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Abstract—Recently, there have been a growing number of ap-
plications that power wireless sensor networks (WSNs) by wireless
charging technology. Although previous studies indicate that wireless
charging can deliver energy reliably, it still faces regulatory chal-
lenges to provide high power density without incurring health risks.
In particular, in clustered WSNs there exists a mismatch between
the high energy demands from cluster heads and the relatively low
energy supplies that wireless charging can provide. Fortunately, solar
energy harvesting can provide high power density which is also
risk-free. However, it is subject to weather dynamics. Therefore,
in this paper, we propose a hybrid framework that combines the
two technologies - cluster heads are equipped with solar panels to
scavenge solar energy and the rest of nodes are powered by wireless
charging. First, we study a placement problem on how to deploy solar-
powered cluster heads that can minimize overall cost and propose a
distributed 1.61(1+ ϵ)2-approximation algorithm for the placement.
Second, we establish an energy balance in the network and explore
how to maintain such balance when sunlight is unavailable. Third,
we consider combining wireless charging and mobile data gathering
in a joint tour in such networks, and propose a polynomial-time
scheduling algorithm. Our extensive simulation demonstrates that
the hybrid framework can reduce battery depletion by 20% and
save system cost by 25% compared to previous results.

Keywords-Wireless sensor networks, solar energy harvesting, wire-
less charging, mobile data gathering, facility location problem.

I. INTRODUCTION

Wireless charging technology is a promising solution to meet
the prevalent energy needs from mobile electronics to low-power
devices. Its application in wireless sensor networks (WSNs) has
been studied extensively recently [1]–[4]. By launching wire-
less energy transmitters on mobile chargers (MCs) [1], [2] or
at strategic locations [3], sensors can be charged conveniently
without wires or plugs. In [1], optimization of wireless charging
and mobile data gathering is studied by combining the two
functions on a single MC. The work of [2] further considers
MC’s recharge capacity and nodes’ lifetimes. In [3], wireless
chargers are deployed at strategic locations for maximum cov-
erage. Although wireless charging is a promising technique that
can power hundreds of nodes reliably, rising energy demands in
the network also increase the risks of electromagnetic exposure
[4]. As a result, energy transmitters must comply with standards
from Federal Communication Commission (FCC) and limit their
emitting power to human-safe power density (1mW/cm2 [5]).
Nevertheless, nodes at data aggregation points (such as cluster
heads in a clustered WSN) usually consume very high energy
(10 − 100mW ) due to data traffic. Thus limiting transmission
power at wireless chargers can easily cause battery depletion and
network interruption on such nodes.

Meanwhile, to find a way that is risk-free but has much higher
power density, another competitive technique called environmental
energy harvesting has been considered. As shown in [6], among a
variety of harvesting techniques, solar harvesting through photo-
voltaic conversion enjoys the highest power density (15mW/cm2),
which is renewable and risk-free. In practice, a solar panel
commensurate with sensor’s size is sufficient to meet the energy
demands of cluster heads. However, availability of sunlight is
subject to dynamics from the environment. Not only weather
conditions would have a direct impact on the harvesting rates, but
also a series of spatial-temporal factors such as sunrise, sunset
times, locations and their surroundings would affect deployment
decisions of harvesting sensors.

After realizing both technologies have their pros and cons,
in this paper, we propose a hybrid framework to combine their
advantages and overcome their drawbacks. In the new framework,
a majority of nodes are wireless-powered nodes (WNs) because
charging coils can be cheaply manufactured from copper wires.
On the other hand, due to relatively higher manufacturing and
deploying costs, a small number of solar-powered nodes (SNs)
are responsible for aggregating data. Normally, a fleet of MCs
roam over the field to resolve recharge requests from WNs and
collect data from SNs. In contrast to WNs, energy on SNs from
the ambient source is self-sufficient. This scheme realizes effective
energy replenishment at cluster heads so that they can complete
high volume of data transmissions. Meanwhile, the rest of WNs
can be recharged by MCs on demand. The hybrid framework
raises several new challenges. First, how many SNs are needed
and where should we deploy them such that the total cost is
minimized? Second, how to guarantee robustness of the network
when sunlight is unavailable (e.g., cloudy/raining days)? Third,
how to schedule the MCs to complete wireless charging and data
gathering in the same tour? Can we further optimize system cost
compared to the previous approach in [1]?

To answer these questions, in this paper we first study a
placement problem in discrete sense where SNs are deployed
at known WN locations. We formulate it into a facility location
problem [9]–[12] to minimize the total cost of packet routing and
node deployment. Due to its NP-hardness, we use the primal-
dual method to develop a distributed 1.61(1+ϵ)2-factor algorithm
suitable for WSN applications based on the centralized paradigm
in [11]. We also demonstrate how our algorithm can adapt to
seasonal variations of sunlight. Second, we theoretically analyze
network energy balance and propose a method to maintain such
balance during cloudy/raining days. We find that using a smaller
cluster size is effective to reduce energy consumptions and propose
a distributed algorithm to appoint some selected WNs as tempo-
rary cluster heads until solar energy becomes available. Finally, we
optimize MCs’ routes for the joint wireless charging and mobile
data gathering problem. Different from [1] in which MCs visit
exact node locations, we point out that for data gathering, it is only
necessary for MCs to move into SN’s transmission range. Based on
this observation, we propose a polynomial time route improvement
algorithm that can take shortcuts through SN’s neighborhood for
additional cost saving.

We make several contributions in this paper. First, we propose
a hybrid framework to overcome the disadvantages of wireless
charging and environmental harvesting techniques. To the best of
our knowledge, this is the first work considering WSNs based on
hybrid energy sources. Second, we formulate the SN placement
problem into a facility location problem and propose the first
distributed 1.61(1+ϵ)2-factor approximation algorithm for sensor
applications. Third, we find a way to maintain network robustness
by reducing energy consumptions. Fourth, we propose a route
improvement algorithm that saves an extra 25% moving energy
on MCs and surpasses the algorithm in [21] by additional 5%.
The algorithm can also be used in a general setting for the
Traveling Salesmen Problem with Neighborhood (TSPN) and
provide solutions very close to the exact solutions found by
exhaustive search. Finally, we conduct extensive simulations to
evaluate the performance of the framework compared to WSNs
that are solely wireless-powered [1]–[4].
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Fig. 1. An overview of 3-level network hierarchy.

The rest of the paper is organized as follows. Section II presents
network model and assumptions. Section III studies the placement
problem of SNs. Section IV provides theoretical analysis and
discusses how to maintain energy balance using WNs. Section
V optimizes MC’s migration routes. Section VI evaluates the new
framework by simulations and Section VII concludes the paper.

II. NETWORK MODEL AND ASSUMPTIONS

In this section, we give an overview of the network model and
assumptions of the new framework. Based on the energy sources,
there are two types of nodes in the framework: wireless-powered
nodes and solar-powered nodes. For brevity, we denote them by
“WNs” and “SNs” respectively. As shown in Fig. 1, the network
consists of three levels: wireless-powered sensor, solar-powered
sensor and mobile charger levels.

The bottom level has N WNs uniformly randomly distributed
on a square field of side length L. Since charging coils can
be cheaply manufactured, WNs are deployed in high density to
perform basic sensing missions such as environmental readings,
target tracking, etc. In particular, to monitor location-dependent
solar radiation strength, each node has an illuminance sensor and
reports its reading with other data to the base station. The energy
consumption of transmitting an l-bit packet follows the widely
adopted model [7], et = e0 + e1r

α, where et is the transmitting
energy, e0 and e1 are the energy consumed in electronics and
amplifiers, r is the transmission distance and α is the path loss
exponent. To perform sensing tasks, it also consumes es energy
for each packet. For message exchange, we assume the network
is connected. Each WN generates packets independently from
others following a Poisson process with average rate λ. Each WN
is powered by a 750 mAh rechargeable NiMH battery and the
recharge time Tr is 75 mins. If the energy drops below a threshold,
e.g., 50%, it sends out a request to the MCs for scheduling energy
replenishment.

The solar-powered sensor level is comprised of self-sustaining,
energy harvesting nodes. Normally, when solar energy income is
sufficient, SNs act as cluster heads for aggregating sensed data.
However, when energy supply is not enough during cloudy/raining
days, the network re-selects WNs as cluster heads so they can
rely on consistent wireless energy supply from the MCs. To
minimize routing and deploying costs, SNs should be deployed
at advantageous locations. Due to varying nature of sun’s angles
during a year, building obstructions and tree shades may exhibit
different spatial-temporal patterns. Therefore, SN locations should
be re-calculated based on the updated data once in a while (e.g.,
several weeks). The energy harvesting rates are modeled according
to [13], which will be discussed in Section IV. We assume the
size of solar panel is chosen to be large enough to harvest enough
energy for aggregating all the data. A commercially available panel
of 10× 10cm2 size is adopted which is connected to a 3V, 2150
mAh lithium-ion battery.

The top level manages a fleet of m MCs through the base
station. Proposed in [1], MCs are equipped with high-capacity
batteries and powerful antennas for energy replenishment and data
collection respectively. Coordination among the MCs is conducted

via long range communications to exchange status, position,
energy request, etc. They also have positioning devices (e.g., GPS,
gyroscope, etc) to locate sensor positions so they can approach
the locations in close proximity for wireless charging in high
efficiency. We assume each node is only recharged by one MC at a
time and the emitting power at the wireless charger also complies
with FCC’s regulations so minimal health risks would be created.
Depending on updated geographical solar energy distributions,
MCs can deploy SNs at appropriate locations. Since SNs and MCs
are the main components to sustain network operations and their
manufacturing costs are much higher than WNs, we assume their
monetary expenses are ps (SNs) and pm (MCs) and ps < pm.

III. SOLAR-POWERED SENSOR LAYER: PLACEMENT PROBLEM

In this section, we study the Solar-powered sensor Placement
Problem (SPP). It determines where to place SNs such that the
total cost is minimized. In SPP, there are two types of costs:
packet routing cost and sensor deploying cost. According to the
energy model on packet transmissions [7], the routing cost is
proportional to the number of hops thus the distance to the cluster
head. The deploying cost is related to expense ps and strength of
sunlight at a specific location. Since harvested energy exhibits slow
variation due to seasonal changes of sun’s angle, solar radiations
at a fixed location also change slowly during a year. According
to the illuminance readings from sensors, we denote the average
solar strength at sensor location i by li. The deploying cost can be
defined as the ratio between ps and li, which can be explained as
the price we pay to gather a unit of solar energy from a specific
location. If more SNs are deployed, nodes would have less relaying
distance to the SNs. Thus, less routing cost can be achieved. On
the other hand, more SNs would increase the deploying cost so
our objective is to minimize the sum of routing cost and deploying
cost.

These observations suggest that our problem is in close analogy
to the classic Facility Location Problem (FLP) [9]–[12], which
is NP-hard. In FLP, a set of facilities and cities are given.
There is an opening cost associated with each facility and a
transportation cost between any pair of facility and city. The goal
is to connect each city to an open facility while minimizing the
sum of transportation cost and opening cost. Due to NP-hardness,
obtaining an optimal solution in polynomial time is infeasible.
In practice, approximation algorithms that can achieve certain
factors to the optimal solution are always preferred. After the
first polynomial time 3.16-approximation algorithm is proposed
in [9], there has been encouraging progress in improving the
approximation ratio and running time. An O(n2 log n) algorithm
is proposed in [10] with an approximation ratio of 3 based on the
primal-dual method. This bound is soon improved by [11] from
1.86 to 1.61 which is very close to the upper limit 1.46-ratio that
polynomial-time algorithms can achieve [12].

However, the aforementioned efforts only focus on centralized
algorithms whereas distributed implementation of FLP is rare in
the literature. In dynamic wireless environments, a centralized
algorithm requires the collection of variables across multiple
dimensions to form global knowledge, which is usually time-
consuming and not cost-effective. To this end, we propose a
distributed 1.61(1 + ϵ2)-approximation algorithm based on the
centralized approach in [11]. Next, we first formalize SPP and
illustrate the centralized 1.61-approximation algorithm. Then we
propose a distributed version of the algorithm. Finally, we discuss
how to re-deploy SNs in order to adapt variations in solar strength
at different times.

A. Placement of Solar-powered Sensors
In this subsection, we formalize the problem and describe both

the centralized and the distributed versions of the algorithm.



TABLE I
CENTRALIZED 1.61-FACTOR SN PLACEMENT ALGORITHM

Input: Set of WN N .
Output: Set of SN S and Bi, i ∈ S.
While (N ̸= ∅)
Find i∗ = argmin

i∈N

( ∑
j∈Bi

cij + fi −
∑

j∈B′
i

(ci′j − cij)
)
/|Bi|.

Deploy i∗, connect ∀j ∈ Bi

∪
B′

i to i∗, N ← N − Bi.
End While

1) Centralized Placement Algorithm: First, let us formalize SP-
P. We denote the sets of SNs and WNs by S and N , respectively.
We study discrete SPP by assuming SNs can only be co-located
at WNs’ locations, S ⊂ N . We consider a graph G = (V,E)
where vertices are sensor nodes and edges are connections. cij
is the routing cost between nodes i and j, which is the energy
consumed for transmitting packets. fi is the deploying cost of SN
i, fi = ps/li, li is the solar strength at node i. Since the energy
consumed by WNs for data transmissions ultimately comes from
the MCs, to convert cij’s energy units into monetary cost, we scale
cij by how much the base station has paid for consuming per watt
of energy to recharge MC’s battery. The decision variable xij is
1 if WN j is assigned to SN i; otherwise, it is 0. yi is 1 if we
place an SN at i; otherwise, it is 0. Initially, all WNs are candidate
locations for SNs. Our objective is to minimize the total cost by
finding the locations for SNs.

P1 : min
∑
i∈S

∑
j∈N

cijxij +
∑
i∈S

fi (1)

Subject to ∑
i∈S

xij ≥ 1; j ∈ N (2)

xij ≤ yi; i ∈ S, j ∈ N (3)
xij , yi ∈ {0, 1}; i ∈ S, j ∈ N (4)

Constraints (2) and (3) impose that each WN is only connected to
one SN. A centralized 1.61-approximation algorithm is proposed
in [11]. As a guideline for the distributed algorithm, we briefly
describe the centralized algorithm below. For each SN i, we
introduce a set Bi to represent its connected WNs (Bi ⊆ N ).
In each step, the algorithm selects the node i∗ with the minimum
average cost

i∗ = argmin
i∈N

( ∑
j∈Bi

cij + fi −
∑
j∈B′

i

(ci′j − cij)
)
/|Bi|. (5)

Node i′ is a deployed SN that WN j has already connected to. B′
i is

the set of these already connected WNs which would be benefited
by altering their connections to the new SN i. Hence, a saving of
routing cost

∑
j∈B′

i
(ci′j − cij) should be deducted from the total

cost. To find the minimum average cost for each candidate SN i,
we can sort the cost in an ascending order and select the least
one. This would result in |Bi| WNs being chosen each time. After
i∗ is found, we deploy an SN at its location and update all the
WNs in Bi

∪
B′
i to connect with node i∗. The iteration continues

to add SNs until all WNs are connected to them. The centralized
algorithm has O(N3) complexity. It is summarized in Table I.

2) Distributed Algorithm: To understand the nature of the
problem, we formulate the dual problem of P1. The introduction
of dual variables will help design the distributed problem.

P2 : max
j∈N

aj (6)

Subject to
aj − bij ≤ cij ; i ∈ S, j ∈ N (7)∑
j∈N

bij ≤ fi; i ∈ S (8)

ai, bij ≥ 0; i ∈ S, j ∈ N (9)

Here, we can think the dual variable aj as a monetary offer from
node j to the total expense for deploying an SN. Constraints (7)-
(8) can be combined into

∑
j∈N max(aj − cij , 0) ≤ fi for SN

TABLE II
DISTRIBUTED 1.61(1 + ϵ)2-FACTOR ALGORITHM FOR WN j

If j is not connected to any SN,
send a message to i with offer aj ← max(aj − cij , 0).

Else If j is connected to a deployed SN i′,
send a message to i with offer aj ← max(ci′j − cij , 0).

End If
Raise offer aj ← (1 + ϵ)aj .

TABLE III
DISTRIBUTED 1.61(1 + ϵ)2-FACTOR ALGORITHM FOR SN i

Receive offering messages from WNs.
If i is not yet deployed AND

∑
j∈N max(aj − cij , 0) ≥ fi

deploy an SN at i’s location, S ← S + i.
∀j ∈ N , Bi ← Bi + j. Connect j to SN i.

Else If i has been deployed AND aj = cij
connect j to i, Bi ← Bi + j, B′

i ← B′
i − j.

Send a connection request message to j.
End If

i ∈ S . It means that if offer aj is raised for all the WNs at the
same pace, and at the moment the total offer minus the total cost
is equivalent to fi, an SN can be successfully deployed at i. This
method is known as the dual ascent procedure [11] and 1.61-
factor approximation is proved in [11] following the centralized
paradigm. Based on [11], we propose a distributed 1.61(1 + ϵ)2-
approximation algorithm next, where ϵ is a small constant greater
than zero.

First, WNs will send out their offers to SNs. If a WN is
not connected to any i ∈ S , the value of the offer is set to
max(aj − cij , 0); otherwise, the value is set to max(ci′j − cij , 0).
On the other side, SNs receive the offering messages from WNs.
If an SN j is not yet deployed while its received total offers∑

j∈N max(aj − cij , 0) are greater than or equal to fi, we can
successfully deploy an SN at i. If j is deployed and the offer value
aj = cij , we connect j to i by sending a connection message to
j. In the next round, WNs increase their offers aj by a ratio of
(1+ϵ). After the locations for SNs have been calculated, the WNs
send out deploying requests to the MCs. Then an MC is dispatched
from the base station to deploy SNs at their designated locations.
The distributed algorithm on WNs and SNs is summarized in Table
II and Table III and it has the following properties.

Property 1: In principle, the distributed and centralized algo-
rithms are equivalent.

Proof: We sequentialize the distributed algorithm into execu-
tion rounds. For the distributed algorithm, each round consists of
a number of message sent and received by respective WNs and
SNs. In each round, the total offers received from all the nodes are∑

j∈N aj =
∑

j∈N cij + fi. For some nodes already connected,
the new offers are

∑
j∈N aj =

∑
j∈N ci′j − cij , which should be

deducted from the total offers to reflect the adjusted value. We can
see that this result is exactly the term in (5). Since the offer value
is increased at a rate (1+ϵ), an SN that meets the lowest total offer
will be selected in the earliest time, which is equivalent to selecting
the least average cost in the centralized algorithm. Therefore,
we can see that the mechanism of the distributed algorithm is
analogous to the centralized algorithm in [11].

Property 2: The distributed algorithm terminates in
O(log1+ϵ fm) rounds, where fm = max fi, i ∈ N . The
total message overhead is O((log1+ϵ fm)N2).

Proof: Clearly, when the offering amount aj increases at
a rate (1 + ϵ), reaching the maximum value of fi requires
O(log1+ϵ fm). In each round, the message overhead is bounded
by O(N2) so the overall message overhead is O((log1+ϵ fm)N2).

Property 3: The distributed algorithm achieves 1.61(ϵ + 1)2-
factor approximation to the optimal solution.

Proof: First, denote optimal offers in the centralized algo-
rithm [11] by aj and the distributed algorithm by a′j , j ∈ N . A
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Fig. 2. Geographic solar energy distribution in different months. (a) February.
(b) May.

Factor Revealing LP is constructed by [11]. For SN i, k = |Bi|, the
optimal solution is to solve the following maximization problem

P3 : zk = max

k∑
j=1

aj/(

k∑
j=1

cij + fi) (10)

Subject to
aj ≤ aj+1, ∀j ∈ {1, . . . , k − 1} (11)

k∑
j=1

max(aj − cil, 0) ≤ fi, ∀l ∈ {1, . . . , k} (12)

aj ≤ al + cij + cil, ∀j, l ∈ {1, . . . , k} (13)
aj , cij , cil, fi ≥ 0, ∀j, l ∈ {1, . . . , k} (14)

For the maximization problem to be bounded, aj should also be
bounded. It implies that at least one of the constraints of (12) and
(13) is tight (i.e., changing from inequality into equality). Case 1:
Eq. (12) is tight; Case 2: Eq. (13) is tight, and al is also bounded.

For the distributed algorithm, we can formulate it into a
similar Factor Revealing LP except that constraint (12) becomes
k∑

j=1

max(
a′
j

1+ϵ − cil, 0) ≤ fi and constraint (13) becomes
a′
j

1+ϵ ≤

a′l + cij + cil since increasing offers at the same pace in the
centralized scheme would deploy SN i at most (1+ϵ) time earlier
compared to the distributed algorithm. For Case 1, since fi ≥ 0

and the constraint is tight, aj − cil ≥ 0 and
a′
j

1+ϵ − cil ≥ 0
hold for the centralized and distributed algorithms, respectively.
Thus,

a′
j

aj
≤ 1 + ϵ. For Case 2:

a′
j

1+ϵ = a′l + cij + cil and
k∑

l=1

max(
a′
l

1+ϵ − cil, 0) ≤ fi is also tight to bound a′l. The latter

suggests that the ratio in Case 1 a′
l

al
≤ 1+ ϵ can be applied here,

a′
j

1 + ϵ
≤ al(1 + ϵ) + cij + cil ≤ (1 + ϵ)(al + cij + cil) (15)

Then by taking the ratio between Eq. (15) and Eq. (13), we
have

a′
j

aj
≤ (1 + ϵ)2 for Case 2. Since the approximation ratio to

the optimal solution a∗j is proved by [11], aj

a∗
j
≤ 1.61. Thus, our

algorithm has at most
a′
j

a∗
j
≤ 1.61(1 + ϵ)2 approximation to the

optimal solution.
B. Adapt Solar Variations

Next, we demonstrate how to change SN’s locations to adapt
solar variations. During different seasons of a year, the sun’s
angle towards earth surface varies slowly, and consequently, the
harvested energy at different locations reflects such changes due to
building obstructions, tree shades, etc. Fig. 2 shows the heatmaps
of a sensing field on our campus gathered at different locations in
February and May (Longitude at North 40◦). We can see that
the areas fall into tree shades are quite different. This has a
direct impact on the deploying cost fi at a location. Second, the
strength of solar radiation also varies dramatically. In February,
the maximum level is 3 mW/cm2 and an increase of 13% is
observed in May. These observations suggest that SN locations
should be re-calculated after some time Tc. Otherwise, they might
be covered in shades with limited harvesting capabilities.

Our algorithm fully exploits the distributed nature of WSNs.
During operation, each node records solar strength at its location
periodically and maintains a trailing average for the past Tc time.
fi is updated every Tc time accordingly. Once a new deployment
is initiated, SNs’ locations are calculated using the distributed
algorithm. After their locations are found, an MC is dispatched to
re-locate corresponding SNs to designated locations.

IV. WIRELESS-POWERED SENSOR LEVEL: MAINTAIN
ENERGY BALANCE

In this section, we study the wireless-powered sensor level. Our
main objective is to maintain network energy balance on WNs in
different scenarios. First, we derive energy balance when SNs are
operative during sunny days. To facilitate our analysis, we denote
the number of SNs obtained by the SPP algorithm as s = |S|
and the maximum hop count from WN to its assigned SN as h.
We assume that a total budget B for s SNs and m MCs, sps +
mpm ≤ B. We explore the relationship between s and m given
their manufacturing costs ps and pm (ps < pm). Second, during
cloudy/raining days, energy balance might be broken. In this case,
we further study how to regain such balance by refilling the energy
gap. We propose to utilize several WNs to act as temporary cluster
heads for aggregating data. A numerical range of WN cluster heads
is first derived followed by a distributed algorithm to determine
which WNs should be selected.

A. Energy Balance
First, let us consider energy consumptions in the network.

For s shortest path routing trees rooted at SNs, the total energy
consumption is

Ec =
∑
j∈N

[
λ(et + es) +

∑
i∈Cj

λ(et + er)
]
T

≤
h∑

i=1

[
Ni(et + es) +

h∑
j=i+1,
i̸=h

Nj(et + er)
]
λsT

=
[
(
2

3
h3 − 1

2
h2 − 1

6
h)(et + er) + h2(et + es)

]
πr2ρλsT (16)

where Cj is the set of child nodes of j ∈ N , Ni = (2i−1)πr2ρ.
The inequality holds because 1) a cluster can be estimated as a
circle of radius R = hr which consists of h concentric rings [8];
2) summation of consumptions from all circle-shaped clusters has
overlapping areas between neighboring clusters.

The harvested solar energy can be estimated by the empirical
model proposed in [13]. The model provides a year-round analysis
of solar radiations from weather stations and relates power levels
to a quadratic equation on the time t of the day,

E = (a1(t+ a2)
2 + a3)(1− σ). (17)

The shape of Eq. (17) is determined by parameters a1 − a3 that
vary seasonally for different months. For example, for the month
of May, a1 = −1.1, a2 = −13.5 and a3 = 43.5. t1 and t2 are the
respective time of sunrise and sunset (t1 = −

√
−a3

a1
− a2, t2 =√

−a3

a1
−a2) according to [13]. σ is the percentage of cloud cover

from weather reports. For T days, energy harvested by SNs is

Es = s

T∑
i=1

∫ t2

t1

[
a1(t+ a2)

2 + a3

]
(1− σi)dt (18)

The wireless energy replenished by MCs into the network is
governed by the battery charging rates Ch/Tr. Thus, the amount
of wireless energy replenished by m MCs in T can be calculated
by Ew = (mTCh)/Tr, m ̸= 0. Then network energy balance is
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achieved when

Ec ≤ Es + Ew

Ec <
[
(
2

3
h3 − 1

2
h2 − 1

6
h)(et + er) + h2(et + es)

]
πr2ρλsT

≤ s

T∑
i=1

∫ t2

t1

[
a1(t+ a2)

2 + a3)
]
(1− σi)dt+

mTCh

Tr
(19)

Since π(hr)2s ≥ L2, we have
√
L2/(sr2π) ≤ h. By plugging

it into Eq. (19) and taking approximation et ≈ er, we obtain a
relationship between s and m

LTretρλ

3
√
πChr

(
4L2

√
s
− πr2

√
s)−Xs+ (

1

2
et + es)

L2ρλTr

Ch
≤ m, (20)

where X is

X =
[ Tr

ChT

T∑
i=1

(1− σi)
][a1

3
t3 + a1a2t

2 + (a1a
2
2 + a3)t

]∣∣t=t2

t=t1
. (21)

The relationship between s and m in Eq. (20) can be explained
graphically. Fig. 3(a) shows a group of energy balance curves
when N = 250 − 750. Any point on a curve serves the same
purpose for balancing network energy and there is no preference
between choosing SNs or MCs as long as the balance holds. In
fact, these curves can also be interpreted as the indifference curves
in microeconomics. An indifference curve shows a collection of
different goods that make no difference to the consumer and every
point on the curve results in the same utility. For example, when
N = 500, point A requires 2 SNs and 8 MCs, which is equivalent
to point B of 4 SNs and 6 MCs. Note that keep adding SNs reduces
MCs at a diminishing marginal rate. This is because that when the
number of SNs is small, adding more SNs helps alleviate routing
cost significantly (saves energy); however, this benefit gradually
diminishes as more SNs are deployed.

Based on the budget, we can find whether a network plan is
feasible to maintain energy balance. Since s is determined by the
SPP algorithm, the corresponding number of MCs m can be found
from the budget line m = −Pm

Ps
s + B

Ps
(point (s,m)). If this

point is above a balance curve, it means that the corresponding
network size can satisfy energy balance. For example, point (6, 3)
on budget line 1: m = − 1

3s + 5 is above the balance curve of
N = 250 which indicates that the selection of s = 6, m = 3
is feasible. The feasible region for budget line 1 is marked as
the shaded area. Furthermore, to find the maximum network size
a given budget can sustain, we gradually increase N until point
(s,m) is no longer above the balance curve. For point (6, 5) on
budget line 2, the maximum network size is N = 500. As the
network size increases, the budget should be increased as well,
which is to shift the budget line upward as shown in Fig. 3(b). In
this way, network administrators can quickly find an appropriate
network plan, given the budget and available choices of SNs and
MCs.
B. Adaptive Re-selection of Cluster Heads

An imperfection of solar energy is that sunlight is not always
available. For example, during raining seasons, the network could

experience consecutive cloudy or raining days and SNs are unable
to harvest enough energy. To sustain network operation, our
framework should adaptively switch cluster heads to WNs for
aggregating sensed data. In this section, we first discuss how to
maintain energy balance in the absence of solar energy. Then, we
propose an algorithm to re-select cluster heads among WNs.

1) Maintain Energy Balance: Since the number of MCs m is
fixed for a network plan, we cannot expect more energy income
from the energy replenishing side. To this end, we should reduce
energy consumptions to restore energy balance. That is, the energy
gap during cloudy days should be filled by reducing consumption
for at least the same amount. Intuitively, introducing more cluster
heads can effectively reduce energy consumption because more
aggregation points would shorten packet relay paths. In other
words, this is equivalent to having smaller k-hop clusters (k < h).
The following property validates our intuition.

Property 4: For a network originally clustered by s SNs with
cluster size h > 2, in case solar energy is unavailable, we can
always restore network energy balance by reducing cluster size.

Proof: By assumption, for SNs to successfully aggregate and
transmit data, E∗

s ≥ sh2r2πρλ(et + er)T . Plugging this into Eq.
(19),

mCh

Tr
>
[
(
2

3
h3 − 3

2
h2 − 1

6
h)(et + er) + h2(et + es)

]
πr2ρλs (22)

For h > 2, 2
3h

3− 3
2h

2− 1
6h > 0 so mCh

Tr
> h2r2πρ(et+ es)λs >

N(et + es)λ. N(et + es)λ is exactly the energy consumed by
sensors to generate and transmit data in one-hop communication
to the MCs and the inequality states that the recharging rates from
MCs is enough to support one-hop communications. Thus, we
have proved that for h > 2, in the worst case, we can always use
one-hop mobile data gathering to restore energy balance.

Remarks: An anomaly is h = 1, 2. Because the original cluster
sizes are already very small, we cannot reduce energy consumption
further by having smaller clusters. In these cases, a notification
message should be sent to request for more MCs.

However, one-hop mobile data gathering only occurs in the
worst case. Normally, we have 1 < k < h so our objective is to
calculate how many WN cluster heads are needed given k. From
the previous subsection, the solar radiation model indicates the
energy harvested peaks when σ ≈ 0 (perfect weather condition).
Let us denote the number of new WN cluster heads by s′ (s′ > s).
The maximum amount of energy harvested is E∗

s when σ = 0
in the ideal case. Ec(h) is the energy consumption with h-
hop clusters. Xc(k) is the energy consumption for each k-hop
cluster (plug k into Eq. (16) and get rid of s′). Since we require
E∗

s ≤ Ec(h)− s′Xc(k), a range for s′ is

L2

π(kr)2
< s′ ≤ Ec(h)− E∗

s

Xc(k)
. (23)

By fixing k, any s′ satisfying Eq. (23) will guarantee energy
balance of the network. Next, we develop a distributed algorithm
to find WN cluster heads.

2) Head Re-selection Problem: In this subsection, we further
explore the Head Re-selection Problem (HRP) which finds k-
hop clusters with s′ cluster heads satisfying Eq. (23). On one
hand, since WN cluster heads will be traversed by MCs for data
collection, the number of such nodes should be minimized to save
MCs’ moving cost. On the other hand, for heads to cover all the
nodes within k hops, s′ should be sufficiently large; otherwise,
clusters will exceed k hops and more likely break the energy
balance. Hence, our objective is to select a minimum number of
heads and ensure that the shortest path from any node to its nearest
head does not exceed k hops. It is not difficult to see that HRP
is the minimum k-hop dominating set problem which is proved to
be NP-hard in [14].



A distributed algorithm for this problem is proposed in [14]
for ad-hoc networks. The algorithm requires two rounds of k-
hop message flooding for all the nodes. Since flooding is usually
less preferred in energy constrained WSNs, we will not adopt the
algorithm in [14]. Instead, we leverage the range in Eq. (23) as
a basis for HRP. That is, as s′ grows, hop distance from a node
to its nearest head should decrease. Thus, we can start from the
lower bound and increase s′ iteratively until all the nodes are
covered in k hops or the upper bound is reached. To find which
WNs should become cluster heads, we extend the furthest first
traversal algorithm proposed in [15]. The algorithm selects the
node with the maximum distance from the current node to become
the head in the next round. Unfortunately, the algorithm cannot be
applied directly to our problem because: 1) it is centralized and
not efficient to implement in distributed WSNs; 2) it may lead to
inefficient selections. A new head might be chosen in the vicinity
of an established one thereby causing a large overlap between
neighboring clusters. This is not efficient and may also violate Eq.
(23). Hence, we leverage the principle of furthest first traversal
and propose a new distributed algorithm.

When gathered data at an MC indicates solar energy is not suf-
ficient to support SNs, the MC sends a head notification message
to any arbitrary WN whose battery has just been replenished and
sets a counter to 0. The message specifies the cluster size k hops
(k = h − 1 initially and decreased by 1 in each trial till k = 1).
Upon receiving the head notification message, the WN declares
itself as a new head and builds a shortest path tree (e.g., using
Bellman-Ford algorithm [16]). Each node also maintains a routing
entry to store minimum hop distance to a head. Those entries are
updated when a new shortest path tree is formed. If a node j’s
entry indicates the minimum hop distance to a head i is less than
or equal to k, it sends a join message to i to “join” the cluster as
a member. Otherwise, it sends a resume message to node i to let
the head selection continue. Within a timeout period, if the head
receives a resume message, it means that there still exist some
node(s) uncovered and the selection process should continue.

If a resume message is received, the head computes a shortest
path tree using the Bellman-Ford algorithm. To avoid inefficient
head selection, nodes should also report to the head whether they
are cluster members or not. Then a new head notification message
is generated and sent along the shortest path tree to the node with
the maximum hop distance and enough battery energy which is
not a cluster member yet. The counter is then increased by one.
Otherwise, if no resume message is received during the timeout
period, the head declares that clustering is successful by sending
a complete message to all the heads. Upon receiving the complete
message, heads report to the MC of cluster information. Note that
if the counter exceeds the upper bound in Eq. (23), the current k
is not feasible to maintain energy balance so it should be further
decreased. In this case, the head should broadcast a message to
restart the whole process and choose a smaller k. The psuedocode
of this algorithm is given in Table IV. Based on Property 4, the
distributed HRP algorithm can always find a set of cluster heads in
O(hS) rounds and the worse case message overhead is O(hSN2),
where S is the upper bound in Eq. (23).

V. MOBILE CHARGER LAYER: JOINT WIRELESS CHARGING
AND MOBILE DATA GATHERING

In this section, we focus on optimizing trajectories of the MCs.
Proposed by [1], launching radio modules on MCs realizes joint
wireless charging and mobile data gathering on a single MC.
This design certainly reduces manufacturing cost of MCs and
system cost. However, because the effective wireless charging
range is very limited (0.5-1m), the method in [1] requires the MC
to stop at the exact WN location to perform simultaneous data
gathering and recharge. However, in our framework, since SNs

TABLE IV
DISTRIBUTED HEAD RE-SELECTION ALGORITHM FOR WN i, i ∈ N

MC sends HeadMsg to a WN (with enough energy), counter c← 0,
sets HeadMsg.hop to k(k < h). Set of cluster heads H ← ∅.
If Recv(HeadMsg.ID = i AND c ≤ Ec(h)−E∗

s
Xc(k)

)
dij = min

j∈N
HopCount(i, j) (Bellman-Ford-SPT(i)),H ← H+ i.

Send new routing msg regarding new head i to all the nodes.
Set time-out period T waiting for resume messages.
If Recv(ResumeMsg.ID = i) within T
u = argmaxmin

j∈N
HopCount(i, j), c← c+ 1.

Send HeadMsg to u.
Else
Clustering is completed and broadcast complete msg.
End If

Else If Recv(NewRoutingMsg.ID is i)AND min
j∈H

HopCount(i, j) > k.

Send ResumeMsg to the new head.
Else If Recv(NewRoutingMsg.ID is i)AND min

j∈H
HopCount(i, j)≤ k.

Send JoinMsg to u = argmin
j∈H

HopCount(i, j),

Declare as cluster member of u (Bu ← Bu + i,N ← N − i).
Else If Recv(HeadMsg.ID = i AND c >

Ec−E∗
s

Xc(k)
)

k ← k − 1, broadcast a restart message.
Else Forward message according to routing entries.
End If

are powered by solar energy, it is only necessary for the MC to
enter the transmission range (“touch” the transmission boundaries)
to collect data from SNs. This creates opportunities to further
optimize MCs’ trajectories.

A. Initial Center Tour
We assume MC i has been assigned a touring sequence. The

sequence defines an ordered set of nodes that starts from the
base station b, traverses through WNs wi and SNs (cluster heads)
aj , wi ∈ N , aj ∈ S, and finally returns to the base station
for uploading data and recharging MC’s own battery. Recharge
scheduling algorithm proposed in [2] can be used conveniently to
take recharging and data gathering requests together and calculate
an initial touring sequence for each MC. Normally, cluster size is
larger than one hop (h > 1), the transmission range around SNs
form disjoint disks with identical radius. Since the initial sequence
does not distinguish an SN from a WN and stops at the center
of SN’s transmission radius, we call it “Initial Center Tour” and
denote its length as Lc. For such a tour with n WNs and s SNs,
we have the following property.

Property 5: For an optimal tour with length L∗
r , when L∗

r is
much larger than transmission range r, Lc is within (1+ 8

π + ϵ) ≈
3.55 + ϵ to the optimal L∗

r .
Proof: Our proof is based on [18]. Since SNs can be

represented by disjoint disks, the sum of feasible areas for s SNs
is sπr2. We consider a larger disk of radius 2r so any point in a
disk of radius r can be enclosed. The total area sπr2 should be
less than the area swept by the disk of 2r,

sπr2 + nπr2w ≤ 4rL∗
r + 4r2π. (24)

The wireless charging range rw is much smaller than r (rw ≪ r).
If we enforce the MC to go through disk centers, an extra distance
less than 2r has to be made (entering and leaving the center). Thus,
Lc is bounded by

Lc ≤ L∗
r + 2rs ≤ L∗

r + 2r
4rL∗

r + 4r2π − nπr2w
πr2

Lc

L∗
r

≤ (1 +
8

π
) +

8r

L∗
r

≤ 1 +
8

π
+ ϵ (25)

In the first step, we use Eq. (24) for s. In the last step, we omit
the last term n( rwr )2, as rw

r ≈ 0. Since r is much smaller than
L∗
r , we denote 8r

L∗
r
≤ ϵ where ϵ is a small number close to 0.
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B. Exhaustive Search

Although the initial center tour guarantees a (3.55 + ϵ)-factor
approximation, the solution can be further improved if the MC
can take shortcuts through the disks. This problem is known as the
Traveling Salesmen Problem with Neighborhoods and no efficient
solution exists [17], [18]. However, in our problem, we can take
advantage of WNs in the sequence and greatly reduce computation
complexity. For all WNs in a sequence (and the base station),
we order them in pairs (b, w1), (w1, w2), . . ., (wn, b). For each
pair (wi, wi+1), there could be at most s SNs in between. Let
us start the analysis with s = 1. Fig. 4 shows that there are two
cases: 1) the path connecting wi and wi+1 directly cuts through
the disk (Fig. 4(a)). In this case, the MC does not need to change
directions. It only stops for a period of data uploading time (several
minutes) in the disk; 2) the disk does not intersect with the path
so there should exist a point on the boundaries of the disk that
can minimize the path (min(a+b) in Fig. 4(b)). A naive approach
is to divide the disk perimeter into l segments and find out which
one yields the minimum distance. The method is used in [19] to
find optimal hitting points on disk boundaries and its accuracy is
proportional to l.

A closer look at Fig. 4(b) suggests a possible reduction of search
space. Let us define the angle between lines connecting wiai and
wi+1ai as θ. For a point t on the arc outside the sector, there is
an angle β > 0 between lines wi+1t and wi+1ai. Clearly, c+d >
e+ f so any point t outside the sector gives an inferior solution
compared to a point within the sector of θ. Thus, we can narrow
down the search space to the points on the arc within angle θ
between wiai and wi+1ai, so examination of only a fraction of
f = θl

2π points is enough. Nevertheless, computation complexity
of exhaustive search still grows exponentially when there are s
SNs between wi and wi+1 (with complexity O(fs)), thus a faster
method is needed.

C. Minimize Sum of Squared Distance

Exhaustive search quickly turns out to be impractical in reality.
If the problem can be solved analytically, computational com-
plexity can be greatly reduced. Since the expressions of distance
involving square roots tend to yield intractable computations, we
minimize the sum of squared distance instead. In fact, sum of
squared distance has been used in many applications such as the
well-known K-means algorithm [16]. The estimation error to the
actual sum of distance will be evaluated by simulations. Likewise,
we start our analysis from s = 1 and derive the following property.

Property 6: The point p on disk ai that minimizes d =
(|wip|)2 + (|wi+1p|)2 is actually the intersection between line
wmai and the disk, where wm is the mid-point between the
coordinates of wi and wi+1.

TABLE V
ROUTE IMPROVEMENT ALGORITHM FOR MCS

Input: Sequence ⟨b, w1, . . . , ai, . . . , wj , . . . , wn, b⟩.
Set of SNs between wj and wj+1, Sj , S =

∪
j∈N Sj .

Output: Coordinates (xi, yi) MC should visit near ai.
While Sj ̸= ∅

For ai ∈ Sj , find coordinates of WNs wj , wj+1 in sequence.
If ai+1 is also between wj , wj+1.xj+1 = xai+1 , yj+1 = yai+1 .
Else (xj+1, yj+1) is set to wj+1’s coordinates.

End If
Establish cartesian coordinate system originated at center of ai.
xi = (xj + xj+1)r/

√
(xj + xj+1)2 + (yj + yj+1)2,

yi = (yj + yj+1)r/
√

(xj + xj+1)2 + (yj + yj+1)2.
Sj ← Sj − ai.

End While

Proof: Although the property seems to be true by visual
judgment of Fig. 4(b), a geometric proof is difficult. Thus, we
calculate p in terms of cartesian coordinates. Denote coordinates
of wi,wi+1 and p as (xi, yi), (xi+1, yi+1), (x, y), respectively.
Assume the origin of coordinate system resides at the disk center.
The function of the disk is x2 + y2 = r2. We use the Lagrangian
multiplier method to find minimal sum of squared distance. After
taking partial derivatives, the variables are

Lx

∂x
= 4x− 2(xi + xi+1) + 2xλ,

Ly

∂y
= 4y − 2(yi + yi+1) + 2yλ

Lλ

∂λ
= x2 + y2 − r2 (26)

After some calculations, the coordinates for p is

x =
(xi + xi+1)r√

(xi + xi+1)2 + (yi + yi+1)2
,

y =
(yi + yi+1)r√

(xi + xi+1)2 + (yi + yi+1)2
. (27)

On the other hand, the coordinate of wm is (xi+xi+1

2 , yi+yi+1

2 ).
We plug the function of line wmai, y = yi+yi+1

xi+xi+1
x, into the disk

function of ai, and obtain two intersection points

x = ±
√

r2

(
yi+yi+1

xi+xi+1
)2 + 1

, y = ±
√

r2

(
xi+xi+1

yi+yi+1
)2 + 1

(28)

We can see one of the solutions in Eq. (28) is exactly Eq. (27),
so the property is proved.

Next, we consider the case of s = 2 without a direct cut
as illustrated in Fig. 4(c). To use our method, computing each
touching point on a disk needs two fixed points. For two disks,
since the touching points can change simultaneously, minimization
of sum of distance (a+ b+ c) by considering multiple variables
is very difficult analytically. Instead, we use the center of ai+1 as
the reference point and calculate pi on disk ai to minimize (a+d)
first. Then, based on pi, we calculate pi+1 on ai+1 to min(b+ c).
In this way, each computation only involves one variable. The
method can be easily extended to the case when there are s SNs
between wi and wi+1, so a total of O(s) computations are needed,
which reduces the exponential-O(fs) exhaustive search algorithm
to linear time. We summarize the route improvement algorithm in
Table V.

D. An Example of the Hybrid Framework
Finally, we demonstrate a complete example of the framework

in Fig. 5. In Fig. 5(a), 8 SNs are placed to organize 250 WNs into
clusters. Their initial locations calculated by the distributed SPP
algorithm are marked by triangles. In case of shortage of sunlight,
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Fig. 5(b) shows the results from the HRP algorithm to re-allocate
cluster heads to WNs. Here, the loss in energy harvested from the
8 SNs can be compensated by introducing 13 WN cluster heads
to reduce hop distance. For wireless charging and data gathering,
Fig. 5(c) shows an initial center tour that covers 8 energy requests
and 8 data uploading sites (SNs). The route is improved by our
algorithm in Fig. 5 (d) with a saving of 10% moving energy on
the MCs.

VI. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the framework
by a discrete-event simulator and compare it with a network solely
relying on wireless energy [1]–[3]. Note that all the cluster heads
are replenished by the MCs in the wireless-powered framework.
N = 500 nodes are uniformly randomly distributed over a square
field of L = 150 m. Sensors have identical transmission range
of r = 12 m, and consume es = 0.05J for generating a
sensing packet and et = er = 0.02J for transmitting/receiving
a packet. Each time slot is 1 min and the traffic follows a Poisson
distribution with average λ = 3 pkt/min. WNs have battery
capacity Ch = 780mAh and require Tr = 78 mins for recharge.
SNs have larger capacity of 2150mAh. MC consumes 5 J/m while
moving at v = 1 m/s. We use real meteorological trace from [20],
which has a complete archive of weather conditions. Since our
observation of solar variation lasts from December to May, we set
the simulation for 6 months time.
A. Evaluation of Route Improvement Algorithm

First, we evaluate the route improvement algorithm by com-
paring it with the algorithm proposed in [21]. The algorithm in
[21] continuously finds the closest hitting points on the boundaries
of the disks and we call it nearest insertion algorithm. The tour
passing through the disk centers is used in [1] for joint wireless
charging and data gathering and we denote it by initial center
tour. Fig. 6(a) compares MC’s moving energy using the three
methods. First, we can see that our algorithm provides an average
of 25% energy saving compared to the initial center tour. In fact,
more energy saving can be achieved with a larger transmission
range since an MC only needs to visit the transmission boundaries
for gathering data. Second, the results further indicate 5-7%
improvements over the nearest insertion algorithm [21]. This is
because that selecting the closest hitting point on a disk cannot
guarantee that the sum of distance to the neighboring nodes is
minimal. In contrast, our algorithm finds a point on the disk
that minimizes the sum of squared distance. To examine the gap
between minimizing the sum of squared distance and the actual
distance, we conduct more evaluations in Fig. 6(b) by considering
a joint route comprised of WNs and SNs. Since WNs outnumber
SNs by a considerable amount, we maintain a 10 to 1 ratio
between WNs and SNs. To provide a baseline, an exact solution is
found by exhaustive search using [19]. Surprisingly, our algorithm
has only an average of 1% difference to the exact solution
whereas reducing computation complexity from exponential to
linear time. In addition, with mixed WNs and SNs, our algorithm
also outperforms the nearest insertion algorithm by 5-10%.
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Fig. 6. Evaluating route improvement algorithm. (a) Tour consists of only data
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Fig. 7. Number of nonfunctional nodes. (a) Hybrid framework. (b) Wireless-
powered framework.

B. Nonfunctional Nodes
One of the key performance metrics is nonfunctional nodes.

Once a node’s battery is depleted, it stops working and becomes
nonfunctional until its battery is replenished. To sustain perpetual
operations, nodes should be alive all the time; otherwise, they
will degrade sensing qualities and node communications. Fig. 7
compares the percentage of nonfunctional nodes between hybrid
and wireless-powered frameworks [1]–[3]. The SPP algorithm
generates s = 11 SNs. To compare performance, we change the
number of MCs m. Fig. 7(a) shows the results from the hybrid
framework when m = 2 ∼ 4. We can see that 2 MCs can
keep the percentage of nonfunctional nodes around 10% and 4
MCs can almost achieve perpetual operations. In contrast, m = 2
for wireless-powered network results in 30% nonfunctional nodes
in Fig. 7(b) and an increase to m = 6 still barely eliminates
all battery depletions at equilibrium. These observations clearly
demonstrate that the hybrid framework can improve network
performance significantly. Since for a wireless-powered network,
cluster heads consume energy much faster, thus MCs need to
visit them more frequently, which reduces the chances for other
nodes to get recharged. However, SNs are replenished by solar
energy which has much higher power density so MCs have more
leverage to take care of the rest of the network. Second, the
results also indicate that having 11 SNs can save 2 MCs while
achieving similar performance. This is beneficial in practice since
the manufacturing and operating cost of MCs is usually much
higher than SNs.
C. Harvested Energy and Message Overhead

To validate our algorithm design, we also evaluate the evolution
of SN’s energy and network message overhead. Fig. 8(a) traces
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Fig. 9. Geographical distributions of service interruption. (a) Hybrid framework
m = 2. (b) Wireless-powered framework m = 4.

SNs’ energy with weather conditions represented by percentage of
solar exposure (1− σ) obtained in [20]. We focus on two typical
nodes with light and heavy data traffic. We can see that through
the month of December energy storage continuously declines due
to weak solar strength in winter. In addition, there are also several
consecutive snowing days so SNs are unable to harvest enough
energy and the re-selection of cluster heads among WNs is needed.
This gives SNs opportunities to recover their energy (during 40-50
days). For the remaining simulation, although a few consecutive
raining days are observed, the energy gaps are quickly filled. This
is because that solar radiation has strengthened during spring and
energy storage is sufficient to sustain network operations.

Fig. 8(b) demonstrates the energy consumed by exchanging
control messages such as SN clustering, re-selection of WN cluster
heads and energy information requests. For each month, MCs
initiate a new calculation of SN’s placement pattern to reflect the
updated geographical solar radiations (e.g., Fig. 2). The message
overhead is shown as the blue spikes at the beginning of each
month. Note that in the simulation, when SNs’ energy is less
than 25% due to insufficient solar energy, they request to re-
cluster by WNs. The overhead is represented by red spikes, which
corresponds to the time when SNs’ energy drops in Fig. 8(a). From
the results of Fig. 8, we have validated that our algorithm can adapt
to weather conditions effectively.

D. Geographical Distributions of Service Interruption
Finally, we examine geographical distributions of service in-

terruptions. Our objective is to see how long nodes are in non-
functional status and their geographical distributions. Since cluster
heads are responsible for aggregating and uploading sensed data,
their survivals are critical for the entire network. A breakdown
may lead to severe packet loss, network interruption and extended
data latency. For fair comparison, we use the results from Sec.
VI-B and set m = 2 for the hybrid framework and m = 4
for the wireless-powered framework so that both cases have a
similar number of nonfunctional nodes. From Fig. 9(a), we observe
that the distribution of nonfunctional nodes are quite even in the
hybrid framework. In contrast, nodes around the cluster heads
(including the heads as well) are more prone to deplete battery
energy in the wireless-powered network (20% more time for being
nonfunctional in Fig. 9(b)). On average, a node in the hybrid
framework has only 8.5% time in nonfunctional status whereas it

would experience 16% nonfunctional time in the wireless-powered
network. The sharp contrast is because that for the wireless-
powered network, MCs need to not only take care of cluster heads
but also their surrounding areas. This may cause the MCs to move
frequently between head locations and overwhelm their recharge
capabilities. However, for the hybrid framework, MCs do not need
to recharge SNs so the resources can be re-distributed among WNs
to reduce their nonfunctional rates.

VII. CONCLUSIONS

In this paper, we consider a hybrid framework that combines
the advantages of wireless charging and solar energy harvesting
technologies. We study a three-level network consisting of SNs,
WNs and MCs layers. First, we study how to minimize the total
cost of deploying a set of SNs. The problem is formulated into
a facility location problem and a 1.61(1 + ϵ2)-factor distributed
algorithm is proposed. Second, we examine the energy balance in
the network and develop a distributed head re-selection algorithm
to designate some WNs as heads when solar energy is not
available. Third, we focus on how to optimize the joint tour
consisting of both wireless charging and data gathering sites for
the MCs. A linear-time algorithm is proposed that can approach
very closely the exact solution and reduce at least 5% MC’s
moving energy compared to previous solutions. Finally, based on
real weather data, we demonstrate the effectiveness and efficiency
of the hybrid framework that can improve network performance
significantly.
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