind” to at least one leader
object. A member object broadcasts messages seeking leaders
from one-hop neighbors, and leader objects that are willing
to accept more members will respond. The member object
chooses one or multiple as its pre-leader(s) (e.g., based on
RSSI) and starts to establish a shared secret and generate a
binding notification (BIND). The BIND reveals the member
object’s location: it tells which leader(s) the member object
associates with, thus should be used as the destination when
sending commands to operate the member. Its format is
[[IDBIND, L,M,LIFE, V ]SIGM ]SIGL, where IDBIND,
L, M , LIFE, V denote the BIND’s ID, leader’s ID, member’s
ID, BIND’s expiration time and version number. An unexpired
BIND will be overridden by another BIND with the same L
and M but a higher version. It is generated and signed by
the member, then sent to, signed and publicized by the leader.
This nested double signing prevents a leader or member from
unilaterally publicizing a forged bilateral relationship.

Fig. 6. Member and Leader establish a shared secret and generate a BIND.

Our message flow of shared secret establishment and BIND
generation is given in Fig. 6, and it is inspired by the design of
TLS handshake [16]. ECC-based TLS supports multiple key
exchange algorithms, with many parameters configurable (e.g.,
elliptic curves, point formats). By fixing the key exchange
algorithm at ephemeral ECDH and other parameters (e.g.,
ECDSA on curve secp224r1 for signing), we reduce the num-
ber of messages to three, while generating BIND concurrently.

After receiving the member’s nonce NM , the leader gener-
ates an exchange message (EXCH): [NM , NL,KML]SIGL,
where NL, KML denote the leader’s nonce and key material
(an ECDH public key). Then the member sends its EXCH,
[NL,KMM , IDBIND]SIGM , together with a BINDM (a
BIND signed by M only). Both EXCHs are signed for
protecting authenticity, integrity, and the sender’s CERT is
attached such that the receiver can verify the signature. NM ,
NL are used in challenge-response, for freshness. The leader
and the member use each other’s key material to compute
the shared secret, and use a key derivation function (e.g.,
HKDF [17]) to convert the secret to a session key suitable for
use in authentication. Besides, the leader signs the BINDM to
get a complete BIND. Member objects launch this handshake
periodically (e.g., a few times a day) and when their leaders
change, to update session keys and binding relationships.

Discover & Request. A leader publicizes its members’
CERTs/PROFs in the ground network. Then discovering a
member object and requesting a ticket (TKT) for it becomes
exactly the same as dealing with a leader object.

Execute. When a leader receives a command (CMD), it will
find out if it or its member is a target by comparing their IDs

(if the CMD is ID-based) or attributes (if attribute-based) with
the CMD’s O. If the target is its member, it will check if the
CMD is legitimate and if so, send to the member an adapted
CMD (Fig. 7) with the same IDCMD, F , P , T , protected by
a message authentication code (MAC) generated from their
session key. The MAC ensures authenticity and integrity, and
the freshness check is done similarly. The leader replaces the
public-key signature with a MAC because it has much more
resources to conduct those compute and energy intensive work
(i.e., verifying public-key signatures). The member only needs
to verify MACs, which incurs much less time and energy.

Fig. 7. Leader sends an adapted CMD to Member and gets a RES.

VIII. SECURITY ANALYSIS

We show in this section how our system reacts to possible
attacks in all interactions but commissioning (it is assumed
to be a secure out-of-band process). The system resists well
to attacks from external adversaries that target authenticity,
integrity, freshness. Besides, we discuss strategies to alleviate
the harm of node compromise and DoS attacks which flood
invalid messages, but complete solutions are out of the scope.

We classify attacks based on the malicious node’s source,
role and target: 1) source: the malicious node can be from
external, or it is a once benign node in the network but
now compromised (e.g., a smartphone is stolen or its private
key gets leaked), which we call internal attacks; 2) role: the
malicious node may behave as a subject device, leader object,
member object; 3) target: the possible security properties to
attack include authenticity, integrity, freshness, availability.

Discover. External leader, member objects may pose as
benign ones by propagating profiles (PROF), waiting for
subjects to discover and later execute commands (CMD) on
them. Because they do not have properly signed PROFs, it is
easy to detect and drop them. Internal ones, however, are able
to entice subjects to operate them, thus collecting information
about the subjects’ locations, operation behaviors, etc. Such
privacy issues are beyond the scope.

Bind. An external leader object may cajole benign member
objects into choosing it as their leader and then manipulate
them. But it has no private key or public key certificate
(CERT) assigned by the administrator, and cannot accomplish
the handshake for shared secret establishment and binding no-
tification (BIND) generation. For the same reason, an external
member object will fail in finding a leader. To the contrary,
a malicious internal leader object is able to recruit benign
members. A member object can have multiple leaders (only
one is active at a time) and change the active one from time to
time, reducing the probability of accepting malicious CMDs.
Similarly, a malicious internal member object can associate
with benign leaders, but it cannot cause much harm beyond
itself. Besides, a malicious internal leader object may publicize
fake BINDs, but our double signing strategy foils that.



Request. An external subject device cannot succeed in
requesting tickets (TKT) due to the lack of a valid private key,
thus signatures. A replayed request will fail due to the protec-
tion of timestamp and hash code. A malicious internal subject
device can sign properly, thus request TKTs successfully. We
may use extra mechanisms (e.g., operation behavior analysis)
on the backend to detect compromised subject devices. Once
detected, the subject device will not be issued new TKTs, and
the TKTs it has obtained will be revoked.

Execute. An external subject device’s forged/altered CMDs
will not get accepted by leader objects due to the protection
of signatures, neither will its replayed ones because we have
timestamp and nonce jointly for resistance. The node may keep
sending invalid CMDs to waste resources of benign nodes. To
mitigate this harm, we may ask intermediate relaying nodes to
examine CMD integrity/freshness (originally such checks are
conducted by the target only). This en-route checking drops an
invalid CMD before it travels far, reducing the attack range.

An external node may mimic a leader object. Its CMDs to
member objects will be found illegitimate for either wrong
message authentication codes or being obsolete. As for DoS
attacks, the malicious leader object may send large amounts of
invalid CMDs to member objects around, attempting to drain
their batteries. A member object may regard being awakened
too often as abnormality and report it to the administrator,
who will take further countermeasures. Similarly, an external
member object will fail in making its forged/altered/replayed
responses (RES) accepted by a leader object. Note that usually
a leader object has sufficient energy from wired power supply
and does not have the dead battery problem, but a similar
detection strategy can be applied to notify the administrator.

A malicious internal subject device could get its CMDs
executed, attacking authenticity, integrity successfully. Faced
with such situations, the backend can issue subject devices
TKTs of constrained access rights and short lifetimes to
alleviate the damage to some degree. The attacker, though
having compromised the subject’s identity, can only exert the
access rights offered by the TKTs stored in the device. Thus
the less capable the TKTs are, the less harm the attacker
can do. The attacker may try requesting more TKTs, but as
mentioned, the backend may detect and reject it.

If a leader object gets compromised, all of its members will
be indirectly compromised and execute the attacker’s CMDs.
But as mentioned, a member object may keep switching from
one leader to another, reducing the amount of malicious CMDs
it receives. As for a malicious internal member object, it is
under control of the attacker. Possibly, its leader may detect
its abnormality, e.g, finding it does not follow a legitimate
CMD, and then inform the administrator.

IX. EXPERIMENTAL EVALUATION

We have implemented our prototype including three compo-
nents of Heracles: the backend, subject devices, leader objects.
The backend program runs in a server machine. We use Google
Nexus 6 (2.7 GHz CPU, 3 GB RAM) as subject devices, and
deploy 5 leader objects in a large room to construct a group

network with diameter of 3 hops, each leader object emulated
by a Raspberry Pi 2 (900 MHz CPU, 1 GB RAM).

Different radios can be used, as long as network connectivity
and routing exist. The subject device requests tickets (TKT)
from the backend over TCP, while communicating with a one-
hop leader object (for object discovery, command execution)
over UDP unicast due to its lower overhead. As for interactions
between leader objects, UDP unicast is used for delivering ID-
based commands (CMD) and broadcast is used for attribute-
based CMDs. All responses (RES) come back over unicast.

We evaluate signature operation time cost, TKT/CMD mes-
sage overhead, command execution latency. Note that evalu-
ation results like latency depend significantly on factors like
the radio, routing protocol and cryptography algorithm/library
chosen in implementation. Thus the performance should not
be interpreted literally, but rather revealing the likely ranges
or magnitudes. In fact, we are in progress of upgrading our
testbed to the next version with less latency and overhead.
We will briefly describe the efforts and some prelim results.
Although our design targets enterprise IoT, the small testbed
can still tell us the latency and message overhead for command
execution. This is because most users will be controlling
devices nearby, thus a CMD seldom travels more than a few
hops. For rare cases of distant targets (∼ 10 hops), the CMD
can be routed via the backbone Internet for better resilience.

A. Signature operation time cost

We test RSA/ECDSA signing/verification time on leader
objects and subject devices, using cryptography library
Crypto++ [18] and AndroidOpenSSL respectively. Each test
message is 1 KB, a common CMD length. Compared with
RSA, ECC offers similar security at smaller key size [19].
Fig. 8 (a) shows the time cost of ECC160 and RSA1024, which
have similar strength, and we notice RSA has acceptably
slower signing but significantly faster verification than ECC.
ECC160 on subject devices is not supported by the library thus
not shown. Other libraries for Android are found less efficient.
E.g, Spongy Castle [20] costs 51 ms for ECC160 verification.

Exactly which signature algorithm and key size to pick
is orthogonal to our design, but in the testbed we choose
RSA1024 for its fast verification. This feature is beneficial to
en-route checking, where a CMD is signed once but verified
for multiple times. Though RSA1024 leads to a 88-byte longer
signature than ECC160, that extra overhead is less remarkable
considering that a CMD is usually close to 1 KB or longer.

B. Ticket/Command message overhead

By comparing the length of TKTs/CMDs which are either
ID- or attribute-based in two real cases, we prove the two are
preferable in different scenarios: ID-based TKTs/CMDs are
more efficient in scenarios with small amounts of objects in
various categories, while attribute-based ones work better for
bulk operations that target large amounts of objects in a few
categories. The types and amounts of all objects below are
from a field study on our engineering building on campus,
which has two floors, with 32 offices/labs on the first, and 36



Sign Verify
0

2.5

5

7.5

10

12.5

15
T

im
e
 C

o
s
t 

(m
s
)

ECC, object

RSA, object

RSA, subject

(a) Signature operation time cost

S-ID S-Attr A-ID A-Attr
0

500

1000

1500

2000

2500

3000

L
e
n

g
th

 (
b

y
te

)

TKT access right

TKT signature

TKT others

CMD signature

CMD others

(b) Message overhead

1 2 3

Hop (S-ID)

0

20

40

60

80

L
a
te

n
c
y
 (

m
s
)

1 2 3

Hop (A-Attr)

0

50

100

150

200

250

300

(c) Execution latency

0 1 2 3

Hop

0

50

100

150

200

250

M
e
a
n

 L
a
te

n
c
y
 (

m
s
)

S-ID

A-Attr

(d) Mean execution latency

Fig. 8. S-ID: Student Case, ID-based; S-Attr: Student Case, attribute-based; A-ID: Admin Case, ID-based; A-Attr: Admin Case, attribute-based.

on the second. A medium office/lab is used as a representative
which has 6 ceiling lights, 8 desk lamps, 5 computers, 1 door,
3 windows, 1 alarm and 6 other devices. Totally, there are
approximately 30 objects each room and 2040 objects in this
building, excluding those in restrooms, lobbies or corridors.

Student Case. A student requests a TKT in the morning for
certain objects installed in his lab, for the functions he knows
he will probably use this day. There are 8 objects included:
2 ceiling lights, 2 desk lamps, 1 door, window, coffee maker,
air conditioner. This TKT is a representative covering a few
objects in quite different categories, and later the subject will
usually use it to operate a single object at a time.

Admin Case. An administrator requests a TKT for all
408 lights and 68 alarms in this building. This TKT is a
representative covering great amounts but limited categories
of objects and will be used for bulk operations. E.g., he uses
it to trigger all alarms and turn on all lights to evacuate people
from the building when an emergency occurs.

Fig. 8 (b) shows the length of ID- and attribute-based
TKT/CMD for both cases. len(CMDAttr)/len(CMDID) is
130% in Student Case and 23% in Admin Case. Except A-
Attr, the access right (i.e. O, {F,C}, denoted as AR) part
is the largest component in a TKT/CMD and it affects the
overhead. len(ARAttr)/len(ARID) is 158%, 6% in Student,
Admin Case. Student Case has only 8 objects, thus simply
enumerating their IDs leads to a shorter O and AR. Admin
Case has 476 objects but only 2 types (lights, alarms), and it
is more efficient to describe O with attribute predicates.

C. Command execution latency

We test the time difference between a CMD’s issuing and
its RES’s receiving for ID-based CMD in Student Case and
attribute-based CMD in Admin Case. The latency mainly
results from CMD signing (by subject device), CMD/RES
transmission and RES signing (by target). Other time cost like
signature verification, message encoding/decoding is short.

As is shown in Fig. 8 (c) (d), the execution latency of
ID-based CMD increases fairly linearly with hop counts,
while that of attribute-based CMD rises faster (but linearly)
after the 1st hop. This is because UDP broadcast is used in
implementation for attribute-based CMD propagation among
objects, and it is slower than unicast used by subject-object

communication (the 1st hop) and ID-based CMD propagation
among objects. Also note that the time cost of an attribute-
based CMD has larger fluctuation because a broadcast packet
will be hold by the access point (AP) till the current Beacon
Interval runs out and then forwarded. The latency can be
reduced by setting the interval smaller. In Student Case, the
access to a 3-hop target can be accomplished within 55 ms. In
Admin Case, an attribute-based bulk operation costs about 208
ms (mainly due to the Beacon Interval) to operate all targets
within 3 hops. Both cases have good responsiveness.

D. Testbed upgrade in progress
We briefly describe our testbed upgrading efforts for faster,

more efficient cryptography libraries and networking proto-
cols, and the details will be reported in our future work. 1)
We expand the number of leader objects from 5 to 20, each
emulated by a Raspberry Pi 3. Every subject device and leader
object has simultaneous AP connectivity (to the Internet and
backend) and WiFi Direct connectivity (for peer object discov-
ery, command relay). In this way subject devices and leader
objects can all interact directly, while being monitored and
controlled by the backend simultaneously. 2) We implement
member objects using Arduino Mega 2560 and apply a lighter-
weight cryptography library micro-ecc [21]. A member object
uses a low power radio (e.g., Bluetooth) to talk with a leader
one, and it takes about 17 s for them to finish binding when
using curve secp224r1 for ECDH and ECDSA. The time cost
is acceptable, since session keys and binding notifications are
updated infrequently (usually once or a few times a day).

X. RELATED WORK

ACL and capability are two common forms of access con-
trol [22], with their differences in computer systems analyzed
in [23]. Access control policies include discretionary, manda-
tory, role based ones. Attribute based access on encrypted data
in cloud [24] is explored using attribute based encryption [25].

Exiting smart home products have mostly all-or-nothing
access control [2], [3], [15]. Recent work provides access
control based on subject-object pairs using hierarchical data
names [10], or extensions on time by abstracting smart objects
as peripherals to a computer [26]. They are intended for tra-
ditional computer systems/cloud, targeting small scale homes,
or providing coarse grained, basic ACL based access control.



Many approaches [3], [4], [5] use centralized execution
strategies for secure access, and all access must go through the
cloud for enforcing authorization policies, at the expense of
weaker availability and responsiveness. Kerberos [27], which
has been widely adopted by industry, realizes distributed
authentication by granting parties tickets that prove their
identities. It does not deal with access rights.

There are a few capability-based IoT access control de-
signs [12], [13], [14], but they lack deep justification proving
capability’s advantage over ACL at enterprise scale. Also, they
do not support efficient bulk operations. Besides, none of them
offers complete design, implementation and evaluation.

XI. DISCUSSION

A bulk operation CMD is usually propagated with a scope
control mechanism to avoid blind flooding. One solution is to
use filters based on object locations. E.g., a CMD with attribute
predicate {type = lamp ∧ floor = 2} targets the objects on
Floor 2 only, and an object should not forward the CMD to
objects out of the scope (e.g., Floor 1, 3). It is easy to realize
if an object maintains the location information of its neighbors
(e.g., location based names in data-centric networks [8]).

Our design protects authenticity, integrity and freshness
but does not ensure TKT/CMD content confidentiality. The
content is not encrypted, thus adversaries may find out one’s
access rights, intended operations, which could be sensitive.
Given that each subject/object has a public-private key pair,
establishing symmetric keys to encrypt conversations is feasi-
ble. We leave the complete solution as future work.

In the current system, subjects see the same PROF of an
object even though they have very different access rights.
If a PROF contains sensitive information (e.g., functions for
VIPs’ exclusive use), it should not be disclosed to subjects
without appropriate levels. In the future we will make PROFs
customized such that subjects discover different versions for
the same object and gain only the knowledge allowed.

Leader objects can conduct en-route checking to alleviate
DoS attacks that flood fake messages. Under normal conditions
when attacks do not happen, en-route checking can be disabled
to save computation, energy and time. If a target leader detects
attacks, it may send an alarm message notifying other leader
objects in vicinity to switch on en-route checking.

XII. CONCLUSION

In this paper, we describe the design, implementation, evalu-
ation of Heracles, which achieves efficient, robust, fine-grained
access control for enterprise scale IoT. Heracles uses secure,
unforgeable tokens to describe the authorizations granted to a
subject. Besides, it supports responsive operations on resource-
constrained objects and efficient bulk operations. Our analysis
and performance evaluation prove its robustness, responsive-
ness and fine granularity in enterprise environments.

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation under grant numbers CCF 1652276, CNS 1513719
and CNS 1730291.

REFERENCES

[1] J. Greenough and J. Camhi, “The Internet of Things: examining how
the IoT will affect the world,” BI Intelligent, Tech. Rep., 2015.

[2] B. Ur, J. Jung, and S. Schechter, “The current state of access control
for smart devices in homes,” in Workshop on Home Usable Privacy and
Security (HUPS), 2013.

[3] SmartThings, “SmartThings Developer Documentation,”
https://media.readthedocs.org/pdf/smartthings/latest/smartthings.pdf.

[4] Amazon, “AWS IoT Developer Guide,”
http://docs.aws.amazon.com/iot/latest/developerguide/iot-dg.pdf.

[5] IBM, “Meet Watson: the platform for cognitive business,”
http://www.ibm.com/watson/ .

[6] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance
vector (aodv) routing,” Tech. Rep., 2003.

[7] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang,
“Nlsr: named-data link state routing protocol,” in Proceedings of the 3rd
ACM SIGCOMM workshop on Information-centric networking. ACM,
2013, pp. 15–20.

[8] X. Song, Y. Huang, Q. Zhou, F. Ye, Y. Yang, and X. Li, “Content
centric peer data sharing in pervasive edge computing environments,” in
Distributed Computing Systems (ICDCS), 2017 IEEE 37th International
Conference on. IEEE, 2017, pp. 287–297.

[9] Y. Huang, X. Song, F. Ye, Y. Yang, and X. Li, “Fair caching algorithms
for peer data sharing in pervasive edge computing environments,” in
Distributed Computing Systems (ICDCS), 2017 IEEE 37th International
Conference on. IEEE, 2017, pp. 605–614.

[10] W. Shang, Q. Ding, A. Marianantoni, J. Burke, and L. Zhang, “Securing
building management systems using named data networking,” IEEE
Network, vol. 28, no. 3, pp. 50–56, 2014.

[11] N. Ye, Y. Zhu, R.-C. Wang, and Q.-m. Lin, “An efficient authentication
and access control scheme for perception layer of internet of things,”
2014.

[12] J. L. Hernández-Ramos, A. J. Jara, L. Marin, and A. F. Skarmeta,
“Distributed capability-based access control for the internet of things,”
Journal of Internet Services and Information Security (JISIS), vol. 3, no.
3/4, pp. 1–16, 2013.

[13] P. N. Mahalle, B. Anggorojati, N. R. Prasad, and R. Prasad, “Identity
authentication and capability based access control (iacac) for the internet
of things,” Journal of Cyber Security and Mobility, vol. 1, no. 4, pp.
309–348, 2013.

[14] S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-based security
approach to manage access control in the internet of things,” Mathemat-
ical and Computer Modelling, vol. 58, no. 5, pp. 1189–1205, 2013.

[15] Apple, “Homekit,” https://developer.apple.com/homekit/.
[16] S. Blake-Wilson, B. Moeller, V. Gupta, C. Hawk, and N. Bolyard,

“Elliptic curve cryptography (ecc) cipher suites for transport layer
security (tls),” 2006.

[17] H. Krawczyk and P. Eronen, “Hmac-based extract-and-expand key
derivation function (hkdf),” 2010.

[18] Crypto++, https://www.cryptopp.com.
[19] M. Qu, “Sec 2: Recommended elliptic curve domain parameters,” 1999.
[20] Spongy Castle, http://rtyley.github.io/spongycastle/.
[21] micro-ecc, https://github.com/kmackay/micro-ecc.
[22] R. S. Sandhu and P. Samarati, “Access control: principle and practice,”

IEEE communications magazine, vol. 32, no. 9, pp. 40–48, 1994.
[23] M. S. Miller, K.-P. Yee, J. Shapiro et al., “Capability myths demolished,”

Technical Report SRL2003-02, Johns Hopkins University Systems Re-
search Laboratory, 2003. http://www. erights. org/elib/capability/duals,
Tech. Rep., 2003.

[24] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and
fine-grained data access control in cloud computing,” in Infocom, 2010
proceedings IEEE. Ieee, 2010, pp. 1–9.

[25] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings
of the 13th ACM conference on Computer and communications security.
Acm, 2006, pp. 89–98.

[26] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu, and
P. Bahl, “An operating system for the home,” in Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12), 2012, pp. 337–352.

[27] B. C. Neuman and T. Ts’o, “Kerberos: An authentication service for
computer networks,” IEEE Communications magazine, vol. 32, no. 9,
pp. 33–38, 1994.


