Fair and Protected Profit Sharing for Data Trading
in Pervasive Edge Computing Environments

Yaodong Huang, Yiming Zeng, Fan Ye, Yuanyuan Yang
Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA
{yaodong.huang, yiming.zeng, fan.ye, yuanyuan.yang} @stonybook.edu

Abstract—Innovative edge devices (e.g., smartphones, IoT de-
vices) are becoming much more pervasive in our daily lives.
With powerful sensing and computing capabilities, users can
generate massive amounts of data. A new business model has
emerged where data producers can sell their data to consumers
directly to make money. However, how to protect the profit of
the data producer from rogue consumers that may resell without
authorization remains challenging. In this paper, we propose a
smart-contract based protocol to protect the profit of the data
producer while allowing consumers to resell the data legitimately.
The protocol ensures the revenue is shared with the data producer
over authorized reselling, and detects any unauthorized reselling.
We formulate a fair revenue sharing problem to maximize the
profit of both the data producer and resellers. We formulate
the problem into a two-stage Stackelberg game and determine a
ratio to share the reselling revenue between the data producer
and resellers. Extensive simulations show that with resellers, our
mechanism can achieve higher profit for the data producer and
resellers.

Index Terms—Pervasive edge computing, Blockchain, Smart
contract, Game theory

I. INTRODUCTION

With the arrival of 5G networking systems, edge computing
is becoming increasingly pervasive in our daily lives. The
backbone technologies help the thrive of smart edge devices,
e.g., IoT devices, phones, and vehicles. These edge devices
are equipped with advanced sensing and communicating ca-
pabilities and can create massive amounts of data, which can
be transferred and shared easily among devices and clients.
Some new business models are emerging with the abundance
of devices and data. Producers, owner of certain devices, can
provide information or services to consumers for incomes.
One example is “We Media”, where data producers trade their
content, mainly video clips or texts, to other consumers and
make money.

Consider a situation where the producer has for-profit con-
tents to sell to potential consumers in peer edge environments.
The producer wants to get reasonable rewards for the data it
sells, and the consumer wants to get desired and genuine data
from the producer. Most current solutions require a trusted
third party or platform to manage contents and subscriptions.
For example, Gumroad [1] provides this kind of model for
producers to sell contents directly to consumers. Although
considerable amounts of data are sold on these platforms,
there are still adverse events [2], mostly related to security,
trust and privacy concerns. Meanwhile, the consumer cannot
assure that the purchased data are genuine on such platforms,
and unauthorized reselling is regulated largely by user reports,
at best incomplete, untimely and unreliable [3].

To ensure secure and reliable data access, we adapt the
blockchain technology for data trading in edge environments.
The blockchain technology used widely in cryptocurrencies is
a secure ledger for sharing micro-payment and micro-access
control information in such distributed environments. There
are many security features built in the blockchain. First, the
completed transaction history is encoded in the blockchain for
quick restoration and verification. Second, unless malicious
users have more than half of the total computational power,
neither the block nor its contained data can be modified the-
oretically. The blockchain technology helps a transaction take
place in a decentralized fashion, thus improving efficiency,
security, and privacy over a network without a centralized
entity or a trusted third party.

Despite the advantages of blockchain technology in such
distributed systems, there are many challenges in data trad-
ing/reselling context. First, the consumer can resell purchased
data to other consumers and share the profit with the original
data producer. The data producer should know that the data
item is resold and the second consumer can verify that the
data item is genuine. Second, to achieve fast and reliable data
access in edge environments, it is crucial that data items are
proactively stored onto some devices. Then, users can get data
from nearby devices for quick access. Third, since resources
of devices are often limited in edge environments, any device
that stores and sends data needs to consume its resources.
Thus, such devices should be compensated appropriately with
a share of the revenue from the producer.

In this paper, we study the data trading problem in peer edge
environments. We propose a selling and reselling mechanism
that ensures proper profit for the data producer while ensuring
data genuineness to the consumer. The revenue sharing be-
tween different nodes is protected and enforced by the smart-
contract and blockchain. To determine the optimal revenue
sharing ratio, a Stackelberg game is formulated to describe
the interaction between the producer and reseller nodes and
a unique equilibrium is derived. We also propose a rounding
scheme for the relaxed Stackelberg game model and derive
the performance guarantee between the rounded result and the
optimal result. Extensive simulations show that our proposed
mechanism can achieve higher profit for the producer and also
share it among other nodes to incentivize their participation.

We make the following contributions in this paper.

o We design a profit sharing mechanism for devices to resell

data and share the revenue with the data producer. We
develop a smart contract-based protocol to ensure that

the data selling and reselling are trackable and the profit
of each party is publicly accepted.

« We design a protocol for the consumer to verify if the
data is genuine from the producer without imposing extra
burdens on the consumer, and protect the profit of both
consumer and producer.

e We model the interaction between the producer and
resellers as a two-stage dynamic Stackelberg game to
determine the optimal revenue sharing ratio and derive the
analytical solutions for both the producer and resellers.
We analyze the data storage and delivering scheme and
prove that an approximation ratio exists between the
rounded equilibrium of the Stackelberg game and the
optimal result.

o« We implement our proposed mechanism and conduct
extensive evaluation. The results show that the proposed
mechanism can achieve more profit for the producer with
the help of resellers, while offering profit for resellers to
incentivize participation in the network.

II. RESELLING PROCESS AND GAME FORMULATION

In this section, we introduce the data trading model and
the Stackelberg game formulation. We discuss the reselling
process as well as the revenue sharing mechanism.

TABLE I
NOTATIONS USED IN THE PAPER

1 €L Reseller nodes and reseller node set

jeJ Consumer nodes and consumer node set

nenN Nodes and node set

keK Data items and data item set

Tik The share of revenue for node 7 to resell data item k

Cijk The cost for node ¢ send data item k to node j

Pk The price of data item k

Pik The request of data item k£ from consumer j

Lik The cost measurement weight for node ¢ to store data
item k

ok The size of data item k

Tik Determination variable for node ¢ to store data item k

Yijk Determination variable for node 4 to send data item k to
node j

S(r,y) The profit function for the data producer

U(r,z,y) | The profit function for the reseller

There are three main roles for each node n € N, which
indicates an active device in the system. The producer is the
node that produces original data items. The consumer is the
node that demands and purchases data items, denoted as j €
N The reseller, denoted as i € A/, purchases and stores data
items for self-implementation and can deliver data items to
requesting consumers to get more income. We only consider
one producer in our problem who generates the original data
items for selling.

A. Reselling Process

Nodes can take different roles in the network. In our
proposed system, a consumer is allowed to resell the data item
after purchasing it. The node that resells the data changes its
role from a consumer to a reseller. Since the data item is
revealed to the reseller after purchasing, it can sell data in
one way or the other, authorized or pirated. Thus, the goal

of our design is to make sure the producer is aware of this
reselling transaction and get corresponding revenue from the
transaction.

We assume that consumers and the producer are honest and
rational when a reselling transaction happens. The consumer
wants to make sure that the data item it receives is genuine
and not corrupted. Thus, the consumer will proactively check
if the data is from the data source. Once it receives data item
k, the consumer j will present verification packets to potential
producers for checking. Meanwhile, the producer wants to
ensure it gets a share of the reselling revenue. Since all selling
information is stored in the blockchain, the producer can trace
which nodes have already purchased the data item. Once the
producer gets the packet from a new consumer that matches
the information of a data item it once produced, it will check if
the reselling is authorized. If the reselling is authorized, which
means the reseller informs the producer about the selling and
revenue sharing information, the transaction will be completed.
The revenue is shared between reseller ¢ and the producer at
a previously determined ratio r;;, for data item k. Otherwise,
the producer shows the proof of data ownership and rejects the
transaction. The detailed design is presented in Section III.

B. Revenue Sharing Game Formulation

As we mentioned above, the producer shares the revenue
with resellers at a sharing ratio r;; when they are involved
in this selling process. We define the revenue sharing ratio
between the producer and resellers as the ratio of the revenue
(i.e., price) the resellers gets for reselling a data item. Once
a data item is sold, and the consumer purchase is processed,
the revenue will be divided using this ratio. This ratio will be
encoded in a smart contract and later encoded in the blocks.
Thus, the transaction and revenue distribution can be publicly
validated and accepted, and the credit for each party is updated
accordingly.

To determine this ratio between the producer and resellers,
we formulate the problem as a two-stage Stackelberg game
for both parties. By offering a fair ratio, the producer can en-
courage more resellers to participate and achieve the maximal
profit for both producer and resellers. For each producer, the
profit comes from the shared revenue of resellers and the sale
directly to consumers. The formulation is as follows.

max S(r,y) = Z Z Z(l — Tik)PrYijk

i€L jET ke

+ > (e — cojr)yosi, 1)

JjET kEK
s.t. Zyijk + yojr = pik, (Vj € J,Vk € K))
i€L
ik € {0,1}, (Vi € T,¥j € J,Vk € K) 3)
Tik € [0, 1}4 (VZ € I, Vk € K:) (4)

We denote S(r,y) as the objective function of the producer.
The objective function (1) consists of two parts. The first part
is the revenue shared with resellers. (1 — r;;) denotes the
remaining revenue sharing ratio for the producer. p; is the

price of data item k. y;;5 is a binary determination variable.
¥i;k = 1 indicates that node 7 will send data item & to node j.
The second part is the revenue if the data item is directly sold
to consumers by the producer. c¢;;;, is the cost for node ¢ to
deliver data item k to consumer j. In peer edge environments,
communication cost is one of the most important costs. We
use a weighted communication cost in this situation to indicate
the price for the data item to be delivered. ¢ = 0 indicates that
the node is the data producer. Thus, (px — cojx) is the profit
of the producer directly for selling data item & to node j, and
Yo;% determines whether the consumer needs to send the data
item to node j. Constraint (2) indicates that if node j demands
data item k, which is denoted as p;; = 1, there is always a
node that will send the data item to it. Constraints (3) and (4)
are value ranges of variables.

For reseller ¢, the profit comes from the reselling revenue
deducting the cost it pays. The formulation for a specific data
item k and a reseller ¢ is as follows.

max U(r,z,y) = Z(Tikpk — Cijk)Yijk

oy jeg
1
— Tikpr — lik In 15 or —zmor’ 5)
st Tikpik = Yije, (Vi € Z,Vj € J,Vk € K) 6)
zir € {0,1}. (Vj € J,Vk € K) ™)

The objective function (5) consists of three parts. The first
part is the profit for this node ¢ which resells data item k. It
will get the corresponding share of the revenue r;;; if it delivers
the data to consumer j. x;; is a determination variable, where
x; = 1 indicates the node ¢ will store data item k. The second
part indicates that resellers have paid pj to the data from the
producer or another reseller to get the data. The third part is
the cost of storage. Since each data item is of different sizes,
the storage impact on different data items is not the same.
Thus, inspired by [4], we denote the cost of for node ¢ to
store k as In m, where oy, indicates the size of data
item k. Adding 1 is to prevent the logarithm from becoming
infinite. We use [;; as the weight to measure the storage cost.
Constraint (6) indicates that node i delivers data item k to
node j only if node ¢ stores the data item and node j requests
for the data item.

III. RESELLING PROTOCOL DESIGN

In this section, we describe our reselling protocols. We
present the processes under authorized and unauthorized re-
selling situations and detection of unauthorized reselling.

We assume that all nodes are selfish, rational, and want
to make more profit in the data selling process. Most of the
nodes follow the rules to get a fair sharing of their profit.
There are small amount of rogue nodes which want to have
unfair advantages to get more profit by cheating. For example,
in a reselling process, producers may want to have all revenue
without sharing with the reseller; the reseller may want to have
all revenue without notifying the producer.

In our proposed mechanism, the participation of consumers
is the key to reselling. We assume that consumers will check

whether data items are genuine through the validation process,
either willingly or mandatorily. Detecting situations that the
consumer intends to buy pirated data items and conduct off-
network transactions is beyond the scope of this paper.

We now present an authorized reselling process and an
unauthorized process, and how unauthorized process can be
detected and dealt with.

A. An Authorized Reselling Process

In an authorized reselling process, the reseller will inform
the producer about the reselling process and share the revenue
with the producer. The revenue sharing is ensured using smart
contracts. Smart contract [5] is a protocol that once it is signed
by involved parties, the contract content can be viewed and
validated by others. Smart contract is then encoded in blocks
and transactions can be enforced by users in the blockchain.

When a consumer finds data items that it demands, it then
sends requests to a nearby reseller to get the data item. The
corresponding reseller then sends the data item and conducts
key exchanges with the consumer. Meanwhile, the reseller
will generate a tripartite contract, which involves the producer,
the reseller and the consumer. The contract has the data item
information, selling price and revenue sharing ratio between
the reseller and the producer. The price of this data item is
determined by the producer while the revenue sharing ratio
is previously determined. Then, the consumer pays for the
data and three parties sign the contract using their respective
public keys. The contract now takes effect and is stored into
blockchain to be publicly validated. Fig. 1 shows the reselling
process.

? @ °°°°° @ Save to blockchain ‘
- Sign ‘
-

Producer @J‘ Blockchain

S
&5 system

: Nodes
Requests 5
" —&—’ HH ® __ Order and
e @Datae - Sign ~ operations

Reseller Consumer Q Smart

contract

Fig. 1. Step by step information for an authorized reselling process. 1) The
consumer requests a data item from the nearby reseller. 2) The reseller then
sends the data to the consumer. 3) The reseller generates a smart contract.
The producer, consumer, and reseller all need to sign the contract to make
it effective. 4) The contract is encoded in the blocks and transactions are
enforced by all nodes.

Since the contract takes effect only when the consumer,
producer and reseller sign, it can avoid the situations where
one or more parties do not play with the preset rules. If the
contract has incorrect information such as false price or false
sharing ratio, the consumer or the producer can simply deny
signing it. If the producer wants to have all the revenue, it has
to deny the contract and make a new contract. However, the
consumer and reseller will not sign this new contract if the
original information in the previous contact is correct. Thus,
the producer will not get any revenue. Meanwhile, since each
signature can be verified through the public keys of these three

parties, the contact effectiveness can be verified. Other nodes
then acknowledge and enforce the credit change of each node
when the contact takes effect and stored in the blockchain.
Note that this reselling process will not corrupt the user privacy
in the blockchain. The revenue sharing is similar to three-
party transactions in traditional cryptocurrencies, and the data
content is not revealed.

B. An Unauthorized Reselling Process

In an unauthorized reselling process, the reseller does not
inform the producer about the reselling process. The reseller
pretends the data item as of its own to take all revenue alone.
The resellers will rewrap the data item and tell others that this
is a new data item.

Once a consumer finds this data item that it demands, it may
send the requests to this rogue reseller, which pretends itself
as the producer of the data item. The rogue reseller sends the
data and conducts key exchanges. Here, the consumer checks
whether the data item is genuine. The consumer works on the
verification process and broadcasts its verification information.
Once the real producer receives the verification information,
it can easily check whether there exists a data item it once
produced. If the producer detects such resold without autho-
rization, the producer will present the information to prove it.
The information detail is presented in the validation process.
Then the producer will generate a new smart-contact in which
it leaves the reseller out. The consumer and the producer
will sign the new contract, and all the revenue is given to
the producer. Fig. 2 shows the process of an unauthorized
reselling.

o
HH @ Generate [Contract
; '\& Sign

Producer N

N\

@Save to blockchain ‘

Blockchain system

i Nodes
-

— ® _ Order and
=s @ Requests N . Sign = Ooperations
o N i Smart
- @pata € - contract

Reseller

8
Consumer @ Discarded

contract

Fig. 2. Step by step information for an unauthorized reselling process. 1)
The consumer requests a data item from the nearby reseller. 2) The reseller
then sends the data to the consumer. 3) The consumer broadcast a piece
of verification information and the data producer will notice. 4) The data
producer generates a smart contract directly with the consumer, and the contact
from the reseller will be discarded. 5) The contract is encoded in the blocks
and enforced by all nodes.

Since the producer will get notified by the consumer about
an unauthorized resold data item, and the smart-contract from
the reseller will not be signed by the other two parties. In this
situation, the reseller will suffer loss for delivering the data to
the consumer. Thus, the reseller cannot get unfair advantages
by cheating.

C. Verification Process

As we mentioned above, the consumer checks whether the
data item is genuine. After the consumer gets the data item

which the producer is not obvious, the consumer conducts the
verification process.

Similar to the mining process, the consumer generates a
hash from the data item that is hard to obtain but easy to
check. The consumer first chooses any part of the data from
the data item it receives, and hash together with a nonce,
shown in Fig. 3(a). It continues to use different nonce until
getting a hash value that follows a certain pattern (e.g., hash
smaller than a certain number). The stricter the pattern is,
the harder the process will be. This hardness is related to
the price of the data item decided by the producer. Then,
the consumer broadcasts the verification packet, shown in Fig.
3(b), including which part of the data (indices), the hash and
the nonce, to the network. The potential real producer will
receive the verification packet and check if there are data
items that match the information. The producer will hash the
same content by the indices and nonce to see if it matches
the hash value given in the verification packet. If a producer
finds out the data item related to the verification packet, it can
declare that the transaction is unauthorized. It has to show the
consumer 1) it indeed owns the data item, 2) the reseller has
purchased the data item before, and 3) the smart contact does
not include the producer. Such information can be retrieved
from the blockchain and can be easily verified. Then, the
producer will generate a new smart contact and the consumer
will sign this new contract. The contract of the rogue reseller
will be discarded, and the reseller will not receive any revenue.

Note that rouge consumers may deny paying for the data
item. This problem can also happen when consumers send
false information to trusted third parties. A potential solution
is to have a reputation system where the consumer will suffer
a reputation loss for such behaviors. We will study such
solutions in the future.

] —
) —
3 —

Xl |

Indices

(start, end) (5257, 6033)

nonce | Hash ash

value

3e90254eb5b99.......... 32

Nonce 3875587

(@) (b)

Fig. 3. The hashed item (a) and the verification packet example (b). The hash
included a part form the data and a nonce to meet previous set pattern of the
hash value.

During the verification process, the consumer contributes
“work” to check the data item information by obtaining a hash
following preset hash patterns. In blockchain systems, any
valid “work” can be related to credit. In our design, the “work”
of the consumer corresponds to some credit, which can be used
to pay for the data item. Since the credit is presented, the
consumer benefit will be lost if we just cancel the transaction.
Thus, we let the producer get the corresponding revenue
directly from the consumer. In this case, we can keep the
profit of the producer, and the “work” of the consumer is not
wasted.

IV. SOLUTIONS TO REVENUE SHARING GAME

In this section, we propose a two-stage dynami Stackelberg
game to model the interaction between the producer and
resellers, and provide analytical solutions to the model.

A. Stackelberg Game Model

In the game we propose, the producer is modeled as the
leader, and resellers are modeled as followers. We assume that
all participants in the game are rational and selfish. In Stage I,
the strategy of the producer is to present the revenue sharing
ratios r;;, to the reseller ¢ who sells the data item k. In Stage II,
after given incentive revenue from the producer, resellers need
to determine which data items to buy and deliver to maximize
their own profit. The game is defined as follows.

o Followers: resellers.

o Leader: the producer.

o Strategies: the producer determines the revenue sharing
ratio » and resellers determine whether to store and
deliver data: x and y.

e Payoff: maximize the profit for the producer S(r,y) and
total profit for resellers U (x,y).

The game is a two-stage dynamic Stackelberg game with
complete information, the solution is the specific case of the
Stackelberg game called equilibrium.

Definition 1. Stackelberg Equilibrium: The outcome
{r*,z*,y*} of this two-stage Stackelbergame reaches the
equilibrium if following conditions are satisfied at the same
time:

S(r*y7) = S(r,y"), (vr) ®

U™, y",r") > Ulz,y,r7), (Vo,y) ©
where r*, z*, y* are the optimal value for r, x, y respectively.

B. Equilibrium Analysis

In this section, we analyze how to derive the equilibrium
of the proposed game. This problem is challenging because
the revenue sharing ratio for the producer, and the storage
determination for resellers are coupled together. The processes
of the interaction between the producer and resellers are
dynamic, the profit of the producer and resellers cannot be
determined at the same time.

To analyze the problem, we separate the process of the game
in two different stages. In Stage I, the producer decides the
revenue sharing ratio offered to resellers to encourage them
to buy and deliver data items. In return, for resellers, they
determine which data items to be stored and deliver data items
to the requesting consumer in Stage II. This game jointly
solves the problem of how to determine the revenue sharing
ratio and storage determination.

1) Stage II: We first address the case in Stage II. The
objective for resellers is to maximize their total profit. After
observing the action of the leader (the producer offers the
incentive ratio), determination of resellers is decided as the
response for cooperation. The optimal strategy of the reseller
is decided by solving an optimization problem. This problem

takes the revenue sharing ratio offered by the producer as the
input. More specifically, the problem for each reseller ¢ is
defined as

max U; (z,y), (10)

s..(6), (7).

The objective function of the problem is discrete due to
the discrete variable of x;;. To solve the reseller problem,
the discrete storage variable x4, is relaxed from {0,1} to [0,1]
which is continuous. Hence, the profit function (5) is monotone
increasing with the determination variable ¥;;;. To maximize
the profit of the reseller, the optimal solution achieves when
(6) transfers as follows,

zikpik = yijr- (Vi € TUT' \Vj € J,Vk € K). (11)

The determination variable y; ;. is replaced from (11). After
replacing the determination variable y; 1, the profit function of
the reseller (5) is continuous about the ;. We first calculate
the partial maximization over x of the profit function. The first
derivative function is derived as follows,

oU(x,y) orlik
8Iik - ; Tzkpkpjk ; Cukp]k Pk 1 i Ok — TinOk .
(12)
Equation (12) is a concave function. To get the maximiza-
tion value, let %ﬁy) =0, we have
Lik 1

e 1+ —. (13)
TikPk 225 Pik = D CijkPik — Pk Ok
Note that after the relaxation, to guarantee the z7, is in

[0,1], following constraints need to be satisfied,

TikPk ijk — Z cijkpPik — Pk < likOik,
J J
(rikpr ijk - Zcijkpjk —pk)(ok + 1) > likoik,
J

J

(14)

15)

where (14) corresponds to the condition z7;, < 1 and (15)
indicates that x7, > 0. If these conditions cannot be satisfied,
the optimal solution is reached either =7, =0 or =}, = 1. To
solve this problem, the storage variable is relaxed from {0, 1}
to [0,1], the solution derived is not feasible to the original
problem. Hence, we propose a rounding policy to round the
continuous [0, 1] back to discrete {0,1}. We define A as the
boundary value. If x;;, > A, x;x = 1, otherwise, x;; = 0. The
performance guarantee is discussed in Section I'V-C.

After obtaining the revenue sharing ratio, the optimal stor-
age policy for resellers is derived and regarded as the input
to get the optimal revenue sharing ratio of the producer to
maximize the profit in Stage L.

2) Stage I: Now we discuss Stage 1. The producer de-
termines the revenue sharing ratio (i.e., incentive) offered
to resellers to maximize the revenue. Thus, the producer
considers the anticipated strategy of each reseller. By intro-
ducing the optimal storage strategy of the reseller (13) and
constraints (14), (15), the problem to maximize the revenue
of the producer can be formulated as follows,

max S(y,r), (16)

£.(2), (11), (13), (14), (15).

By implementing constraints (2), (11) and (13), we elimi-
nate the determination variable v, ¥;;x and x;;. After that,
the revenue function only contains the variable r;;, as shown
in the following,

> CigkPik + Dk = 3 CojkPik
TikPk Zj Pik — Zj CijkPjk — Pk

) (A7)

S(r) = ZZ(zika +

(ox +1)(1 = 7in)Pr > Pik
18
+)0 (ox — cojr)ps (19)
J k
(20)

_ (or + 1)(Pk — cojk)pik

The objective function is not a standard convex optimization
problem, the convexity or concavity of the function depends
on the parameter settings which corresponds to a different
solution. (18) is a linear function about 7;;, (19) and (20)
only contain the constant parameters, they do not affect the
convexity of the revenue function. The convexity of (17) varies
with the parameter settings. We discuss different conditions for
each ¢ and k in detail as follows.

1) 37, cojepic — 22, Cijrepik — pe > 0.

The revenue function (17) is concave about the 7;g,
the problem is to maximize the total revenue, the op-
timal value could be derived from the extreme point of
the revenue function. The standard convex optimization
techniques [6] can be applied.

2) >, cojrpik — X2 CigkPik — Pk < 0.

The revenue function (17) is a convex function about 7;.
The maximum value is determined by the end point of
the r;;, which is O or 1. In this case, the optimal strategy
of the reseller can be derived by comparing the revenue
value of the objective function between r;; = 0 and
rik = 1. When r;; = 1, which means the producer does
not need to serve consumers directly, resellers can satisfy
all requests from consumers and it will cost more for the
producer to serve consumers directly. When r;;, = 0, the
revenue offered to resellers is larger than the producer
serving the requests from consumers directly. Thus, the
best strategy of the producer is to serve consumers
directly.

3) X2; cojkpik — 2 Cikpik — Pk = 0.

The revenue function (17) is monotone decreasing about
the revenue sharing ratio ;5. Hence, the optimal solution
is 7. = 0. As mentioned above, the producer can get the
largest income when 7;; = 0, which means the optimal
strategy for the producer is to sell the data item by itself
instead of offering the incentives to resellers.

C. Performance Analysis

In our proposed game, storage variables x;, and y;; are
integers. Directly solving the problem to get optimal results

as integers is difficult as the problem is NP-Hard [4]. Thus,
in Stage II, storage variables x;; and y;;;, are relaxed from
{0,1} to [0, 1]. The solution derived after the relaxation may
not be feasible to the original problem if it is not integral.
To address this problem, we propose the rounding policy and
prove that it has an approximation ratio to the optimal result.
Rounding Policy. If =, > A, x;x = 1, otherwise, z;; = 0,
where)\ is the rounding threshold.

To simplify the proof process, we denote the result of
optimization problem (5) as U*(x) with optimal integer result,
and U(z) with the relaxed (i.e., relaxed z3, € [0,1]). UT(x)
is the result after rounding (i.e., integer !, € {0,1}). The
theoretical bound for the rounding policy is derived as follows.

Theorem 1. The rounding policy is an approximation algo-
rithm to the original problem without rounding and it achieves

an approximation ratio of ﬁ ie., U*(x) < ﬁUT(x).

Proof. The objective function (5) contains the component
—ligIn 5 ——- 1 which is not linear. We relax this com-
k—TikOk | . . :
ponent by introducing two linear functions to constrain the
logarithmic function in a small, compact region. Fig. 4 illus-
trates the relationship between the logarithmic function and

two linear functions.

) 150,

~/

-0.50

Fig. 4. The relaxation of the non-linear part of the objective function. fi ()
and fao(x) are two tangent lines which intersect the non-linear funtion at
integer points.

In Fig. 4, each linear function is tangent to the logarithmic
function and only has one intersection with the logarithmic
function at integer x-coordinates. The coordinates of two
intersection are (0,In(1 + o)) and (1,0). These two linear
functions are two extreme conditions to limit the logarithmic
function in the feasible region (z € [0, 1]), and guarantee that
the logarithmic function is less than or equal to these two linear
functions. Two linear functions are represented as follows,

Ji(z) = —orx + ok, @0
fo(@) = = j_kka—l—log(l—Fok). 22)

The
L op—In(1+oy) -
Ok

Ok*W
After rélaxing of the logarithmic function into linear func-

tions, U;(z) can be written as a general linear form V;(z) =
dixxir, where U;(z) < Vi(z), and d;; is regarded as the
summation of all parameters. Hence, the total revenue function
can be written as V(z) = >, d;xx;,. This theorem can be
proved according the following inequality deduction,

intersection of these two linear function is at

U'(x) <U(z) < V(x)

= Zdik%‘k (23)
= Z dixix + Z dikTik (24)
{Ziklzin=2A} {ziklzin <A}
1 1
=3 Z dirzir + (1 — X) Z dikTik
{ziklzie =N} {ziklzie =N}
+ Z dik ik (25)
{ziklzig <A}
1
< N Z dix + Z dikTik (26)
{ziklzie =N} {zirleig <A}
1
< X Z dir + €Z dikTik (27)
{ziklzig=A} i
1
= va(x) + €V (x). (28)

We explain the deduction step by step. (23) to (25) are
identical transformations to make V(). Inequality (26) can
be obtained because after the rounding. Inequality (27) holds
since {x;x|x;x < A} is the subset of the reseller set, and € < 1.
(28) is equivalent to (27). Since VT (x) = UT(z) when using
same rounding policy to {0,1}, and U*(z) < V(z), we can

get
1

Al —¢)

We consider two linear relaxations to the logarithmic func-
tion, and different choices of A will generate different gaps.
The feasible gap region is the shadow area in Fig. 4. The
intersection point x; is the boundary condition of two different
linear relaxations when solved together. Thus, when A = z;,
it indicates the upper bound of the gap between relaxation
function and original function. O

U(z) < U'(x). (29)

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our pro-
posed mechanism on data selling and reselling. We focus on
evaluating the performance of profit sharing between the data
producer and resellers on different settings of the network,
and whether the reselling makes more profit for nodes. Profit
functions are defined in (1) and (5) respectively for the
producer and resellers.

In the simulation, we assume that nodes are distributed
randomly in a square area with the same density of 25m?
unit per nodes. We assume every two nodes can directly
communicate with each other in the network. The cost for
data delivery c;;1 is set as the distance between two nodes.
We test different strategies for data delivery to evaluate the
proposed reselling model. “Producer only” indicates that the
producer sends all data items to consumers. Resellers are not
involved, and all revenue is going to the producer. “With
reseller” indicates that if the consumer is close to a reseller, the
reseller will send the data item to it. Otherwise, the consumer
will still obtain the data from the producer. The revenue of the
data item sold by resellers is shared with the producer. Note

that every node can be a reseller if the revenue sharing ratio
ri1 1S reasonable and profitable. Without loss of generality,
we only consider selling one data item over the network. We
implement the Stackelberg game using python. The convex
optimization problem (17)-(20) is solved using CVXPY [7].
We conduct our simulations on a computer with an Intel Core
17-5820K processor and 32GB RAM.

A. Profit on Different Prices of Data Items

We first evaluate the profit that the data producer and
resellers can get under different prices of data items. We set
100 nodes in the area. 50 consumers are demanding the data
item, and each demand needs to be satisfied by either the
producer or a reseller.

Fig. 5 shows the profit of the producer (a) and resellers
(b) over different prices of data items. In general, the higher
the price is, the higher the profit will be for all nodes. Since
demands are fixed and the communication costs are almost
constant, the profit grows almost perfectly linearly with the
increasing price of the data item. Meanwhile, if resellers join,
the producer will receive more profit. Since more nodes store
the data item, and a consumer can access data from a nearby
node, the communication cost is lower for delivering data. The
reselling nodes can have more profit, which also increases the
profit for the producer. Overall, the producer receives 30.9%
more profit with the help of resellers.

Fig. 5(c) shows the CDF of different revenue sharing ratio
rir which reseller ¢ gets the ratio when it resells the data
item to a consumer. It shows the minimum revenue sharing
ratio that can incentivize a certain fraction of nodes to join
as resellers because they gain more than the cost for data
delivery. At the same revenue sharing ratio, the higher the
CDF, the more nodes will participate in the reselling process.
For instance, when the price of the data item is 50, 20% of
the revenue sharing ratio is less than 0.4, i.e., only 20% nodes
will participate reselling if it can get 40% of the overall price.
When the price increases to 60, 50% nodes will participate at
the same ratio of the overall price. Since all nodes are selfish
and rational, they will try to compensate their cost for data
delivery if they participate in the reselling. Thus, if the price
is high, reselling nodes can easily compensate the cost, and
resellers can require a lower revenue sharing ratio and still
make profit, and more nodes will resell data. This in turn gives
more profit of the producers. The higher profit for producer
shows that our proposed mechanism indeed helps to increase
the benefit of the producer.

B. Profit on Different Sizes of Networks

Next, we evaluate the profit of the data producer and
resellers under different sizes of networks. We set 25 to 175
nodes in the same area. The price of the data item is 50, and
there are randomly 50% nodes requesting the data item.

Fig. 6 shows the profit for the data producer (a) and resellers
(b). In general, the profit of producers increases as more nodes
are in the network. Since more nodes bring more requests, the
producer can make more profit by selling more data items.
An interesting discovery is that when there are fewer than

2500 1200 — 1.0
. —e— Producer only — 30
Q)
o —— With reseller ¥ 1000 -== 40
S & L
3 2000 g 081 _._ 50
s % 800 s T 60
© 1500 = ‘ ‘ 0.6 70
[T
5 S 600 [8
o = o
£ 1000 o (W 0.4
2 g (1 ‘ ‘ ‘ ‘ ‘ ‘
©

= -
5 500 '9 200 1 0.2 :
e H}
o B

. Cml ¥

30 35 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70 0.0 0.2 0.4 0.6 0.8 1.0
Price for each data item Price for each data item Revenue sharing ratio
(@ (b) (©

Fig. 5. The profit of the producer (a) and resellers (b) under different prices of data items. The profit increases almost linearly as prices grow. The distribution
of revenue sharing ratio under different prices is shown in (c), each line indicates different prices of the data item. The higher the price is, the more nodes

will participate and require less revenue sharing ratio.

6000 1000 — 1.0
- —e— Producer only
[})
e} —&— With reseller [
S 5000 @ 800 0.8
el P ==
g 4000 2
Q

Q
© = 600 (W 0.6
© G w
S 3000 o a
: £ M 8
< o 400 0.4
& 2000 S
-‘2 2 200 0.2
G 1000 ° :
o
0 0 Q .
25 50 75 100 125 150 175 25 50 75 100 125 150 175 0.0 0.2 0.4 0.6 0.8 1.0
Number of nodes in the network Number of nodes in the network Revenue sharing ratio
(@) (b) (©

Fig. 6. The profit of the producer (a) and resellers (b) under different sizes of the network. The profit for producer grows as networks with increasing nodes.
If less nodes are in the network, the revenue is not shared with resellers. The distribution of revenue sharing ratio under different sizes of the network is
shown in (c). The larger the network size is, the higher sharing ratio resellers will require .

3000 1000 1.0 7
—e— Producer only i — 30

- —4— With reseller wn | -—= 40
S 2500 @ 800 0.8 I —— 50
> < — [
= < O e e N S | 1 S P,
© 2000 g I I 60
a S 600 0.6 70
© ‘S w
‘i 8
° S 400 0.4
N = N
© 1000 [
= —
5 8
- : - ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘)

0 0 0.0

20 30 40 50 60 70 80 20 30 40 50 60 70 80 0.0 0.2 0.4 0.6 0.8 1.0
Total number of requesting nodes Total number of requesting nodes Revenue sharing ratio
(@) (b) ©

Fig. 7. The profit of producer (a) and resellers (b) under different numbers of requests. The profit for producer increases as more nodes are requesting. The
distribution of revenue sharing ratio under different sizes of the network is shown in (c). The participation and revenue sharing ratio among all nodes are

nearly the same over different numbers of requests.

50 nodes thus fewer than 25 demands in the network, the
producer does not need to share revenue with resellers. This
is because resellers receive no profit under such conditions.
Thus, it does not gain more profit with resellers. With such a
small-sized network, the producer does not make much profit,
and sharing revenues with resellers will only diminish the
profit. Meanwhile, if the network size is large, the profit for the
producer grows significantly larger with the help of resellers.
Overall, the producer receives 97.8% more profit with the help
of resellers.

Fig. 6(c) shows the revenue sharing ratio under different
sizes of the network. As the network size grows larger, the

revenue sharing ratio required from resellers is larger. When
the total number of nodes is 70, 0.45 revenue sharing ratio
can incentivize 60% nodes participate, and it requires about 0.7
revenue sharing ratio to incentivize the same fraction of nodes
to participate if the number of nodes is 150. Since the density
of nodes is the same, the larger number of nodes indicates the
larger area. Thus, it requires more cost for resellers to deliver
data items, and to get more revenue from the producer which
can compensate for the higher costs.

C. Profit on Different Numbers of Requests

Finally, we evaluate the profit distribution between the
producer and resellers under different numbers of requests for

a data item. We set the number of requests from 20 to 80
respectively in the same area with 100 nodes in total. The
price of each data item is 50.

Fig. 7 indicates the profit for the producer (a) and resellers
(b) in different numbers of requests. As there are more requests
in the network, nodes can sell more data and make more
profit. As we observe in Fig. 7(a), with very few demands,
the revenue is not shared with resellers. The profit using only
the producer to deliver is almost linear, since the costs are
mostly constant. Meanwhile, with a larger number of requests,
resellers will help the producer get more profit. The producer
receives 44.1% more profit with the help of resellers.

Fig. 7(c) shows the distribution of revenue sharing ratio
under different numbers of requests in the network. There is
no significant difference in the revenue sharing ratio and the
number of participate nodes. This shows that more requests do
not incentivize more nodes to become resellers. For the same
number of nodes and densities, the cost for data delivery is
mostly the same for a piece of data, and resellers need similar
shares of revenue to compensate for the cost. The increasing
profit comes not from increasing sharing ratios but from selling
more data items. Thus, the growth rate of the profit of the
producer is relatively larger than resellers.

VI. RELATED WORK

On the contrary of cloud computing which moves the
computing to the centralized cloud, edge computing moves the
computing work to distributed nodes on the edge of the net-
work. The computing mostly or entirely happens on nodes near
to or inside the edge devices [8]. Edge computing can offer
fast and robust data sharing and processing capabilities for end
devices. One major research aspect of edge computing studies
the benefit using smaller edge servers (cloudlets) deploying
near the network edge (e.g., cellular base stations), serving as
the middle layer between edge devices and clouds [9], [10].
These edge servers can offer multiple applications such as
caching and resource virtualization. Another research aspect
studies the innovative functionalities from the collaboration of
edge devices. In such scenarios, resources of nodes are often
limited. This collaboration is important especially over high
mobility and frequent topology change scenarios like vehicle
networks [11], [12], in which the connection to even small
station is not stable [13].

The blockchain technology is proposed in 2008 by Satoshi
Nakamoto [14]. The blockchain is designed to prevent unau-
thorized changes of its contents using cryptography features.
If a malicious user wants to tamper with a piece of data, it
has to counterfeit a whole branch of chain from the block that
it intends to modify. These features can make the blockchain
system a safe ledger perfectly for cryptocurrencies, e.g., Bit-
coin [14], Litecoin [15], and Ethereum [16].

The concept of smart contract is proposed by Nick Szabo [5]
and has been implemented in Ethereum [16]. It is a computer
protocol that makes sure that a contract can be enforced
without a trusted third party as the arbitrament. The blockchain
technology makes the smart contract practical. Contacts are

publicly stored in the blocks that all nodes in the blockchain
can access, and the corresponding transactions are irreversible.
Thus, many applications are emerged using the smart contract
concept, e.g., anonymous voting [17] and private IoTs [18].

Copyright protection is a key factor for data trading. Digital
rights management (DRM) is proposed to prevent digital data
from unauthorized redistribution, like Microsoft DRM [19]
and Apple HLS DRM [20]. It is good to protect structured
data such as software or multimedia, but it is hard to detect
deliberate replication and tampering of unstructured data, such
as texts and codes. Thus, in most cases, data is simply not
allowed to be redistributed [21], [22]. Meanwhile, Jung et al.
[23] propose some protocols against dishonest consumers for
reselling data, but a centralized broker may be needed. Our
work focuses on a fully distributed mechanism where there is
no centralized control or trusted third party needed.

VII. CONCLUSION AND DISCUSSION

In this paper, we have proposed a fair and data producer
profit protecting data trading mechanism in pervasive edge
computing environments. We have proposed a smart-contract
based protocol to ensure the profit of producer for reselling,
and we have proposed a protocol to detect unauthorized
reselling without imposing extra burdens onto the consumer
and the producer. We have formulated a two-stage dynamic
Stackelberg game to find a fair revenue sharing ratio between
the data producer and the resellers, and have proved the
approximation ratio between the rounded result and the op-
timal integer result. Simulations have show that our proposed
mechanism works better than that without reselling processes
under pervasive edge computing environments.

Peer data trading is an important application in edge envi-
ronments. [oT sensing data, “We media” contents and other
valuable information can be traded among edge devices and
servers. Our proposed solution enables trading parties to get
fair and protected profit shares. It supports safe transactions in
distributed and untrusted environments. The edge scenario is
a representative instance in which such data trading constantly
happens. Smart-contract is a well-known protocol to enforce
the execution of a certain contract. We use smart-contract
to make sure the revenue is properly shared and each party
pays and gets its fair share. Currently, some cryptocurrencies
like Ethereum [16] have implemented smart-contract and some
previous work like [24] have evaluated its performance. Eval-
uating smart-contract security and performance is out of scope
of this paper. In the reselling process, consumers can choose
a smaller part to hash, which can reduce the influence of the
noises from reseller. However, this leads to another problem
that less data improves the possibility for collisions of other
data items, which may trigger false positive response. A simple
solution is for consumers to conduct verification process under
all conditions (including buying from legal resellers), which
can be used to trace the root for unauthorized reselling.

ACKNOWLEDGEMENTS

This work is supported in part by US National Science
Foundation under grant numbers 1513719 and 1730291.

[5]
[6]

[8]
[9]

[10]

(1]

[12]

[13]

REFERENCES

“Gumroad,” https://gumroad.com/, [Online; accessed 17-Jul-2019].

“Is gumroad a scam?” https://www.quora.com/Is-Gumroad-a-scam, [On-
line; accessed 17-Jul-2019].

H. Green, “Theft, lies, and facebook video,” https://medium.com/
@hankgreen/theft-lies-and-facebook-video-656b0ffed369, 2015,
line; accessed 17-Jul-2019].

K. Poularakis, G. losifidis, I. Pefkianakis, L. Tassiulas, and M. May,
“Mobile data offloading through caching in residential 802.11 wireless
networks,” IEEE Transactions on Network and Service Management,
vol. 13, no. 1, pp. 71-84, 2016.

N. Szabo, “Smart contracts: building blocks for digital markets,” EX-
TROPY: The Journal of Transhumanist Thought,(16), 1996.
S. Boyd and L. Vandenberghe, Convex optimization.
university press, 2004.

S. Diamond and S. Boyd, “Cvxpy: A python-embedded modeling
language for convex optimization,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 2909-2913, 2016.

Microsoft Research, “Edge Computing,” https://www.microsoft.com/en-
us/research/project/edge-computing/, Oct. 2008.

M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE pervasive Computing,
2009.

X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, no. 5, pp. 2795-2808, 2016.

D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the
wireless edge: design aspects, challenges, and future directions,” IEEE
Communications Magazine, vol. 54, no. 9, pp. 22-28, 2016.

P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Tamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” ACM SIGCOMM Computer Com-
munication Review, vol. 45, no. 5, pp. 37-42, 2015.

Y. Huang, F. Ye, and Y. Yang, “Peer data caching algorithms in large-
scale high-mobility pervasive edge computing environments,” in 2018

[On-

Cambridge

[14]
[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

IEEE 37th International Performance Computing and Communications
Conference (IPCCC). 1IEEE, 2018, pp. 1-8.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
K. Fanning and D. P. Centers, “Blockchain and its coming impact on
financial services,” Journal of Corporate Accounting & Finance, vol. 27,
no. 5, pp. 53-57, 2016.

V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, 2014.

P. McCorry, S. F. Shahandashti, and F. Hao, “A smart contract for board-
room voting with maximum voter privacy,” in International Conference
on Financial Cryptography and Data Security. — Springer, 2017, pp.
357-375.

K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” leee Access, vol. 4, pp. 2292-2303, 2016.

D. K. Mulligan, J. Han, and A. J. Burstein, “How drm-based content
delivery systems disrupt expectations of personal use,” in Proceedings
of the 3rd ACM workshop on Digital rights management. ACM, 2003,
pp. 77-89.

C. D’Orazio and K.-K. R. Choo, “An adversary model to evaluate drm
protection of video contents on ios devices,” Computers & Security,
vol. 56, pp. 94-110, 2016.

F. Liang, W. Yu, D. An, Q. Yang, X. Fu, and W. Zhao, “A survey on
big data market: Pricing, trading and protection,” IEEE Access, vol. 6,
pp- 15132-15154, 2018.

X.-Y. Li, J. Qian, and X. Wang, “Can china lead the development of
data trading and sharing markets?” Communications of the ACM, vol. 61,
no. 11, pp. 50-51, 2018.

T. Jung, X.-Y. Li, W. Huang, J. Qian, L. Chen, J. Han, J. Hou,
and C. Su, “Accounttrade: Accountable protocols for big data trading
against dishonest consumers,” in INFOCOM 2017-1EEE Conference on
Computer Communications, IEEE. 1EEE, 2017, pp. 1-9.

T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhang,
“Understanding ethereum via graph analysis,” in INFOCOM 2018-IEEE
Conference on Computer Communications, IEEE. 1EEE, 2018, pp.
1484-1492.

