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Abstract—With the commoditization of private data, data
trading in consideration of user privacy protection has become a
fascinating research topic. The trading for private web browsing
histories brings huge economic value to data consumers when
leveraged by targeted advertising. In this paper, we study the
trading of multiple correlated queries on private web browsing
history data. We propose TERBE, which is a novel trading frame-
work for correlaTed quEries based on pRivate web Browsing
historiEs. TERBE first devises a modified matrix mechanism to
perturb query answers. It then quantifies privacy loss under the
relaxation of classical differential privacy and a newly devised
mechanism with relaxed matrix sensitivity, and further compen-
sates data owners for their diverse privacy losses in a satisfying
manner. Through real-data based experiments, our analysis and
evaluation results demonstrate that TERBE balances total error
and privacy preferences well within acceptable running time, and
also achieves all desired economic properties of budget balance,
individual rationality, and truthfulness.

Index Terms—Data Trading, Web Browsing History, Data
Privacy.

I. INTRODUCTION

Recent years have witnessed explosive growth of users’ web
browsing histories [1] with the advent of the era of big data.
Typical examples of these text-based data include web users’
purchasing records on E-commerce platforms like Amazon
and browsing records on financial websites like CNN markets
[2]. Furthermore, these data have tremendous economic value
on data consumers like advertisers. For example, the advertiser
saves advertising costs the most when he leverages extracted
data to carry out behavior targeting on Twitter [3]. In partic-
ular, after the advertiser selects behaviors or preferences of
his major target audience on an ad platform, Twitter would
deliver his advertisements to those interested users so as
to cut down costs of ad impression significantly. However,
many data owners are reluctant to share their private data
due to privacy concern. To facilitate the commoditization of
these private data, more and more data trading markets have
emerged to build the bridge between data owners and data
consumers. On the one hand, data owners are willing to
empower the reliable data broker to access their private data as
long as they obtain desired privacy protection and reasonable
monetary compensation. On the other hand, the data broker
charges data consumers fees on queries as data owners’ privacy
compensation.

Yanmin Zhu is the corresponding author.

To further extract features of his major target audience, the
advertiser usually issues multiple correlated queries to the data
broker. For instance, he needs the age distribution histogram
of his major target audience with a high consumption ability,
and thus the data broker divides his audience into multiple
ranges based on the attribute ‘age’. The reason why he would
not issue single queries one by one lies in the fact that the data
broker answers each query independently without considera-
tion of the correlation within multiple queries. Thus, the total
error becomes much larger with more queries. Fortunately,
issuing multiple queries simultaneously probably produces a
smaller total error by leveraging the correlations reasonably.

In this paper, we investigate a novel trading problem of
multiple correlated queries that maximizes data consumer’s
utility while guaranteeing data owners’ privacy preferences
and acceptable time complexity. Three major challenges must
be addressed. The first challenge is to quantify each data
owner’s privacy loss on a set of correlated queries. The
main difference between the trading of sensitive private data
and traditional goods lies in the possible privacy loss and
thus indispensable privacy compensation. Existing private data
trading [4]–[7] adopts classical differential privacy [8] to
measure each data owner’s privacy loss in terms of a single
query. However, previous work cannot be directly applied here
because simply summing privacy losses of individual queries
is not equivalent to the total loss when queries are correlated.
Therefore, it is still unsolved work to leverage correlations
between multiple queries to quantify each data owner’s privacy
loss.

The second challenge is on making a suitable trade-off
between the data consumer’s utility and data owners’ privacy
protection. A traditional solution is to enforce the same data
perturbation mechanism for each correlated query, i.e., add
an independent Laplace noise in order to satisfy data owners’
privacy preference to some degree. However, such a mech-
anism probably produces a larger error with more queries,
and thus leads to more degraded utility. Although previous
matrix mechanism [9] proposed a utility-maximizing solution
by incorporating the correlation within multiple queries while
achieving ε-differential privacy, their work cannot be applied
to a realistic scenario because of high time complexity. Thus,
it is nontrivial to maximize the data consumer’s utility while
guaranteeing data owners’ privacy requirements in a practical
scenario.

The last but not least challenge comes from preventing data
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owners’ possible strategic behaviors. Previous works [4], [5]
consider that each data owner with diverse privacy concern is
compensated by a fixed privacy cost, and suffers bounded or
unbound privacy loss based on his privacy strategy. However,
the assumption possibly leads to biased selection when applied
to our case. Because each data owner suffers bounded privacy
loss in our scenario, fixed compensation cost possibly elimi-
nates some conservative data owners who are unsatisfied with
low privacy compensation. Consequently, a fraction of users’
records cannot reflect the whole population, and thus lead
to biased results. Therefore, a feasible privacy compensation
mechanism should compensate data owners by auction so as
to prevent them game the data market. Each player may report
a higher value than actual privacy cost for higher benefit by
auction. Thus, the proposed mechanism has to satisfy the
property of truthfulness. This further increases the complexity
of designing a practical data trading mechanism.

In this paper, by jointly considering the above three chal-
lenges, we propose TERBE, a novel framework for trading
correlaTed quEries based on pRivate web Browsing historiEs,
which consists of a data perturbation mechanism and a privacy
compensation mechanism. TERBE first employs the strategy
matrix to depict correlations between multiple queries. Due
to high total error of the traditional mechanism and high
time complexity of the optimal mechanism, we devise a
modified matrix mechanism by relaxing the sensitivity of the
strategy matrix, so as to guarantee practical running time and a
comparable total error with the optimal mechanism, but at the
cost of the increase of acceptable privacy loss. To comply with
this new matrix mechanism, TERBE next defines each data
owner’s privacy loss on multiple correlated queries based on
the relaxation of classical differential privacy, and further gives
its upper bound. According to the upper bound, we propose a
reasonable privacy compensation mechanism, which satisfies
all desired economic properties.

We highlight main contributions as follows.
• To the best of our knowledge, TERBE is the first work that

studies the trading of multiple correlated queries based on
private web browsing histories from the perspective of a
data broker in a data market.

• We propose a new matrix mechanism to make a balance
between the total error and acceptable privacy loss, with
reasonable time complexity. Besides, TERBE quantifies
each data owner’s privacy loss based on the relaxation of
classical differential privacy and devised mechanism. In
addition, data owners fairly receive distinct privacy com-
pensation rather than the same compensation because of
diverse upper bounds of their privacy losses on multiple
correlated queries in a satisfying manner.

• Our real-data based experiments and analysis demonstrate
TERBE decreases 66.67% of total error than traditional
mechanism at least. Besides, it only takes TERBE 8%
of running time of the optimal mechanism with more
queries. Through rigorously theoretical analysis, TERBE
achieves an acceptable (ε, δ)-differential privacy and all
desired economics properties.
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Figure 1. The system model for data markets trading multiple correlated
queries based on personal purchasing records.

II. DATA TRADING MODEL AND PROBLEM FORMULATION

In this section, we introduce data trading model, correlated
differential privacy, matrix mechanism, and design objectives.

A. Trading Model Based on Correlated Queries

1) Data market: As illustrated in Fig. 1, we consider a
data market consisting of data owners (i.e., web users), data
consumers and a data broker, as a trustworthy third-party
platform like Acxiom [10], which is allowed to access users’
web browsing histories.

The data broker first procures web browsing histories, which
are usually comprised of the page content and corresponding
URLs, such as purchase records of electronics or browsing
records of financial websites [11], from the data consumer’s
target audience. We use X = (t, e, ν, a) to represent extracted
key information about any piece of browsing history from any
data owner, indicating that the user with the attribute a has the
feature ν for the event e on the time t. For example, it takes
ν = 700$ for a 25-year-old female user to purchase iPhone
XS on June 5, 2019.

2) Traded data: The data consumer issues multiple cor-
related queries to the data broker so as to pinpoint his
major target audience. In addition, a natural solution to
divide the target audience is that he specifies his inter-
ested ranges R = {R1, R2, . . . , Rm} over some attribute
a (e.g., age, gender or income). Next, the data broker ag-
gregates corresponding multiple statistical results based on
key information matrix X = {X1, X2, . . .} from all re-
lated data owners’ browsing histories. For instance, Apple
Inc. wonders the proportion of target users who have more
than 2000$ average product spending in 2019 over interested
ranges R = {[15-20,female],[15-20,male],[20-25,female],[20-
25,male],[15-25,female],[15-25,male]} about the attribute
‘age’ and ‘gender’. Note that the reason why the data con-
sumer makes correlated queries is that the accumulation of
multiple perturbed query answers probably leads to a larger
error. Hence, he is willing to make another correlated query in

The sum of some query answers is equivalent to another query answer.
Each range corresponds to one query, and there are 6 correlated queries in

total. For example, the query result on [15-25,female] should be equivalent
to the sum of query results on [15-20,female] and [20-25,female].
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order to acquire a more accurate query result on his interested
larger range.

Consequently, we consider customized procurement request
by a data consumer is denoted as Q = (q,R, φ, v). Here, q
determines the group of target users by specifying constraint
information (t′, e′, ν′) (e.g., target users with more than 2000$
average costs on purchasing iPhone products in 2019), and R
further helps extract features of data consumer’s largest group
of target users. Besides, φ is a numeric function mapping
browsing histories Xq of specified target users to a vector
of statistical results corresponding to ranges R. Finally, v is
his maximum tolerant variance of noise added to any true
query answer ζj ∈ φ(Xq). We consider the data consumer
only focuses on multiple correlated counting queries about
target audience, and other more complex data analyses like
weighted sum and probability distribution fitting are subject
to our future work.

To represent multiple correlated counting queries given
ranges R, we first define mutually-exclusive ranges R, which
is the set of all disjoint ranges from R. Let the size of
R be |R| = n ≤ m, and then Ri

⋂
Rj = ∅, for any

Ri, Rj ∈ R ⊂ R. Next, the data vector corresponding to
R is denoted as x = [x1, x2, . . . , xn]t, which reflects true
statistical results on each range from R. Then, for any range
Rj ∈ (R\R), the corresponding statisitcal result on the query
j is denoted as ζj =

∑n
i qijxi, where qij is the weight of each

data element xi ∈ x on the range Rj , qij ∈ {0, 1}, and finally
generates the query matrix Q ∈ Rm∗n. Thus, the true answer
vector on these ranges is ζ = [ζ1, . . . , ζm]t = Qx. Because an
attacker with prior knowledge probably infers any user’s real
identity based on the true query answer [4]–[7], [11], [12],
the data broker answers correlated queries with a randomized
mechanism M, and returns perturbed answer vector M(ζ).

3) Privacy information: Each data owner i ∈ N =
{1, 2 . . . , L} has a privacy budget ξi , indicating his maxi-
mum tolerant privacy loss to any data consumer’s queries Q.
Besides, he submits the bid price ci as his claimed cost of
unit privacy loss (i.e., privacy cost), which probably deviates
from the real cost ci in terms of his strategic behavior. After
returning the perturbed answer vector M(ζ), the data broker
compensates each data owner with ψ(Q) for his privacy
leak ξi(M), and charges the data consumer π(Q). Clearly,
a smaller variance v leads to a larger privacy loss, and thus
produces a higher privacy compensation ψ(Q). In addition, a
more accurate answer set is returned, and results in a higher
charged price π(Q). Besides, each data owner’s utility is
defined as ui = ψ(Q)− ci · ξi(M).

B. ε-Correlated Differential Privacy

The celebrated differential privacy [8] has been adopted
widely to protect user privacy, which has to be satisfied

The weight qij is known, and naturally determined by the correlation
among multiple queries.

Also called privacy preference. A smaller privacy budget means the user
needs stronger privacy protection while the data broker leverages his private
data.
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Figure 2. A toy example for the traditional mechanism. There are 6 correlated
queries over the attribute ‘age’. Besides, each of the last two queries can
be represented by the first four ones. After adding Laplace noise, the true
answer vector ζ = {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6} becomes the perturbed one ζ

′
=

{ζ′1, ζ
′
2, ζ

′
3, ζ

′
4, ζ

′
5, ζ

′
6}.

as a strong privacy constraint. Specifically, the randomized
mechanism has to generate two close answers with a high
probability with or without any data owner’s any piece of
browsing history, which further limits the probability of the
attacker’s inferring the user’s private information.

Let ε denote privacy budget achieved by M, we have to
guarantee ε ≤ ξ. For our case, we generalize the classic ε-
differential privacy by incorporating the correlation among
multiple queries, namely ε-correlated differential privacy. Let
x

′
denote the neighboring data vector for x without the data

owner i’s any piece of browsing history Xi. Hence, we have
||x − x′ ||1 = 1 due to the disjoint range each data element
xi ∈ x belongs to.

Definition 1. (ε-Correlated Differential Privacy). A random-
ized mechanism M satisfies ε-correlated differential privacy
if for any two neighboring data vectors x,x

′
, a query matrix

Q representing the correlation between multiple queries, and
any possible output vector S, we have

Pr(M(Qx) = S)

Pr(M(Qx′) = S)
≤ eε, (1)

where a smaller private budget ε indicates a smaller privacy
loss, and causes a larger error.

Besides, the correlation among multiple queries by the query
matrix Q makes our work different from existing work [8].
To achieve the above ε-correlated differential privacy, the
traditional solution is to add a Laplace noise for each query
answer independently, determined by both privacy budget ε
and the sensitivity of the mapping function ∆φ, where the
sensitivity ∆φ over multiple correlated queries caused by
modifying any piece of browsing history Xi is:

∆φ = max
||x−x′ ||1=1

||Qx−Qx
′
||1 = max

i

m∑
j=1

|qij |, (2)

where the sensitivity of query matrix ∆Q is max
i

∑m
j=1 |qij |.

The traditional solution for a toy example is given in Fig. 2.

Lemma 1. For any numeric function φ over multiple corre-
lated queries, which are represented by the product between
query matrix Q and data vector x, the traditional mechanism
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M

M(Q,x) = φ(Q,x) +
∆Q

ε
z̃ = Qx+

∆Q

ε
z̃, (3)

where z̃ ∈ Rm consists of m independent random noises
drawn from a m-dimensional Laplace distribution with mean
[0, . . . , 0]T and scale [1, . . . , 1]T . M satisfies ε-correlated
differential privacy.

Proof. Let h(β) = 1
(2λ)n e

− ||β||1
λ represent the probability den-

sity function of a m-dimensional Laplace distribution where
the mean is 0 and the scale is λ, where β denotes the vector
of m added Laplace noises. Then we have:

Pr(Qx+
∆Q

ε z̃ = Qx+ β)

Pr(Qx′ +
∆Q

ε z̃ = Qx+ β)

=
1/(2λ)nexp(− ||β||1λ )

1/(2λ)nexp(− ||Qx−Qx′+β||1
λ )

= exp(
||Qx−Qx′

+ β||1 − ||β||1
λ

)

≤ exp( ||Qx−Qx
′ ||1

λ
) ≤ exp(ε · ||Qx−Qx

′ ||1
∆Q

) ≤ eε

(4)

, where the first and third inequation hold because of triangle
inequality and ||x − x′ ||1 = 1, respectively. Clearly, the
traditional mechanism also satisfies ξ-correlated differential
privacy because of ε ≤ ξ.

In general, we exploit the square error EQ to measure the
data consumer’s utility, i.e., E(Q) = ||M(Q,x)−φ(Q,x)||22.
Clearly, a smaller total error indicates a higher utility for each
data consumer.

C. Matrix Mechanism and Total Error

Inspired by existing work [9], we adopt an efficient matrix
mechanism in order to produce a smaller square error than the
above traditional solution. The main idea is to add the linear
combination of m independent random noises to each query
answer so as to exploit the correlation of multiple queries.
Specifically, we have to find a coefficient matrix G+, which
consists of a full rank strategy matrix G ∈ Rm∗n, m ≥ n,
and G+ = (GtG)−1Gt. Therefore, the matrix mechanism is
given in Definition 2.

Definition 2. (Matrix Mechanism [9]). Given the true answer
vector Qx and a strategy matrix G, the matrix mechanism
MG(Q,x) is defined as:

MG(Q,x) = Qx+ (
∆G

ε
)QG+z̃

= QG+(Gx+ (
∆G

ε
)z̃)

= QG+M(G,x),

(5)

where ∆G means the sensitivity of G, and ∆G =
max
i

∑m
j=1 |gij |, where gij represents any matrix element of

G. Besides, estimated values x̂G for data vector x is denoted
as x̂G = G+M(G,x). Clearly, we have ∆G > 0 because

∆G = 0 means there is no any added random noise at all.
Note that the matrix mechanism also satisfies ε-correlated
differential privacy, because it is actually a linear combination
of outputs by the traditional mechanism M(Q,x) which is
proved to be ε-correlated differential privacy. Next, we define
the total error based on the above matrix mechanism.

Definition 3. (Total Error). For each query q as each row of
Q, the corresponding error is defined as γG(q) = E[(qx −
qx̂G)2]. Therefore, the total error on the query matrix Q is
given as EG(Q) =

∑
qi∈Q γG(qi).

Lemma 2. Given the strategy matrix G, for any query q ∈
Q, the error is calculated as γG(q) = (∆G

ε )
2
2q(GtG)−1qt.

Hence, the expectation of the total error is equal to EG(Q) =
( 2
ε2 )∆2

Gtrace(Q(GtG)−1Qt).

Proof.
γG(q) = var(qx̂G)

= var(qx+
∆G

ε
qG+z̃) = (

∆G

ε
)2var(qG+z̃),

(6)

where we can find var(qG+z̃) = qG+var(z̃)(qG+)t =
qG+2Im(qG+)t = 2q(GtG)

−1
qt. Thus, we have γG(q) =

(∆G

ε )
2
2q(GtG)−1qt. Since each query q belongs to each row

of Q, the error γG(qi) is actually the ith diagonal element of
the diagonal matrix ( 2

ε2 )∆2
G(Q(GtG)−1Qt). Consequently,

the total error EG(Q) is the sum of all diagonal elements from
the diagonal matrix, which can be represented as the trace of
this matrix.

According to similar derivation, the expectation of the
total error for traditional mechanism is E(Q) = 2m

ε2 ∆2
Q.

By comparing the two expectation values, we can find the
reason why it is possible for the matrix mechanism to produce
a smaller error compared with the traditional solution. Let
W = (GtG)−1 denote the combinatorial term of γG(q),
and it exactly depicts covariance of estimated values x̂G.
Specifically, the diagonal term wii of W means the variance
about the estimate of xi from x̂G, and the off-diagonal element
wij indicates the covariance of the estimate of xi and xj .
Hence, we have wii > 0, but wij is possibly less than zero.
Moreover, for each query q, the error term of γG(q) is:

q(GtG)−1qt =
∑
i<n

q2
iwii +

∑
i<j

2qiqjwij . (7)

Since wij may be negative, the error term is possibly smaller
than 1 when the query error on each disjoint range is high, but
the accuracy on other correlated queries (i.e., the linear com-
bination of query answers on disjoint ranges) is significantly
improved. Therefore, it is possible to produce a smaller total
error when carefully picking the strategy matrix G such that
∆G ≤ ∆Q and trace(Q(GtG)−1Qt) ≤ m.

D. Design Objectives

In this work, we aim at designing a practical trading mech-
anism for multiple correlated queries based on web browsing
histories, which satisfies the following desired properties.
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• ξ-Privacy Preservation: The randomized mechanism M
has to achieve ξ-correlated differential privacy for any
data owner at least.

• Least Square Error: Once the privacy constraint is
reached, the data broker tries to find the optimal strat-
egy matrix G to minimize the total error EG(Q) when
perturbing the correlated answer vector.

• Budget Balance: The charged price for the data consumer
can afford all chosen data owners’ privacy compensation,
i.e.,

∑
i ψi(Q) ≤ π(Q).

• Truthfulness: Any data owner i would never get a higher
utility because of the untruthful bid c̃i, i.e., u(ci, c−i) ≥
u(c̃i, c−i), where c−i denotes the set of bid except ci.

• Individual Rationality: Any data owner i has nonnegative
utility for the truthful bid, i.e., ui ≥ 0.

III. DESIGN OF TERBE

In this section, we present TERBE with aforementioned
design objectives. TERBE includes three important compo-
nents. First, TERBE performs data preprocessing to obtain
true statistical results for interested ranges. Second, TERBE
calculates the optimal strategy matrix G to minimize EG(Q)
with the privacy constraints, and then adopts the newly de-
vised matrix mechanism to perturb correlated answer vector.
Finally, TERBE quantifies each chosen data owner’s privacy
loss on multiple correlated queries, and then calculates the
corresponding privacy compensation.

A. Data Preprocessing for Private Web Browsing History

The first component of TERBE is data preprocessing. Upon
receiving the data consumer’s request Q, the data broker first
finds all related data owners’ purchasing records about some
product (e.g., iPhone), and then generates the original matrix
[11]. Then the data broker extracts the key information Xi

from each piece of web browsing history, and next obtains
key information matrix X . For example, the popular cashback
website (e.g., Ebates [13]) acquires any user’s purchasing
amount ν about any product e on the time t by sharing a
fraction of profits with them. After that, the data broker counts
statistical results x on disjoint ranges R, generates the query
matrix Q based on the correlation between multiple queries,
and finally obtains true answer vector ζ = Qx on all queries.

B. Data Perturbation for True Answer Vector

Next, we consider the second component of TERBE, namely
data perturbation mechanism for true answer vector. The data
broker has to determine how to perturb the true answer vector
in order to achieve ξ-correlated differential privacy at least and
as small total error as possible simultaneously. Since the matrix
mechanism can achieve a smaller total error theoretically by
exploiting the correlation between multiple queries, the data
broker determines to adopt the mechanism. Specifically, he
first calculates an optimal strategy matrix G to minimize the
total error EG(Q), and then achieves the matrix mechanism in
Definition 2.

However, to minimize the total error EG(Q) with the
privacy constraint and ∆G > 0 is hard. Since there are
two interactive parts in this objective function, i.e., sensitiv-
ity term ∆G and linear combination of combinatorial term
(i.e., trace(Q(GtG)−1Qt), latter abbreviated as trace term),
the minimization problem is more complex especially when
the scale (i.e., the number m of total queries and size n of
data vector x) becomes larger.

Fortunately, we can exploit the semidefinite programming
with rank constraint [14] to solve the above problem. The
main idea is that we first try to minimize one term (e.g., trace
term) to calculate the optimal matrix G when the other term
(e.g., sensitivity term) is set to be less than 1. Next, we map
the minimization problem into the semidefinite programming
problem according to the Schur complement [15] in lemma 3.

The idea is reasonable because the objective function only
relies on the combinatorial term, and there is probably not
the unique strategy matrix G. Hence, any of two terms can be
scaled down within 1 under the initial goal. To further simplify
the problem, we transfer the original query matrix as Q ∈
Rn∗n, which can be achieved by matrix decomposition [16].
The consideration is reasonable because the strategy matrix G
minimizes the total error EG(Q) for any query matrix Q, and
also minimizes it for any other matrix D as long as QtQ =
DtD. Then the data broker can perturb the true answer vector
ζ based on the matrix mechanism once G is determined.

1) Original solution to calculate matrix G: The key point
for calculating the optimal strategy matrix G is to min-
imize the trace term while the sensitivity term is limited
to ∆G ≤ 1. Minimizing the trace term is equivalent to
minimizing the sum of the upper bound of each diagonal
element (Q(GtG)−1Qt)ii. The reason why we minimize the
sum of upper bound values is that we try to solve the original
minimization problem by typical semidefinite programming
[14]. Next, we convert the minimization problem by construct-
ing a positive semidefinite matrix M in Lemma 3.

Lemma 3. (Schur Complement). Consider a matrix M =(
Z L
Lt µ

)
, where Z is a positive semidefinite matrix, L is a

n-dimensional vector and µ is a constant. Then we have M
is positive semidefinite if and only if µ ≥ LtZ−1L [15] [17].

Let µi represent the upper bound of each diagonal ele-
ment (Q(GtG)−1Qt)ii. For any µi ≥ (Q(GtG)−1Qt)ii,
if we further set (Z−1)m+i,m+i = (Q(GtG)−1Qt)ii and
L = ei which is a n-dimensional vector whose the ith

element is one and others are zero, we then construct a positive
semidefinite matrix Mi based on Lemma 3. Besides, we define

rank
(
Im G
Gt P

)
= m to generate the matrix P = (GtG)−1

as our rank constraint, and further limit ∆G ≤ 1. Therefore,
minimizing the sum of µi is converted to a semidefinite
programming problem with n semidefinite constraint matrices,

For any two matrices A and B, A and B are equivalent strategy matrix
as long as (AtA)−1 = (BtB)−1.
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i.e., Mi � 0, which can be solved by the classic semidefinite
programming with rank constraint [14].

Next, we give time complexity of the above problem.
Because the semidefinite programming has time complexity
O(n3) when there is only one constraint matrix Mi with size
n×n. There are n constraint matrices with size m+n in total,
and thus the problem has high time complexity O(m3n3),
where m is usually large.

2) Simplified solution to calculate matrixG: It is inefficient
to solve the above optimization problem by original solution
in a practical data trading market in consideration of high time
complexity. Therefore, we try to simplify the above problem
in order to reduce time complexity. The key principle is that
we minimize the sensitivity term ∆G in turn while limiting
each diagonal element to (Q(GtG)−1Qt)ii ≤ 1. To further
simplify the minimization problem, we replace the l1 norm
sensitivity ∆G of G with the l2 norm sensitivity ∆

′

G, where
∆

′

G = max
||x−x′ ||2=1

||Gx −Gx′ ||2 =
√

max1≤i≤n |λi| and λi

is any eigenvalue of GtG. Hence, minimizing the sensitivity
term is exactly minimizing the maximum eigenvalue of GtG.
The reason why we use the l2 norm sensitivity is that we try to
regard the combinatorial term W = (GtG)−1 as a whole, and
output it by the converted semidefinite programming. Then we
can exploit the fact that minimizing the maximum eigenvalue
of GtG is equivalent to minimizing the sum of the upper
bound of each diagonal element of GtG, so as to simplify
the objective function.

Next, we convert the above minimization problem by
constructing a positive semidefinite matrix. Let µ

′

i denote
the upper bound of each diagonal element of GtG. For
any µ

′

i ≥ (GtG)ii, if we further set Z
′

= (GtG)−1,
L′

= ei, we then construct a positive semidefinite matrix
M

′

i with size n based on lemma 3. Moreover, we set the

rank constraint as rank
(
In G
Gt W (−1)

)
= n, and further limit

(Q(GtG)−1Qt)ii ≤ 1. Hence, minimizing the sum of µ
′

i

is converted to a semidefinite programming problem with n
semidefinite constraint matrices, i.e., M

′

i � 0, as our first
subproblem. Clearly, the subproblem can be solved by the
semidefinite programming with lower time complexity O(n3).

In addition, the other subproblem is to calculate the matrix
G based on the previous output W in order to minimize its
sensitivity, which can be also solved by the semidefinite pro-
gramming with rank constraint [14] with low time complexity
O(n3). After that, we determines G.

Next, we analyze the connection between the original and
simplifed solution in Lemma 4.

Lemma 4. Given the query matrix Q, we have

EG′ (Q) ≤ nEG(Q), (8)

where G and G
′

is the solution of original and simplifed
problem, respectively, and n is the dimension of matrix G.

The inequality holds because of the basic property,
i.e., ||G||1 ≤

√
n||G||2. From Lemma 4, we can observe

the simplified solution actually produces a higher total error
than the original one, but the difference is usually not large
because of small size n. It is worth noting that we still have
EG′ (Q) ≤ E(Q) for a carefully-picked matrix G because of
the large error. According to lemma 4, we can see the simplifed
solution has a measurable objective function value compared
with the original solution. However, the simplifed problem
produces a slightly different privacy guarantee compared with
ε-correlated differential privacy in terms of using l2 norm
sensitivity of ∆

′

G instead, which is defined as follws.

Definition 4. ((ε, δ)-Correlated Differential Privacy). A ran-
domized mechanism M satisfies (ε, δ)-correlated differential
privacy if for any two neighboring data vectors x,x

′
, a

query matrix Q representing the correlation between multiple
queries, and any possible output vector S, we have

Pr(M(Qx) = S) ≤ eε × Pr(M(Qx
′
) = S) + δ, (9)

where 0 < δ ≤ 1 is a constant set by the data broker, to
guarantee ξ-correlated differential privacy at least, and we
have to satisfy δ ≤ 2e−ε/8.

Therefore, the new privacy constraint is actually a relaxation
of ε-correlated differential privacy, which further increases
privacy budget. However, with a carefully-picked constant δ,
we can still guarantees the maximum tolerant privacy budget ξ.
Note that our simplified solution produces a higher total error
than the optimal solution, and also has higher privacy loss
than the traditional solution because of the increase of privacy
budget. However, our approach still have large advantage
in terms of high error of traditional solution and high time
complexity of optimal solution.

To satisfy the above (ε, δ)-correlated differential pri-
vacy, we propose a newly devised matrix mechanism,
i.e., M′

G(Q,x) = QG+M′
(G,x). Specificially, we still

exploit the original matrix mechanism in Definition 2, but only

add diverse random noises, i.e., M′
(G,x) = Gx +

∆
′
G

ε z̃δ ,
where ∆

′

G refers to l2 norm sensitivity of G, and z̃δ ∈ Rm
is comprised of m independent random noises drawn from
a m-dimensional Gaussian distribution with mean [0, . . . , 0]T

and variance [8ln(2/δ), . . . , 8ln(2/δ)]T , where δ ≤ 1 and
ε ≤ 8ln(2/δ).

Theorem 1. The newly devised noise perturbation mechanism
M′

(G,x) satisfies (ε, δ)-correlated differential privacy.

Proof. Please refer to our technical report [18] for the proof.

C. Privacy Compensation

Finally, we consider the third component of TERBE, i.e., pri-
vacy compensation mechanism. Specifically, we first quantify
each data owner’s privacy loss, and then calculate affordable
monetary compensation.

1) Privacy loss: Based on the above data perturbation
mechanism M′

G(.), some data owners have to suffer privacy
loss because of the data broker’s leveraging their privacy
information. Next, we first define each data owner’s privacy
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Algorithm 1: Correlated Query Trading Mechanism
Input: Procurement request Q, set N of data owners, query

matrix Q, upper bound set of privacy loss
η = {η1, η2, . . . , ηL}, set c of privacy costs, and
budget B.

Output: Set C = {C1, . . . , C|q|} of chosen data owners,
payment vector p, and perturbed answer vector ζ

′
.

1 C ← ~∅, p← 0;
2 // Data Owner Selection ;
3 Sort all data owners from N in the increasing order of ci;
4 Find the largest index r such that cr · ηr ≤ B

r
;

5 if r ≥ |q| and 8(
∆Q

ε
)2ln(2/δ) ≤ v then

6 Choose the first |q| data owners as winners;
7 for i = 1 to |q| do
8 C ← C

⋃
{i};

9 // Privacy Compensation Mechanism ;
10 pi = pi +min(B

r
, cr+1 · ηi);

11 end
12 // Data Perturbation Mechanism ;
13 x = dataPreprocessing(C);
14 M

′
G(Q,x) = QG+M′(G,x), ζ

′
=M

′
G(Q,x);

15 end
16 return (C, p, ζ

′
);

loss. For any two neighboring data vectors x and x
′

with or
without any data owner’s any piece of browsing history Xi,
his privacy loss ξi(M

′

G) is given as follows.

Definition 5. Any data owner’s privacy loss by the randomized
mechanism M′

G(.) over multiple correlated queries Q based
on various web browsing histories is:

ξi(M
′

G) = supx,S

∣∣∣∣∣log
Pr(M′

G(Qx) = S)

Pr(M′
G(Qx′) = S)

∣∣∣∣∣ . (10)

The main idea of Definition 5 is to compare outputs by
M′

G(.) over these two neighboring data vectors. Next, we
further give the upper bound ηi(M

′

G) of any data owner’s
privacy loss.

Theorem 2. Let G be the optimal strategy matrix for the
simplified problem, M′

G(.) denote the newly devised matrix
mechanism, v represent the variance of added Gaussian noise,
and δ be fixed privacy parameter. Then each data owner i’s
privacy loss is above bounded by

ηi(M
′

G) =

eig
i→k

(GtG) + 4n ·
√

eig
i→k

(GtG)
√

2ln(2/δ)

2v
(11)

Proof. Please refer to our technical report [18] for the proof.

2) Monetary compensation: The monetary compensation
for each data owner is calculated as the product between the
upper bound of his privacy loss and received privacy cost.
Next, inspired by the work [11], we introduce a practical pri-
vacy compensation mechanism in terms of a realistic scenario.

In a practical trading market, we consider data owners
have diverse privacy costs, which are unknown to the data
broker. Besides, conservative users have a high privacy cost,
while liberal users are usually less concerned about their

privacy and have a smaller privacy cost. Note that fixed pri-
vacy compensation probably leads to biased statistical results
because most conservative users are probably unwilling to
sell their private information in terms of unsatisfied privacy
compensation. Hence, TERBE assumes that each data owner
reports his privacy cost by auction, i.e., c = {c1, c2, . . . , cL}.
Moreover, suppose that the data broker’s budget for any
data consumer’s request Q is B . Combined with the data
perturbation mechanism, we give an intuitive correlated query
trading mechanism in Algorithm 1.

In consideration of limited budget B, he first picks data
owners with affordable compensation costs in advance ac-
cording to line 3-4. Besides, the matrix mechanism tries to
minimize the sensitivity term, and thus outputs the strategy
matrix G with a smaller sensitivity than Q, i.e., ∆G ≤ ∆Q.
Hence, if 8(

∆Q

ε )2ln(2/δ) ≤ v, then the data consumer’s
accuracy requirement is achieved. In line 7-11, if there are
sufficient affordable data owners and the maximum tolerant
variance v can be satisfied, then the data broker would
choose the first |q| data owners, and distribute the payment
φi(Q) = min(Br , cr+1 ·ηi) to each winner. Next, he leverages
chosen data owners’ records to generate true data vector
x in line 13, which is achieved by the first component of
TERBE, namely the function dataPreprocessing(.). Finally,
the perturbed answer vector is returned by the proposed data
perturbed mechanismM′

G. We next show economic properties
of TERBE in Theorem 3.

Theorem 3. TERBE achieves individual rationality, truthful-
ness and budget balance.

Proof. Please refer to our technical report [18] for the proof.

IV. EVALUATION

In this section, we present evaluation results of TERBE in
consideration of the total error of data perturbation and diverse
privacy compensation for each data owner.

A. Evaluation Settings

1) Dataset: We first introduce a real-world dataset from
an open dataset community [19]. There are over 1000 ven-
dors who have 14946 purchasing records about more than
1000 commodity goods. Each purchasing record includes
purchasing date and amount, which exactly indicates that
some vendor spends money ν for buying some commodity
e on the date t. Because there are no available open personal
purchasing records including individuals’ private information
on the Internet, we generate personal users’ purchasing records
based on the above dataset. Specifically, we replace vendors
as personal web users, and generate their attributes a like
‘age’, ‘gender’ and ‘income’. Besides, we simulate each data
consumer’s multiple correlated queries Q like the toy example
in Fig. 2, where more ranges R are refined for more queries

The budget can be calculated by the arbitrage-free pricing of query by
existing works [4] [6].
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m. For example, we count the number of users who have over
5000$ average spending about consult service in 2014 for each
range like 25-30 about ‘age’. Finally, we obtain the true data
vector x for Q.

2) Settings: Supposed that data owners’ privacy costs are
drawn from the exponential distribution with mean 0.5. Let
B = 106 and ξ = 1.2ε. In addition, we vary privacy budget ε
within [101, 101.5, . . . , 105], and set the parameter δ = 0.5 for
TERBE in order to satisfy ξ-correlated differential privacy. By
default, we fix the number of correlated queries and privacy
budget as m = 5 and ε = 100, respectively. Moreover, we
evaluate the performance of TERBE, and compare it with tradi-
tional and optimal mechanism, respectively. Note that optimal
mechanism refers to the matrix mechanism by original solution
to calculate the optimal matrix G. The metrics include total
error, running time and privacy compensation which refers to
total payments of all chosen data owners (i.e.,

∑
i∈C pi). For

privacy compensation, we only present evaluation results for
TERBE and traditional mechanism, because optimal mecha-
nism adds the same Laplace noise with traditional mechanism
basically with the same compensation. In addition, each data
point is the average value after running 200 iterates.

B. Evaluation Results

First, we evaluate the performance of the data perturbation
mechanism for TERBE.

1) Evaluation of total error: From Fig. 3, it can be seen that
the total error decreases when privacy budget ε increases from
101 to 105. This is because a higher privacy budget means a

smaller added noise, and thus leads to a smaller total error.
Besides, TERBE outperforms than the traditional mechanism,
but is inferior to the optimal mechanism, which conforms to
our expectation.

In Fig. 4, we can observe TERBE decreases 66.67% of the
total error than the traditional mechanism when m = 8, and
even 90% of the total error for more queries, while TERBE
is close to that of the optimal mechanism with a small gap.
The reason lies in the fact that the traditional mechanism never
leverages correlations between multiple queries. Moreover, the
accumulated error would be larger with the increase of the
number of queries in terms of an added Laplace noise for each
query. However, the other two mechanisms exploit correlations
to produce a smaller total error.

2) Evaluation of running time: Fig. 5 shows TERBE de-
creases 92% of running time than the optimal mechanism
when the number of queries increases to m = 13, which
further verifies the optimal mechanism cannot be applied to
a realistic scenario in terms of a large number of queries.
Fortunately, it takes the data broker acceptable time to achieve
data perturbation with much lower running time than the
optimal mechanism. It can be observed that the traditional
mechanism executes quickly because it never needs to calcu-
late the optimal matrix G, which usually takes a long time.

The above evaluation results show TERBE indeed balances
total error and user privacy well within acceptable running
time. Next, we turn to the privacy compensation mechanism.

3) Evaluation of privacy compensation: Supposed that the
traditional mechanism adopts similar privacy compensation
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with TERBE. The only difference is that the upper bound of
any data owner i’s privacy loss for the traditional mechanism
is ηi(M(Q,x)) =

∑
j∈m |qkj |√

0.5v
[4], where the subscript k

indicates the kth data element xk this data owner i’s browsing
history is counted to. In Fig. 6, we can find that TERBE pays
more privacy compensation than the traditional mechanism
when the number of queries increases from 50 to 400. The
reason is that TERBE generates perturbed answer vector with
smaller total error than traditional mechanism but at the cost of
a higher monetary compensation within an affordable budget.

Fig. 7 demonstrates privacy compensation for both mech-
anisms goes down with the increase of variance from 20 to
230. It is clear that a lower variance means the data consumer’s
higher accuracy requirement for the same number m = 100 of
correlated queries. Consequently, smaller noises are added, and
probably cause higher privacy loss for each chosen data owner.
Therefore, higher privacy compensation should be distributed
to them.

According to Theorem 2, we can see that each data owner
have a diverse upper bound of privacy loss, and thus they
would be paid for diverse privacy compensation. Fig. 8 exactly
depicts the percentage of their utility under 4 kinds of different
settings. Specifically, it can be observed that there would be a
larger percentage of data owners who obtain higher utility for
a larger number m = 100 of queries and the lower variance
v = 100. It is reasonable because more data owners suffer
higher privacy loss for more refined ranges and a higher
accuracy requirement, and thus they have to be compensated
more. Besides, from Fig. 8, we can see all data owners have
nonnegative utilities, which further verifies TERBE achieves
the property of individual rationality.

The above evaluation results illustrate TERBE pays more
privacy compensation than traditional mechanism but still
guarantees budget balance.

V. RELATED WORK

A. Data Market Design

A growing number of pieces of related literature have
focus on data market design in recent years. Research work
from database field first study arbitrage-free pricing of queries
over common user relational database [20], [21]. Li et al.
[9] then propose the matrix mechanism to minimize the
error of returned perturbed queries. Follow-up work by Li
et al. [5] further considers the pricing of a single linear
query by achieving arbitrage-freeness, as well as a privacy
compensation mechanism for data owners with diverse privacy
strategies. Based on Li et al.’s work, Niu et al. [4] next
propose a query trading mechanism for common aggregate
statistics especially in terms of correlations between diverse
individuals. Different from above work, Niu et al. [6] and
Jin et al. [7] aim at trading real-world datasets, i.e., personal
users’ time series data and sensing workers’ location privacy,
respectively. Specifically, Niu et al. [6] borrows the idea of
pufferfish privacy [22] to quantify each data owner’s privacy
loss at temporal correlation. Besides, Jin et al. [7] design a

location obfuscation mechanism to protect sensing workers’
location privacy, and compensate them for both sensing cost
and privacy cost. Similarly, Zhang et al. [12] propose a
privacy-preserving outsourcing mechanism for social media
data like Twitter data. Based on Zhang et al.’s work, Cai et al.
[11] further design the trading mechanism for web browsing
history especially in terms of data consumer’s utility, and try
to trade the whole perturbed dataset.

However, none of the above work has taken the trading
of multiple correlated queries into consideration, and further
considered privacy compensation mechanism for data owners
with diverse privacy losses.

B. Incentive Mechanism for Trading

Other previous work investigate incentive mechanism design
for data trading so as to motivate data owners to report their
privacy valuation truthfully. Ghosh et al. [23] regard user
privacy as a commodity, and trade each counting query by
running auction. Wang et al. [24] assume that each data owner
reports a noisy data version in terms of an untrusted data
collector, and obtains privacy compensation in the context of
game theory.

Nevertheless, these work aim at trading private data by a
game-theoretic model, rather than the pricing of data privacy
as our key idea.

VI. CONCLUSIONS

In this paper, we have proposed a privacy-preserving frame-
work TERBE for trading multiple correlated queries based on
web browsing histories. In TERBE, data owners have to report
their real privacy costs, and then can get reasonable privacy
compensation for their diverse privacy losses in a satisfying
manner. Besides, each data consumer can purchase interested
multiple correlated queries with a comparable total error with
the optimal mechanism. We have evaluated the performance
of TERBE through real-data based experiments. Evaluations
and analysis demonstrate TERBE achieves a satisfying trade-
off between user privacy and the total error within acceptable
running time, and guarantees all desired economic properties,
which shows the usefulness and feasibility of TERBE.

VII. ACKNOWLEDGMENT

This research is supported in part by the 2030 National Key
AI Program of China 2018AAA0100503 (2018AAA0100500),
National Science Foundation of China (No. 61772341,
No. 61472254, No. 61772338 and No. 61672240), Shang-
hai Municipal Science and Technology Commission (No.
18511103002, No. 19510760500, and No. 19511101500), the
Innovation and Entrepreneurship Foundation for oversea high-
level talents of Shenzhen (No. KQJSCX20180329191021388),
the Program for Changjiang Young Scholars in University of
China, the Program for China Top Young Talents, the Pro-
gram for Shanghai Top Young Talents, Shanghai Engineering
Research Center of Digital Education Equipment, and SJTU
Global Strategic Partnership Fund (2019 SJTU-HKUST).

107



REFERENCES

[1] G. Beigi, R. Guo, A. Nou, Y. Zhang, and H. Liu, “Protecting user
privacy: An approach for untraceable web browsing history and unam-
biguous user profiles,” in Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, WSDM 2019, Melbourne,
VIC, Australia, February 11-15, 2019, 2019, pp. 213–221.

[2] “Cnn markets,” ”https://money.cnn.com/data/markets/”, 1980.
[3] “Behavior targeting,” ”https://business.twitter.com/en/targeting.html.”,

2017.
[4] C. Niu, Z. Zheng, F. Wu, S. Tang, X. Gao, and G. Chen, “Unlocking

the value of privacy: Trading aggregate statistics over private correlated
data,” in KDD 2018, London, UK, August 19-23, 2018, pp. 2031–2040.

[5] C. Li, D. Y. Li, G. Miklau, and D. Suciu, “A theory of pricing private
data,” Commun. ACM, vol. 60, no. 12, pp. 79–86, 2017.

[6] C. Niu, Z. Zheng, S. Tang, X. Gao, and F. Wu, “Making big money
from small sensors: Trading time-series data under pufferfish privacy,”
in 2019 IEEE Conference on Computer Communications, INFOCOM
2019, Paris, France, April 29 - May 2, 2019, 2019, pp. 568–576.

[7] W. Jin, M. Xiao, M. Li, and L. Guo, “If you do not care about it, sell
it: Trading location privacy in mobile crowd sensing,” in 2019 IEEE
Conference on Computer Communications, INFOCOM 2019, Paris,
France, April 29 - May 2, 2019, 2019, pp. 1045–1053.

[8] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends in Theoretical Computer Science, no.
3-4, pp. 211–407, 2014.

[9] C. Li, G. Miklau, M. Hay, A. McGregor, and V. Rastogi, “The ma-
trix mechanism: optimizing linear counting queries under differential
privacy,” VLDB J., no. 6, pp. 757–781, 2015.

[10] “Axicom,” ”https://www.acxiom.com”, 1969.
[11] H. Cai, F. Ye, Y. Yang, Y. Zhu, and J. Li, “Towards privacy-preserving

data trading for web browsing history,” in Proceedings of the Interna-
tional Symposium on Quality of Service, IWQoS 2019, Phoenix, AZ,
USA, June 24-25, 2019., 2019, pp. 25:1–25:10.

[12] J. Zhang, J. Sun, R. Zhang, Y. Zhang, and X. Hu, “Privacy-preserving
social media data outsourcing,” in INFOCOM 2018, Honolulu, HI, USA,
April 16-19, 2018, 2018, pp. 1106–1114.

[13] “Ebates,” ”https://www.ebates.com”, 1998.
[14] J. Dattorro, Convex optimization & Euclidean distance geometry, 2010.
[15] F. Zhang, The Schur complement and its applications. Springer Science

& Business Media, 2006, vol. 4.
[16] D. M. Witten, R. Tibshirani, and T. Hastie, “A penalized matrix

decomposition, with applications to sparse principal components and
canonical correlation analysis,” Biostatistics, vol. 10, no. 3, pp. 515–
534, 2009.

[17] P. A. Parrilo and S. Lall, “Semidefinite programming relaxations and
algebraic optimization in control,” Eur. J. Control, vol. 9, no. 2-3, pp.
307–321, 2003.

[18] “Technical Report for TERBE,” ”https://www.dropbox.com/s/
sog68tfdqa0ckkc/Technical Report for TERBE.pdf?dl=0”, 2019.
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